
智能软件与⼯程学院
School of Intelligent Software and Engineering

数据结构与算法
Data Structures and Algorithms

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne.Thanks for their supports! We also use some materials from stanford-cs161.

钮鑫涛
Nanjing University

2023 Fall

智能软件与⼯程学院
School of Intelligent Software and Engineering

Course Info
• Instructor: 钮鑫涛 (Email: niuxintao@nju.edu.cn)

• Prerequisites: programming and discrete mathematics (some basic probability theory)

• QQ group: 892855425

‣ please show your name, student ID, and department when applying to join the QQ group

• Course homepage: https://niuxintao.github.io/courses/2023Fall-DS/

• Online Judge：http://172.29.6.1/

• Office hour: Wednesday, 2-4 pm, Thursday 10-12 am （拟定南雍楼223)

mailto:niuxintao@nju.edu.cn
https://niuxintao.github.io/courses/2023Fall-DS/
http://172.29.6.1/

智能软件与⼯程学院
School of Intelligent Software and Engineering

Teaching Assistants

• Heading TA:

‣ Hongnan Chen (MG21330010@smail.nju.edu.cn)

• TAs:

‣ Coming soon!

Strongly recommend asking questions in the QQ group for help (We will check them regularly).
Also recommend asking TA questions personally during office hours to seek additional help.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Textbook
• “Introduction to Algorithms” by C.L.R.S (中⽂版：算法导论)

• Version： 3rd edition or 4th edition

智能软件与⼯程学院
School of Intelligent Software and Engineering

References
• “Algorithms” by Robert Sedgewick, Kevin

Wayne

• “Data structures and algorithm analysis in
java” by Mark Allen Weiss

• “数据结构(C++语⾔版)第3版” by 邓俊辉

• “Algorithm Design” by kleinberg and éva
tardos

• “Algorithms” by by Sanjoy Dasgupta,
Christos Papadimitriou, Umesh Vazirani

• “Algorithms” by Jeff Erickson

智能软件与⼯程学院
School of Intelligent Software and Engineering

Grading

• Problem Sets + Programming Assignments + Exams

‣ Problem sets (PS): weekly, (30%)

‣ Programming Assignments (PA): weekly, (30%)

‣ Exams: Final Exam (40%)

We may add some computer examination (As part of PA)

智能软件与⼯程学院
School of Intelligent Software and Engineering

More on Online Judge

• Log in (your account ID and your initial password are both your student ID)

‣ If you find your account cannot log in, please find TA for help

‣ After log in, please change your password

• Programming Assignments are posted and evaluated on this site.

• Only available at Nanjing University

智能软件与⼯程学院
School of Intelligent Software and Engineering

Academic Integrity

• Always try to solve PS and PA independently.

• You may discuss with others if you really need to, but you must list their
names in your answers.

• You may not search and/or copy-paste existing solutions (Do not ask
Chatgpt for help).

智能软件与⼯程学院
School of Intelligent Software and Engineering

Syllabus

• A collection of common and widely used data structures;

• Basic algorithm design and analysis techniques;

• A collection of classical algorithms;

• Some related advanced topics, if we have time.

General goal: you can correctly and efficiently solve computational problems, by
developing/picking appropriate algorithms and data structures.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Quotation

“Algorithms are the life-blood of Computer Science.”

—Donald E. Knuth

“Computer science should be called computing science, for the
same reason why surgery is not called knife science.”

—Edsger Wybe Dijkstra

智能软件与⼯程学院
School of Intelligent Software and Engineering

Quotation
“Bad programmers worry about the code. Good programmers
worry about data structures and their relationships.”

—Linus Torvalds

“For me, great algorithms are the poetry of computation. Just like
verse, they can be terse, allusive, dense, and even mysterious. But
once unlocked, they cast a brilliant new light on some aspect of
computing.”

— Francis Sullivan

智能软件与⼯程学院
School of Intelligent Software and Engineering

Quotation
“Algorithms + Data Structures = Programs. ”

— Niklaus Wirth

“计算问题因何⽽易、⼜因何⽽难”

— 尹⼀通

智能软件与⼯程学院
School of Intelligent Software and Engineering

Quotation
“Mathematics my foot! Algorithms are mathematics too, and often
more interesting and definitely more useful.”

—Doron Zeilberger

“It's easy to make mistakes that only come out much later, after you've
already implemented a lot of code. You'll realize Oh I should have used
a different type of data structure. Start over from scratch.”

—Guido van Rossum

智能软件与⼯程学院
School of Intelligent Software and Engineering

The importance of this course
Fundamental

……Operating Systems

Machine learning

Cryptography

Database

Computer Networking
Computer graphicsCompilers

智能软件与⼯程学院
School of Intelligent Software and Engineering

The importance of this course
Influential

智能软件与⼯程学院
School of Intelligent Software and Engineering

The importance of this course
Profitable

智能软件与⼯程学院
School of Intelligent Software and Engineering

The importance of this course
Useful

Algorithm is the art of problem-solving — you will learn a lot of useful
techniques!

When dealing with industrial problems (with large-scale inputs), having
good algorithms makes great impact!

智能软件与⼯程学院
School of Intelligent Software and Engineering

The importance of this course
Last, but not least — Fun

Algorithm design is both an art and a science.

Many surprises!

Many exciting research questions!

智能软件与⼯程学院
School of Intelligent Software and Engineering

Let’s Start

智能软件与⼯程学院
School of Intelligent Software and Engineering

What is an Algorithm?

• In computer science, an algorithm is any well-defined computational
procedure that takes some value(s) as input and produces some value(s)
as output.

• Another perspective: we can also see an algorithm as a tool/method for
solving a well-specified computational problem.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Well defined?
• For example, the integer sorting problem:

‣ Input: a sequence of integers

‣ Output: a reordering of input where .

n < a1, a2, . . . , an >

< a′ 1, a′ 2, . . . , a′ n > a′ 1 ≤ a′ 2 ≤ . . . ≤ a′ n
Computer

Execute an algorithmInput Output

• Counterexamples (ill-defined):

‣ Finding a perfect mate

‣ Writing a great novel

智能软件与⼯程学院
School of Intelligent Software and Engineering

Well defined?

• For example, the integer sorting procedure:

‣ Input: a sequence of integers

‣ Output: a reordering of
input where .

n
< a1, a2, . . . , an >

< a′ 1, a′ 2, . . . , a′ n >
a′ 1 ≤ a′ 2 ≤ . . . ≤ a′ n

• One Counterexample:

‣ “倒⼊适量⻝⽤油，待油温达到7成热时分次放⼊鸡丁，将鸡丁炸制成⾦⻩⾊后捞出，加⼊适量
盐调味”

• Step 1 − Set MIN to the first location of

• Step 2 − Search the minimum element from the location MIN to the
last location of

• Step 3 − Swap with value at location MIN

• Step 4 − Increment MIN to point to next element

• Step 5 − Repeat the above steps 2-4 until list is sorted

< a1, a2, . . . , an >

< a1, a2, . . . , an >

智能软件与⼯程学院
School of Intelligent Software and Engineering

Instance of one problem

• For example, one instance of integer sorting problem:

‣ Sorting the sequence < 1,9,1,3 >

Computer

Execute an algorithm<1, 9, 1, 3> <1,1, 3, 9>

• A particular input of a problem is an instance of that problem.

智能软件与⼯程学院
School of Intelligent Software and Engineering

What is a data structure?
• A data structure is a way to store and organize data in order to facilitate access and

modifications.

‣ E.g., array, linked list.

• Different types of data usually demand different data structures.

• One type of data could be represented by different data structures.

Computer
Execute an algorithm

<1, 9, 1, 3> <1,1, 3, 9>

Computer
Execute an algorithm

<1, 9, 1, 3> <1,1, 3, 9>
1 9 1 3 1 9 1 3

Picking an appropriate one is important!

智能软件与⼯程学院
School of Intelligent Software and Engineering

Algorithm and Data Structures

• Algorithms and Data Structures are closely related

‣ An algorithm applies to a particular data structure

‣ An Algorithm usually need data structures internally to work as intended.

‣ Using the right data structure helps drastically improve an algorithm’s
performance

Algorithms Data Structures
hand in hand

智能软件与⼯程学院
School of Intelligent Software and Engineering

A brief history of Algorithm
Euclid's algorithm for finding the greatest common divisor of two numbers

30
0

B
C

The Sieve of Eratosthenes, used by Greek mathematicians to find prime numbers.

20
0

B
C

➡ Data from https://en.wikipedia.org/wiki/Timeline_of_algorithms

⾼斯消去法（英语：Gaussian Elimination），是线性代数中的⼀个算法，以数学家卡尔·⾼斯命
名，但最早出现于中国古籍《九章算术》，成书于约公元前150年, 作者已不可考，后由刘徽做注

15
0B

C

Al-Khawarizmi described algorithms for solving linear equations and quadratic equation82
0A

D

Latin: algorithmus, meaning “calculation method”, is the origin of the word “algorithm”

智能软件与⼯程学院
School of Intelligent Software and Engineering

A brief history of Algorithm

Newton–Raphson method which produces successively better approximations to the roots of a real-valued function

16
71

John Napier develops method for performing calculations using logarithms

16
14

➡ Data from https://en.wikipedia.org/wiki/Timeline_of_algorithms

 Lodovico Ferrari discovered a method to find the roots of a quartic polynomial

15
40

Leonard Euler publishes his method for numerical integration of ordinary differential equations

17
68

Ada Lovelace writes the first algorithm for a computing engine

18
42

 Turing machine developed by Alan Turing.

19
36

The notion of algorithm then is formalized by Church and Turing.

智能软件与⼯程学院
School of Intelligent Software and Engineering

A brief history of Algorithm

‣ Some algorithms were discovered by undergrads in a course like this!

Kruskal's algorithm

Floyd–Warshall algorithm Dĳkstra's algorithm

Tarjan's strongly connected components algorithm

Bron–Kerbosch algorithm

Kosaraju's algorithm

Hamming distance
Fibonacci search technique

Genetic algorithms

Daitch–Mokotoff Soundex

Fisher–Yates shuffle

Quicksort

Peterson's algorithm

Gibbs sampling

AC-3 algorithmQR algorithm

Simplex algorithm

Tabu search

Simulated annealing

C4.5 algorithm

Backpropagation
Shor's algorithm

Knuth–Morris
–Pratt a

lgorith
m

……

PageRank Algorithm

智能软件与⼯程学院
School of Intelligent Software and Engineering

The goal of algorithm design
• Generally, algorithm designing has two main goals:

‣ Does it work (correctness)?

- An algorithm is correct if for every input instance of the given
problem, the algorithm halts with the correct output.

‣ Can I do better (efficiency)?

- A superior algorithm is also correct and solve the given problem, but
uses less computing resources (time and memory) than less efficient
ones.

智能软件与⼯程学院
School of Intelligent Software and Engineering

An Introductory Example:

Integer Multiplication

智能软件与⼯程学院
School of Intelligent Software and Engineering

Integer Multiplication

• Problem Description: Integer Multiplication

‣ Input: Two -digit nonnegative integers, and .

‣ Output: The product .

n x y

x × y

If you want to multiply numbers with different lengths (like 1234 and 56), a simple hack is to just add some
zeros to the beginning of the smaller number (for example, treat 56 as 0056).

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Grade-School Algorithm
• Multiply the multiplicand by each digit of the multiplier

• Then add up all the properly shifted results.

‣ It requires memorization of the multiplication table for single digits.

123
×321

123
246

369
39483

Examples:
123

×021
123

246
000

2583

99
×77
693

693
7623

carries

智能软件与⼯程学院
School of Intelligent Software and Engineering

Pseudocode

• We’ll typically describe algorithms as procedures written in a pseudocode

‣ Independent of specific languages, but uses structural conventions of a
normal programming language (like C, Java, C++)

‣ Intended for human reading rather than machine reading (omit
nonessential details and easier to understand)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Pseudocode

• Some conventions:

‣ Give a valid name for the pseudocode procedure, specify the input and
output variables’ names (as well as the types) at the beginning.

‣ Use proper Indentation for every statement in a block structure.

‣ For a flow control statements use if-else. Always end an if statement
with an end-if. Both if, else and end-if should be aligned vertically in
same line.

More details can be found at 1. http://www.mscs.mu.edu/~rge/cosc3100/pseudocode.pdf,
2. https://onlinelibrary.wiley.com/doi/pdf/10.1002/0470029757.app1

智能软件与⼯程学院
School of Intelligent Software and Engineering

Pseudocode
• Some conventions:

‣ Use or := operator for assignment statements, Use = for equality check

‣ Array elements can be represented by specifying the array name followed by
the index in square brackets. For example, A[i] indicates the ith element of
the array A

‣ For looping or iteration use for or while statements. Always end a for loop
with end-for and a while with end-while.

- Two or more conditions can be connected with and or or. Use not to
negative condition.

←

More details can be found at 1. http://www.mscs.mu.edu/~rge/cosc3100/pseudocode.pdf,
2. https://onlinelibrary.wiley.com/doi/pdf/10.1002/0470029757.app1

智能软件与⼯程学院
School of Intelligent Software and Engineering

Pseudocode
pseudocode example of the Grade-School Algorithm

Procedure GradeMult(x, y)
In: two n-digit positive integers x, y.
Out: the product p := x · y.

A := split x into an array of its digits // e.g., 1235 -> [1, 2, 3, 5]
B := split y into an array of its digits
product := [1..2n]
for i := 1 to n:
 carry := 0
 for j := 1 to n:
 temp := product [i + j - 1] + carry + A[i] * B[j]
 carry := temp / 10
 product [i + j - 1] := temp mod base
 end for
 product[i+n] := carry
end for
p := transform the product to integer
return p

智能软件与⼯程学院
School of Intelligent Software and Engineering

How many operations?

• At most multiplications

• and then at most additions (for carries)

• and then I have to add different -digit number —> additions

• Finally, at most = single digit operations

n2

n2

n 2n 2n2

n2 + n2 + 2n2 4 × n2

If we count one-digit operations (additions and multiplications):

Constant

Why

智能软件与⼯程学院
School of Intelligent Software and Engineering

Can we do better?

“Perhaps the most important principle for the good algorithm
designer is to refuse to be content ”

—Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman

“Make It Work, Make It Right, Make It Fast. ”

—Kent Beck

智能软件与⼯程学院
School of Intelligent Software and Engineering

Try the recursion?
• Can we divide the integer multiplication into several sub problems which

involve multiplications of numbers with fewer digits? If so, we can use
recursion.

• A number x with an even number n of digits can be expressed in terms of two
n/2-digit numbers, its first half and second half a and b:

‣

• Similarly,

• Then, =
 (EQ 1)

x = 10n/2 × a + b

y = 10n/2 × c + d

x × y = (10n/2 × a + b) × (10n/2 × c + d)
10n × (a × c) + 10n/2 × (a × d + b × c) + b × d

What if n is an odd number?

智能软件与⼯程学院
School of Intelligent Software and Engineering

Try the recursion?

• According to EQ1, instead of directly multiplying x and y, we need to four relevant
products: , , , and , both of them have few digits to multiply!

‣ Then, 1. tack on n trailing zeroes to ; 2. add and , then tack on
n/2 trailing zeroes to the result; 3. Add the above results to .

• For and other smaller multiplication problems, we can recursively apply the
above technique.

a × c a × d b × c b × d

a × c a × d b × c
b × d

a × c

x × y = 10n × (a × c) + 10n/2 × (a × d + b × c) + b × d (EQ1)

智能软件与⼯程学院
School of Intelligent Software and Engineering

A recursive multiplication algorithm
Procedure RecIntMult(x, y)
In: two n-digit positive integers x, y.
Out: the product p := x · y.
//assume n is a power of 2.

if n = 1 then // base case
 return x·y
else
 a, b := split x into halves //
 c, d := split y into halves
 u := RecIntMult(a, c)
 v := RecIntMult(b, d)
 w := RecIntMult(a, d)
 t := RecIntMult(b, c)
 z := w + t
 p :=
 return p
end if

x = 10n/2 ⋅ a + b

10n ⋅ u + 10n/2 ⋅ z + v

智能软件与⼯程学院
School of Intelligent Software and Engineering

Problem

• Is the RecIntMult algorithm faster or slower than the grade-
school algorithm?

‣ We will learn later, but now, you can implement
them and try

智能软件与⼯程学院
School of Intelligent Software and Engineering

Karatsuba Multiplication
• Discovered in 1960 by Anatoly Karatsuba, who at the time was a 23-year-old

student!

• One observation of :

‣ Do we really need and separately?

x × y = 10n × (a × c) + 10n/2 × (a × d + b × c) + b × d (EQ1)

a × d b × c

‣ No, we only need their sum, that is a × d + b × c

• Then the question is how can we get , without
the results of and ?

a × d + b × c
a × d b × c

智能软件与⼯程学院
School of Intelligent Software and Engineering

Karatsuba Multiplication

• The solution proposed by Karatsuba is:

‣ Recursively compute

‣ Recursively compute

‣ Then, compute and , and recursively compute

‣ Get by - -

‣ Compute EQ1 by add these results properly (adding trailing zeroes)

a × c

b × d

a + b c + d
(a + b) × (c + d)

a × d + b × c (a + b) × (c + d) a × c b × d

x × y = 10n × (a × c) + 10n/2 × (a × d + b × c) + b × d (EQ1)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Karatsuba Multiplication
Procedure Karatsuba(x, y)
In: two n-digit positive integers x, y.
Out: the product p := x · y.
//assume n is a power of 2.

if n = 1 then // base case
 return x·y
else
 a, b := split x into halves //
 c, d := split y into halves
 u := Karatsuba(a, c)
 v := Karatsuba(b, d)
 w := Karatsuba(a + b, c + d)
 z := w - u - v
 p :=
 return p
end if

x = 10n/2 ⋅ a + b

10n ⋅ u + 10n/2 ⋅ z + v

智能软件与⼯程学院
School of Intelligent Software and Engineering

Karatsuba Multiplication

• Hence, Karatsuba multiplication makes only three recursive calls!

• Saving a recursive call should save on the overall running time, but by
how much?

• Is the Karatsuba algorithm faster than the grade-school multiplication
algorithm?

智能软件与⼯程学院
School of Intelligent Software and Engineering

More advanced results
• Toom-Cook (1963): instead of breaking into three n/2-sized problems, it

should be breaked into five n/3-sized problems.

‣ Runs in time

• Schönhage–Strassen (1971): Runs in time

• Furer (2007) Runs in time

• Harvey and van der Hoeven (2019) Runs in time

O(n1.465)

O(n × log(n) × log(log(n)))

O(n × log(n) × (2O(log*n))

O(n × log(n))

The description of O is given later

智能软件与⼯程学院
School of Intelligent Software and Engineering

One more thing: what about incorrect algorithm?

• A Incorrect algorithms might:

‣ Never halt on some instances;

‣ Halt with incorrect outputs on some instances.

智能软件与⼯程学院
School of Intelligent Software and Engineering

One more thing: what about incorrect algorithm?

• Incorrect (or, imperfect) algorithms can be useful!

‣ Correct (perfect) algorithms might be too slow or even do not
exist.

‣ Imperfect algorithms may output good enough (but not perfect)
answers.

‣ Imperfect algorithms may never stop in some extreme cases, but
halt and output correct answers in most (say 99.9%) cases.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Further reading
• [CLRS] Ch.1

• [AI] Ch.1

