
智能软件与⼯程学院
School of Intelligent Software and Engineering

散列表
Hash Tables

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne.Thanks for their supports!

钮鑫涛
Nanjing University

2023 Fall

智能软件与⼯程学院
School of Intelligent Software and Engineering

Efficient implementation of Ordered Dictionary

Search(S,k) Insert(S,x) Remove(S,x)

BinarySearchTree

Treap

RB-Tree

SkipList

 in worst caseO(h) in worst caseO(h) in worst caseO(h)

 in expectation O(log n) in expectation O(log n) in expectation O(log n)

 in worst caseO(log n) in worst caseO(log n) in worst caseO(log n)

 in expectation O(log n) in expectation O(log n) in expectation O(log n)

Can we be faster?
(if we only care about Search/Insert/Remove)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Search/Insert/Remove in timeO(1)
• Assume keys are distinct integers from universe

• Easy, just allocate an array of size .

• Search/Insert/Remove can be done in time

U = {0,1,...,m − 1}

m = |U |

O(1)
Direct-address Tables

0

1

2

3

4

5

Insert(2)

0

1

2 2

3

4

5

Insert(3)

0

1

2 2

3 3

4

5

Search(2)

0

1

2 2

3 3

4

5

Remove(3)

0

1

2 2

3

4

5

Search(3)

0

1

2 2

3

4

5

Any potential issue?

智能软件与⼯程学院
School of Intelligent Software and Engineering

Search/Insert/Remove in timeO(1)
• Assume keys are distinct integers from universe

• Easy, just allocate an array of size .

• Search/Insert/Remove can be done in time

U = {0,1,...,m − 1}

m = |U |

O(1)

• Potential Issues:

‣ What if keys are distinct, but not integers (e.g., strings).

Pythagoras

- “Everything is number.” This is especially true for
modern computers…

智能软件与⼯程学院
School of Intelligent Software and Engineering

Direct-address Tables

• Direct-address table: allocate an array of size .

• Search/Insert/Remove can be done in time.

m = |U |

O(1)

• The real problem: the universe can be large, very large!

‣ E.g., is the set of 64-bit integers.

• The space complexity is unacceptable!

U

智能软件与⼯程学院
School of Intelligent Software and Engineering

Hashing
• Huge universe of possible keys.

• Much smaller number of actual keys.

• Only want to spend (i.e.,) space.

‣ Meanwhile support very fast Search/Insert/Remove.

U

n

m ≈ n m ≪ |U |

U
0
1
2
3
4
5
6
7
8

x
u

y w

h(x) = 0

h(u) = 2

h(y) = 5

h(w) = 8

Hash function
 decides index of slot for storing key

h : U → [m]
h(k) k

智能软件与⼯程学院
School of Intelligent Software and Engineering

Hashing
• Design hash function

• Use as the index of slog for storing element with key

• Assume computing is always fast. (E.g., in time.)

• Assume maps distinct keys to distinct indices.

• Search/Insert/Remove can be done in time!

h : U → [m]

h(k) k

h O(1)

h

O(1)

U
0
1
2
3
4
5
6
7
8

x
u

y w

h(x) = 0

h(u) = 2

h(y) = 5

h(w) = 8

But is this possible?

NO!

智能软件与⼯程学院
School of Intelligent Software and Engineering

Collisions in hashing
• Hash function

• Two distinct keys and collide if:

• Collisions are unavoidable!

‣ Proof: and pigeonhole principle.

h : U → [m]

k1 k2 h(k1) = h(k2)

m ≪ |U |

U
0
1
2
3
4
5
6
7
8

x
u

y w

h(x) = 0

h(u) = 2

h(y) = 5

h(w) = 8

How to cope with collisions?

智能软件与⼯程学院
School of Intelligent Software and Engineering

Chaining

• Each bucket stores a pointer to a linked list .

• All keys that are hashed to index go to .

i Li

i Li

0
1
2
3
4
5
6
7
8

k6 k5 k4

k1

k3 k2

Hash Table

h(k4) = h(k5) = h(k6) = 2

Space Cost:
 for pointers;
 for actual elements.

Θ(m)
Θ(n)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Hashing with Chaining
• Search(k) where is a key.

‣ Compute

‣ Go through the corresponding list to search item with key .

• Insert(x) where is a pointer to an item.

‣ Compute

‣ Insert to the head of the corresponding list.

• Remove(x) where is a pointer to an item.

‣ Simply remove from the linked list.

k

h(k)

k

x

h(x . key)

x

x

x

 Time depends on length of the linked list!

O(1)

O(1)

Search can cost in worst-case. (All keys hash to same value.)Θ(n)

Note: we assume computing takes time.h O(1)

智能软件与⼯程学院
School of Intelligent Software and Engineering

The “Simple Uniform Hashing” Assumption

• Let’s be optimistic (for now):

‣ Every key is equally likely to map to every bucket.

‣ Keys are mapped independently.

• Recall hash function is fixed and deterministic:

‣ Making assumptions regarding input keys’ distribution!

• Why this helps?

‣ Each key goes to a randomly chosen bucket, if there are enough number of buckets
(w.r.t. actual number of keys to be stored), each bucket will not have too many keys.

h

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance of hashing with chaining

• Consider a hash table containing buckets, storing keys.

• Define load factor

‣ This is the expected number of keys in each bucket.

• Intuitively, Search will on average cost :

‣ for computing hash value;

‣ for traversing linked list.

m n

α = n/m

O(1 + α)

O(1)

O(α)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance of hashing with chaining

• buckets, storing keys, load factor .

• Expected cost of unsuccessful search is .

‣ Cost: compute hash value + traverse entire linked list in a bucket.

‣ The key being searched is equally likely to map to every bucket.

‣ + =

m n α = n/m

Θ(1 + α)

Θ(1) Θ(α) Θ(1 + α)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance of hashing with chaining
• Expected cost of successful search is , too!

‣ Cost: compute hash value + traverse linked list in a bucket till key found.

‣ Let be the cost for finding the inserted element . We want to compute

‣ Let be an indicator random variable taking value 1 if and only if

= =

= =

Θ(1 + α)

Ci ith xi
1
n

⋅
n

∑
i=1

𝔼[Ci]

Xij h(xi . key) = h(xj . key)

1
n

⋅
n

∑
i=1

𝔼[Ci] =
1
n

⋅
n

∑
i=1

𝔼[(1 +
n

∑
j=i+1

Xij)]

1
n

⋅
n

∑
i=1

(1 +
n

∑
j=i+1

𝔼[Xij])
1
n

⋅
n

∑
i=1

(1 +
n

∑
j=i+1

1
m

)

1 +
α
2

−
α
2n

Θ(1 + α)

By linearity of
expectation

WHY?

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance of hashing with chaining
• Consider a hash table containing buckets, storing keys, and load

factor .

• Expected cost of is for the Search operation.

m n
α = n/m

Θ(1 + α)

• If , hash table costs space, but Search/Insert/
Remove all take time, on average.

m = Θ(n) Θ(n)
O(1)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance of hashing with chaining
• *What is the expected maximum cost for Search?

‣ Search for a key that maps to the heaviest bucket.

‣ That is: expected length of the longest linked list.

‣ Alternatively: throw balls into bins uniformly at random, what is the
max number of balls in a bin, in expectation?

n m

If , the answer is .m = Θ(n) Θ(
lg n

lg lg n
) Max-Load problem

智能软件与⼯程学院
School of Intelligent Software and Engineering

Reality bites

• “Simple Uniform Hashing” does not hold!

‣ Keys are not that random (they usually have patterns).

- Patterns in keys can induce patterns in hash functions, unless you
are very, very careful.

‣ Once is fixed and known, you can find a set of “bad” keys that hash
to same value.

h

智能软件与⼯程学院
School of Intelligent Software and Engineering

Design hash functions

智能软件与⼯程学院
School of Intelligent Software and Engineering

Some bad hash functions
• Assume keys are English words.

• One bucket for each letter (i.e., 26 buckets).

• Hash function: = first letter in word .

‣ E.g., =

• Problem?

‣ Many words start with , few words start with .

h(w) w

h("test") t

s x

智能软件与⼯程学院
School of Intelligent Software and Engineering

Some bad hash functions
• Assume keys are English words.

• One bucket for each number in [].

• Hash function: = sum of indices of letters in .

‣ E.g., =

• Problem?

‣ Most of the words are short words.

26 ⋅ 50

h(w) w

h("hat") 8 + 1 + 20 = 29

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Division Method

• Common technique when designing hash functions

‣ Hash function:

- E.g., if ,

‣ Two keys and would collide if

h(k) = k mod m

m = 13 h(24) = 11

k1 k1 ≡ k2 (mod m)

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Division Method
• Hash function:

‣ E.g., if ,

• How to pick ? (Say we want to store keys)

‣ Idea: let , set .

‣ Computing is very fast:

h(k) = k mod m

m = 13 h(24) = 11

m n

r = ⌈lg n⌉ m = 2r

h(k) h(k) = k − ((k ≫ r) ≪ r)

Bad Idea!

‣ But we are only using rightmost bits of the input key.

- Not good! For example, if all input keys are even, we use at most half space.

r

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Division Method
• Hash function:

• How to pick ? (Say we want to store keys)

• In general, we don’t want to be a composite number.

‣ Assume key and have common divisor .

 is also divisible by , since .

‣ If all input keys are divisible by , we use at most space.

h(k) = k mod m

m n

m

k m d

h(k) d (k mod m) + ⌊
k
m

⌋ ⋅ m = k

d
1
d

Rule of thumb: prime not too close to exact power of two

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Multiplication Method
• Another common technique when designing hash functions

‣ Assume key length is at most bits.

‣ Fix table size for some .

‣ Fix constant integer .

‣ Hash function:

w

m = 2r r ≤ w

0 < A < 2w

h(k) = (Ak mod 2w) ≫ (w − r)
 (bits)A w (bits)k w

×

 (bits)Ak 2w

 (bits)Ak mod 2w w

 (bits) (Ak mod 2w) ≫ (w − r) r

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Multiplication Method

• Faster than the Division Method.

‣ Recall in division method,

‣ Multiplication and bit-shifting faster than division.

h(k) = k mod m Works reasonably well with proper choice of A

• Another common technique when designing hash functions

‣ Assume key length is at most bits.

‣ Fix table size for some .

‣ Fix constant integer .

‣ Hash function:

w

m = 2r r ≤ w

0 < A < 2w

h(k) = (Ak mod 2w) ≫ (w − r)

智能软件与⼯程学院
School of Intelligent Software and Engineering

However…

• Once hash function is fixed and known, there must exist a set of “bad”
keys that hash to the same value.

• Such adversarial input will result in poor performance!

h

Solution: Use randomization!

智能软件与⼯程学院
School of Intelligent Software and Engineering

Universal Hashing
• Pick a random hash function when the hash table is first built

‣ Once chosen, is fixed throughout entire execution.

‣ Since is randomly chosen, no input is always bad.

• A collection of hash functions is universal if:

‣ For any , at most hash functions in lead to

- Therefore, for all

h

h

h

ℋ

x ≠ y
|ℋ |

m
ℋ h(x) = h(y)

Pr
h∈ℋ

[h(x) = h(y)] ≤
1
m

x ≠ y

智能软件与⼯程学院
School of Intelligent Software and Engineering

“Simple Uniform Hashing” vs “Universal Hashing”

• Simple Uniform Hashing:

‣ Uncertainty due to randomness of input.

• Universal Hashing:

‣ Uncertainty due to choice of function (and potentially randomness of input).h

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance of hashing with chaining
• Universal hashing: for all , Load factor

• Let be length of list at index , what’s ?

‣ Claim 1: if key not in table , then .

- For any key , define indicator random variable

 = = =

‣ Claim 2: if key in table , then .

 = =

Pr
h∈ℋ

[h(x) = h(y)] ≤
1
m

x ≠ y α =
n
m

=
num of inserted keys

size of the table

Lh(k) h(k) 𝔼[Lh(k)]

k T 𝔼[Lh(k)] ≤ α

l Xkl = I{h(k) = h(l)} .

𝔼[Lh(k)] 𝔼[∑
l∈T,l≠k

Xkl] ∑
l∈T,l≠k

𝔼[Xkl] ≤ n ⋅
1
m

α

k T 𝔼[Lh(k)] ≤ 1 + α

𝔼[Lh(k)] 𝔼[∑
l∈T,l≠k

Xkl] + 1 ≤ (n − 1) ⋅
1
m

+ 1 1 + α

If the hash table is not overloaded (i.e.,),
Search/Insert/Remove can be done in expected time.

α = O(1)
O(1)

How to construct How to construct ?ℋ

智能软件与⼯程学院
School of Intelligent Software and Engineering

A Typical Universal Hash Family
• Proposed by Carter and Wegman in 1977

‣ They introduced the notion of universal classes of hash functions.

- [“Universal Classes of Hash Functions”, STOC 77 and JCSS 79]

• Find a large prime larger than the max possible key value,

‣ Let and

• Define , then

‣ is a universal hash family.

p

ℤp = {0, 1, 2, . . . , p − 1} ℤ*p = {1, 2, . . . , p − 1}

hab(k) = ((ak + b) mod p) mod m

ℋpm = {hab ∣ a ∈ ℤ*p and b ∈ ℤp}

智能软件与⼯程学院
School of Intelligent Software and Engineering

A Typical Universal Hash Family

• and

• , where and .

• Prove: for all , where and .

ℤp = {0, 1, 2, . . . , p − 1} ℤ*p = {1, 2, . . . , p − 1}

hab(k) = ((ak + b) mod p) mod m a ∈ ℤ*p b ∈ ℤp

Pr
h∈ℋ

[h(k) = h(l)] ≤
1
m

k ≠ l k ∈ ℤp l ∈ ℤp

智能软件与⼯程学院
School of Intelligent Software and Engineering

A Typical Universal Hash Family
• Let , and .

• Claim 1: .

• Proof:

‣

‣ but and

‣ is prime!

r = (ak + b) mod p s = (al + b) mod p

r ≠ s

r − s ≡ a(k − l) (mod p)

a ≢ 0 (mod p) k − l ≢ 0 (mod p)

p

That is: does not generate collision at “ level”!hab mod p

智能软件与⼯程学院
School of Intelligent Software and Engineering

A Typical Universal Hash Family
• Let , and .

• Claim 2: Fix and , there is a 1-to-1 mapping between and pairs.

r = (ak + b) mod p s = (al + b) mod p

k l (a, b) (r, s)

Given , we get unique .(r, s) (a, b)

 modular multiplicative inverse of , unique since is primek − l p

‣ There are pairs of , and pairs of if .(p − 1)p (a, b) (p − 1)p (r, s) r ≠ s

‣ Recall

‣

‣

r − s ≡ a(k − l) (mod p)

a = ((r − s)((k − l)−1 mod p)) mod p

b = (r − ak) mod p

 , a ∈ ℤ*p b ∈ ℤp 0 ≤ r < p, 0 ≤ s < p

智能软件与⼯程学院
School of Intelligent Software and Engineering

A Typical Universal Hash Family
• Let , and .

• Claim 1: .

• Claim 2: Fix and , there is a 1-to-1 mapping between and pairs.

r = (ak + b) mod p s = (al + b) mod p

r ≠ s

k l (a, b) (r, s)

• Thus, for any given pair of distinct inputs of and , if we pick uniformly at
random from , the resulting pair is equally likely to be any pair of
distinct values modulo .

• Therefore, the probability that distinct keys and collide is equal to the
probability that

k l (a, b)
ℤ*p × ℤp (r, s)

p

k l
r ≡ s (mod m)

智能软件与⼯程学院
School of Intelligent Software and Engineering

A Typical Universal Hash Family
• Let , and .

• Claim 1: .

• Claim 2: Fix and , there is a 1-to-1 mapping between and pairs.

r = (ak + b) mod p s = (al + b) mod p

r ≠ s

k l (a, b) (r, s)

• Lemma:

Pr
h∈ℋ

[h(k) = h(l)] = Pr
0≤r,s<p

[r ≡ s (mod m)]

= Pr[r ≡ s (mod m) when (r, s) are distinct values chosen from ℤp uniformly at random]

≤
(⌈ p

m ⌉) − 1

p − 1
≤

p + m − 1
m − 1

p − 1
=

(p − 1)/m
p − 1

=
1
m

智能软件与⼯程学院
School of Intelligent Software and Engineering

Open addressing

智能软件与⼯程学院
School of Intelligent Software and Engineering

Quick Review
• Hash Tables

‣ Store keys from a huge universe into a table of size

‣ Use a hash function to decide where to put each key

• Collisions are inevitable!

‣ [Collision Resolution] Method 1: Chaining.

n U m ≈ n

h : U → [m]

U
0
1
2
3
4
5
6
7
8

x u

y w

h(x) = 0

h(u) = 2

h(y) = 5

h(w) = 8

z h(z) = 5

‣ [Collision Resolution] Method 2: Open addressing.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Open Addressing
• Basic idea:

‣ No linked lists! All items store in the table, one item per bucket!

• Load factor

• On collision?

‣ Probe a sequence of buckets until an empty one is found!

α =
n
m

≤ 1
But hash function is a function on key,
how is the probe sequence determined?

h

0

245 1
2

366 3
4

111 5
6

571 7

533 8

h(321) = 1

key = 321

0

245 1
2

366 3
4

111 5
6

571 7

533 8

0

245 1
2

366 3

321 4

111 5
6

571 7

533 8

h(321) = 7

key = 321
h(321) = 4

key = 321

智能软件与⼯程学院
School of Intelligent Software and Engineering

Hash Function Re-defined

0

245 1
2

366 3
4

111 5
6

571 7

533 8

h(321,0) = 1

key = 321

0

245 1
2

366 3
4

111 5
6

571 7

533 8

0

245 1
2

366 3

321 4

111 5
6

571 7

533 8

h(321,1) = 7

key = 321
h(321,2) = 4

key = 321

• In case we use open addressing for collision resolution，

‣ h : U × {0, 1, . . . , m − 1} → {0, 1, . . . , m − 1}
key probe number table index

智能软件与⼯程学院
School of Intelligent Software and Engineering

Hash Function Re-defined
• In case we use open addressing for collision resolution，

‣ h : U × {0, 1, . . . , m − 1} → {0, 1, . . . , m − 1}
key probe number table index

HashInsert(T, k):
i := 0
repeat

 j := h(k, i)
 if T[j] = NULL

 T[j] := k
return j

else i := i + 1
until i = m
return “overflow”

HashSearch(T, k):
i := 0
repeat

 j := h(k, i)
 if T[j] = k

return j
i := i + 1

until i = m or T[j] = NULL
return NULL

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Remove Operation
HashInsert(T, k):
i := 0
repeat

 j := h(k, i)
 if T[j] = NULL

 T[j] := k
return j

else i := i + 1
until i = m
return “overflow”

HashSearch(T, k):
i := 0
repeat

 j := h(k, i)
 if T[j] = k

return j
i := i + 1

until i = m or T[j] = NULL
return NULL

HashRemove(T, k):
pos := HashSearch(T, k)
if pos != NULL

 T[pos] := NULL
return pos

0

245 1
2

366 3

321 4

111 5
6

571 7

533 8

0
1
2

366 3

321 4

111 5
6

571 7

533 8

h(245,0) = 1

Remove 245

0
1
2

366 3

321 4

111 5
6

571 7

533 8

h(321,0) = 1

Search 321

321 is here !

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Remove Operation
HashInsert(T, k):
i := 0
repeat

 j := h(k, i)
 if T[j] = NULL

 T[j] := k
return j

else i := i + 1
until i = m
return “overflow”

HashSearch(T, k):
i := 0
repeat

 j := h(k, i)
 if T[j] = k

return j
i := i + 1

until i = m or T[j] = NULL
return NULL

HashRemove(T, k):
pos := HashSearch(T, k)
if pos != NULL

 T[pos] := DEL
return pos

0

245 1
2

366 3

321 4

111 5
6

571 7

533 8

0

DEL 1
2

366 3

321 4

111 5
6

571 7

533 8

h(245,0) = 1

Remove 245

0

DEL 1
2

366 3

321 4

111 5
6

571 7

533 8

h(321,0) = 1

Search 321

0

DEL 1
2

366 3

321 4

111 5
6

571 7

533 8

h(321,1) =
7

Search 321

0

DEL 1
2

366 3

321 4

111 5
6

571 7

533 8

h(321,2) = 4
Search 321

or T[j] = DEL

智能软件与⼯程学院
School of Intelligent Software and Engineering

Linear Probing
• .

• The probe sequence is , , , …

h(k, i) = (h′ (k) + i) mod m

h′ (k) h′ (k) + 1 h′ (k) + 2

0

571 1

533 2

321 3
4
5

366 6

689 7
8

h(321,0) = 1

Insert 321 h(321,2) = 3h(321,1) = 2 Cluster• Another problem with linear probing: Clustering.

‣ Empty slot after a “cluster” has higher chance
to be chosen.

‣ “Cluster” grows larger and larger.

‣ Cluster” leads to higher search time, in theory.

 Here, is an “auxiliary hash function”.h′

Since the initial probe position determines the entire probe sequence,
only distinct probe sequences are used with linear probing.m

智能软件与⼯程学院
School of Intelligent Software and Engineering

The remove mechanism
(i.e., the DEL mark”)

causes “anti-clustering” effect,
improving the performance of

linear-probing hash tables.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Quadratic Probing

• .

• Problem with quadratic probing: (Secondary) Clustering.

‣ Keys having same values result in same probe sequences.

‣ As in linear probing, the initial probe determines the entire sequence, so
only distinct probe sequences are used.

h(k, i) = (h′ (k) + c1i + c2i2) mod m

h′

m

 Here, is an “auxiliary hash function”.h′

智能软件与⼯程学院
School of Intelligent Software and Engineering

Double Hashing

• .h(k, i) = (h1(k) + i ⋅ h2(k)) mod m
 Here, and are both “auxiliary hash functions”.h1 h2

• Why “doubling” hashing?

‣ Observation 1: If is good, looks “random”.

‣ Observation 2: If is good, probe sequence looks “random”.

‣ Linear and quadratic probing does not give Observation 2.

h1 h(k,0)

h2

智能软件与⼯程学院
School of Intelligent Software and Engineering

Double Hashing

• The value must be relatively prime to for the entire hash table to be searched.
Conveniently, just let be a prime number.

‣ Otherwise, if and have greatest common divisor for some key , then a search

for key would examine only of the hash table.

• Each possible pair yields a distinct probe sequence

‣ As we vary the key, the initial probe position and the offset may vary independently.

‣ Double hashing can use different probe sequences.

h2(k) m
m

m h2(k) d > 1 k

k
1
d

(h1(k), h2(k))
h1(k) h2(k)

Θ(m2)

 Here, and are both “auxiliary hash functions”.h1 h2• .h(k, i) = (h1(k) + i ⋅ h2(k)) mod m

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance of open-address hashing
• Recall the “Simple Uniform Hashing” Assumption:

‣ Every key is equally likely to map to every bucket

‣ Keys are mapped independently.

• The “Uniform Hashing” Assumption:

‣ The probe sequence of each key is equally likely to be any of the permutations of
.

• None of linear probing, quadratic probing, or double hashing fulfills the “uniform
hashing” assumption!

‣ But double hashing does better than the other two.

m!
< 0, 1, . . . , m − 1 >

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance of open-address hashing

• Let event be: The probe leads to an occupied bucket.

•

•

•

Ai ith

Pr[Ai ∣ A1 ∩ A2 ∩ . . . ∩ Ai−1] =
n − (i − 1)
m − (i − 1)

≤
n
m

Pr[X ≥ i] = Pr[A1 ∩ A2 ∩ . . . ∩ Ai−1]

= Pr[A1] ⋅ Pr[A2 ∣ A1] ⋅ Pr[A3 ∣ A1 ∩ A2] . . . Pr[Ai−1 ∣ A1 ∩ A2 ∩ . . . ∩ Ai−2] ≤ (
n
m

)i−1 = αi−1

𝔼[X] =
∞

∑
i=1

Pr[X ≥ i] ≤
∞

∑
i=1

αi−1 = 1 + α + α2 + =
1

1 − α

Theorem Let random variable be the number of probes made in an

unsuccessful search, then . Here, .

X
𝔼[X] ≤

1
1 − α

α =
n
m

< 1

Always make probe

Make probe with probability

Make probe with probability

…

1st

2nd ≈ α
3rd ≈ α2

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance of open-address hashing

• Let be: the expected number of probes made when searching the inserted key.

• Due to previous analysis,

•

Ni ith

Ni ≤
1

1 − i − 1
m

𝔼[X] ≤
1
n

⋅
n

∑
i=1

Ni ≤
1
n

⋅
n

∑
i=1

m
m − (i − 1)

=
m
n

⋅
n−1

∑
i=0

1
m − i

=
1
α

⋅
m

∑
k=m−n+1

1
k

≤
1
α

⋅ ∫
m

m−n

1
x

dx =
1
α

⋅ ln (m
m − n) =

1
α

⋅ ln (1
1 − α)

Theorem Let random variable be the number of probes made in an

successful search, then . Here, .

X

𝔼[X] ≤
1
α

ln (1
1 − α) α =

n
m

< 1

智能软件与⼯程学院
School of Intelligent Software and Engineering

Chaining vs Open-addressing

• Good parts of Open-addressing:

‣ No memory allocation

- Chaining needs to allocate list-nodes

‣ Better cache performance

- Hash table stores in a continuous
region in memory

- Fewer accesses brings table into
cache

• Bad parts of Open-addressing:

‣ Sensitive to choice of hash functions

- Clustering is a common problem

‣ Sensitive to load factor

- Poor performance when α ≈ 1

智能软件与⼯程学院
School of Intelligent Software and Engineering

Efficient implementation of Ordered Dictionary

Search(S,k) Insert(S,x) Remove(S,x)

Treap / SkipList

RB-Tree

Hashing
（chaining）

 in expectation O(log n) in expectation O(log n) in expectation O(log n)

 in worst caseO(log n) in worst caseO(log n) in worst caseO(log n)

 in expectation O(1 + α) in worst case O(1) in worst caseO(1)

 in expectation O(
1

1 − α
) Same as searching

 (unsuccessful)

 (successful)

in expectation

O(
1

1 − α
)

O (1
α

ln(
1

1 − α
))

Hashing
（open addressing）

智能软件与⼯程学院
School of Intelligent Software and Engineering

Further reading

• [CLRS] Ch.11

