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Efficient implementation of Ordered Dictionary 

Search(S,k) Insert(S,x) Remove(S,x)

BinarySearchTree

Treap

RB-Tree

SkipList

  in worst caseO(h)   in worst caseO(h)   in worst caseO(h)

  in expectation O(log n)   in expectation O(log n)   in expectation O(log n)

  in worst caseO(log n)   in worst caseO(log n)   in worst caseO(log n)

  in expectation O(log n)   in expectation O(log n)   in expectation O(log n)

Can we be faster? 
(if we only care about Search/Insert/Remove)
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Search/Insert/Remove in  timeO(1)
• Assume keys are distinct integers from universe 


• Easy, just allocate an array of size .


• Search/Insert/Remove can be done in  time

U = {0,1,...,m − 1}

m = |U |

O(1)
Direct-address Tables
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Search(2)

0

1

2 2

3 3

4

5

Remove(3)
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Any potential issue?
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Search/Insert/Remove in  timeO(1)
• Assume keys are distinct integers from universe 


• Easy, just allocate an array of size .


• Search/Insert/Remove can be done in  time

U = {0,1,...,m − 1}

m = |U |

O(1)

• Potential Issues:


‣ What if keys are distinct, but not integers (e.g., strings).

Pythagoras

- “Everything is number.”  This is especially true for 
modern computers…
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Direct-address Tables

• Direct-address table: allocate an array of size .


• Search/Insert/Remove can be done in  time.

m = |U |

O(1)

• The real problem: the universe can be large, very large! 


‣ E.g.,  is the set of 64-bit integers.


• The space complexity is unacceptable!

U



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Hashing
• Huge universe  of possible keys.


• Much smaller number  of actual keys.


• Only want to spend  (i.e., ) space.


‣ Meanwhile support very fast Search/Insert/Remove.

U

n

m ≈ n m ≪ |U |

U
0
1
2
3
4
5
6
7
8

x
u

y w

h(x) = 0

h(u) = 2

h(y) = 5

h(w) = 8

Hash function  
 decides index of slot for storing key 

h : U → [m]
h(k) k
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Hashing
• Design hash function 


• Use  as the index of slog for storing element with key 


• Assume computing  is always fast. (E.g., in  time.)


• Assume  maps distinct keys to distinct indices.


• Search/Insert/Remove can be done in  time!

h : U → [m]

h(k) k

h O(1)

h

O(1)

U
0
1
2
3
4
5
6
7
8

x
u

y w

h(x) = 0

h(u) = 2

h(y) = 5

h(w) = 8

But is this possible?

NO!
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Collisions in hashing
•  Hash function 


• Two distinct keys  and  collide  if:  

• Collisions are unavoidable!

‣ Proof:  and pigeonhole principle.

h : U → [m]

k1 k2 h(k1) = h(k2)

m ≪ |U |

U
0
1
2
3
4
5
6
7
8

x
u

y w

h(x) = 0

h(u) = 2

h(y) = 5

h(w) = 8

How to cope with collisions?
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Chaining

• Each bucket  stores a pointer to a linked list .

• All keys that are hashed to index  go to .

i Li

i Li

0
1
2
3
4
5
6
7
8

k6 k5 k4

k1

k3 k2

Hash Table

h(k4) = h(k5) = h(k6) = 2

Space Cost: 
 for pointers; 
 for actual elements.

Θ(m)
Θ(n)
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Hashing with Chaining
• Search(k) where  is a key.               


‣ Compute 

‣ Go through the corresponding list to search item with key .


• Insert(x) where  is a pointer to an item.              


‣ Compute 

‣ Insert  to the head of the corresponding list.


• Remove(x) where  is a pointer to an item.          


‣ Simply remove  from the linked list.

k

h(k)

k

x

h(x . key)

x

x

x

  Time depends on length of the linked list!

O(1)

O(1)

Search can cost  in worst-case. (All keys hash to same value.)Θ(n)

Note: we assume computing  takes  time.h O(1)
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The “Simple Uniform Hashing” Assumption

• Let’s be optimistic (for now):


‣ Every key is equally likely to map to every bucket.


‣ Keys are mapped independently.


• Recall hash function  is fixed and deterministic:


‣ Making assumptions regarding input keys’ distribution!


• Why this helps?


‣ Each key goes to a randomly chosen bucket, if there are enough number of buckets 
(w.r.t. actual number of keys to be stored), each bucket will not have too many keys.

h
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Performance of hashing with chaining

• Consider a hash table containing  buckets, storing  keys.

• Define load factor  

‣ This is the expected number of keys in each bucket. 

• Intuitively, Search will on average cost :

‣  for computing hash value;

‣  for traversing linked list. 

m n

α = n/m

O(1 + α)

O(1)

O(α)



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Performance of hashing with chaining

•  buckets, storing  keys, load factor .


• Expected cost of unsuccessful search is .

‣ Cost: compute hash value + traverse entire linked list in a bucket.

‣ The key being searched is equally likely to map to every bucket.

‣  +   = 

m n α = n/m

Θ(1 + α)

Θ(1) Θ(α) Θ(1 + α)
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Performance of hashing with chaining
• Expected cost of successful search is , too!


‣ Cost: compute hash value + traverse linked list in a bucket till key found.


‣ Let  be the cost for finding the  inserted element . We want to compute  

‣ Let   be an indicator random variable taking value 1 if and only if 




=  = 


=  = 

Θ(1 + α)

Ci ith xi
1
n

⋅
n

∑
i=1

𝔼[Ci]

Xij h(xi . key) = h(xj . key)

1
n

⋅
n

∑
i=1

𝔼[Ci] =
1
n

⋅
n

∑
i=1

𝔼[(1 +
n

∑
j=i+1

Xij)]

1
n

⋅
n

∑
i=1

(1 +
n

∑
j=i+1

𝔼[Xij])
1
n

⋅
n

∑
i=1

(1 +
n

∑
j=i+1

1
m

)

1 +
α
2

−
α
2n

Θ(1 + α)

By linearity of 
expectation

WHY?
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Performance of hashing with chaining
• Consider a hash table containing  buckets, storing  keys,  and load 

factor .


• Expected cost of is  for the Search operation.

m n
α = n/m

Θ(1 + α)

• If , hash table costs  space, but Search/Insert/
Remove all take  time, on average.

m = Θ(n) Θ(n)
O(1)
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Performance of hashing with chaining
• *What is the expected maximum cost for Search?


‣ Search for a key that maps to the heaviest bucket. 

‣ That is: expected length of the longest linked list.


‣ Alternatively: throw  balls into  bins uniformly at random, what is the 
max number of balls in a bin, in expectation?

n m

If , the answer is .m = Θ(n) Θ(
lg n

lg lg n
) Max-Load problem
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Reality bites

• “Simple Uniform Hashing” does not hold!


‣ Keys are not that random (they usually have patterns).


- Patterns in keys can induce patterns in hash functions, unless you 
are very, very careful.


‣ Once  is fixed and known, you can find a set of “bad” keys that hash 
to same value.

h
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Design hash functions
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Some bad hash functions
• Assume keys are English words.


• One bucket for each letter (i.e., 26 buckets).


• Hash function:   = first letter in word .


‣ E.g.,  = 


• Problem? 

‣ Many words start with , few words start with .

h(w) w

h("test") t

s x
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Some bad hash functions
• Assume keys are English words.


• One bucket for each number in [ ].


• Hash function:   =  sum of indices of letters in .


‣ E.g.,  = 


• Problem? 

‣ Most of the words are short words.

26 ⋅ 50

h(w) w

h("hat") 8 + 1 + 20 = 29
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The Division Method

• Common technique when designing hash functions


‣ Hash function: 


- E.g., if , 


‣ Two keys  and would collide if 

h(k) = k mod m

m = 13 h(24) = 11

k1 k1 ≡ k2 (mod m)
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The Division Method
• Hash function: 


‣ E.g., if , 


• How to pick ? (Say we want to store  keys)


‣ Idea: let , set .


‣ Computing  is very fast: 

h(k) = k mod m

m = 13 h(24) = 11

m n

r = ⌈lg n⌉ m = 2r

h(k) h(k) = k − ((k ≫ r) ≪ r)

Bad Idea!

‣ But we are only using rightmost  bits of the input key.


- Not good! For example, if all input keys are even, we use at most half space.

r
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The Division Method
• Hash function: 


• How to pick ? (Say we want to store  keys)


• In general, we don’t want  to be a composite number.


‣ Assume key  and  have common divisor .


 is also divisible by , since .


‣ If all input keys are divisible by , we use at most  space.

h(k) = k mod m

m n

m

k m d

h(k) d (k mod m) + ⌊
k
m

⌋ ⋅ m = k

d
1
d

Rule of thumb: prime not too close to exact power of two
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The Multiplication Method
• Another common technique when designing hash functions


‣ Assume key length is at most  bits.


‣ Fix table size  for some .


‣ Fix constant integer .


‣ Hash function: 

w

m = 2r r ≤ w

0 < A < 2w

h(k) = (Ak mod 2w) ≫ (w − r)
 (  bits )A w  (  bits )k w

×

   (  bits )Ak 2w

  (  bits )Ak mod 2w w

    (  bits )  (Ak mod 2w) ≫ (w − r) r
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The Multiplication Method

• Faster than the Division Method.


‣ Recall in division method, 


‣ Multiplication and bit-shifting faster than division.

h(k) = k mod m Works reasonably well with proper choice of A

• Another common technique when designing hash functions


‣ Assume key length is at most  bits.


‣ Fix table size  for some .


‣ Fix constant integer .


‣ Hash function: 

w

m = 2r r ≤ w

0 < A < 2w

h(k) = (Ak mod 2w) ≫ (w − r)
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However…

• Once hash function  is fixed and known, there must exist a set of “bad” 
keys that hash to the same value.


• Such adversarial input will result in poor performance!

h

Solution: Use randomization!
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Universal Hashing
• Pick a random hash function  when the hash table is first built


‣ Once chosen,  is fixed throughout entire execution.


‣ Since  is randomly chosen, no input is always bad.


• A collection of hash functions  is universal if:


‣ For any , at most  hash functions in  lead to 

- Therefore,  for all 

h

h

h

ℋ

x ≠ y
|ℋ |

m
ℋ h(x) = h(y)

Pr
h∈ℋ

[h(x) = h(y)] ≤
1
m

x ≠ y
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“Simple Uniform Hashing” vs “Universal Hashing”

• Simple Uniform Hashing:


‣ Uncertainty due to randomness of input.


• Universal Hashing: 


‣ Uncertainty due to choice of function  (and potentially randomness of input).h
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Performance of hashing with chaining
• Universal hashing:  for all , Load factor 


• Let  be length of list at index , what’s ?


‣ Claim 1: if key  not in table , then .


- For any key , define indicator random variable  

 =  =   = 


‣ Claim 2: if key  in table , then .


 =      =  

Pr
h∈ℋ

[h(x) = h(y)] ≤
1
m

x ≠ y α =
n
m

=
num of inserted keys

size of the table

Lh(k) h(k) 𝔼[Lh(k)]

k T 𝔼[Lh(k)] ≤ α

l Xkl = I{h(k) = h(l)} .

𝔼[Lh(k)] 𝔼[ ∑
l∈T,l≠k

Xkl] ∑
l∈T,l≠k

𝔼[Xkl] ≤ n ⋅
1
m

α

k T 𝔼[Lh(k)] ≤ 1 + α

𝔼[Lh(k)] 𝔼[ ∑
l∈T,l≠k

Xkl] + 1 ≤ (n − 1) ⋅
1
m

+ 1 1 + α

If the hash table is not overloaded (i.e., ), 
Search/Insert/Remove can be done in  expected time.

α = O(1)
O(1)

How to construct How to construct ?ℋ
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A Typical Universal Hash Family
• Proposed by Carter and Wegman in 1977 

‣ They introduced the notion of universal classes of hash functions.


- [“Universal Classes of Hash Functions”, STOC 77 and JCSS 79] 

• Find a large prime  larger than the max possible key value,


‣ Let  and 


• Define , then 


‣  is a universal hash family.

p

ℤp = {0, 1, 2, . . . , p − 1} ℤ*p = {1, 2, . . . , p − 1}

hab(k) = ((ak + b) mod p) mod m

ℋpm = {hab ∣ a ∈ ℤ*p  and b ∈ ℤp}
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A Typical Universal Hash Family

•  and 


• , where  and .


• Prove:  for all , where  and .

ℤp = {0, 1, 2, . . . , p − 1} ℤ*p = {1, 2, . . . , p − 1}

hab(k) = ((ak + b) mod p) mod m a ∈ ℤ*p b ∈ ℤp

Pr
h∈ℋ

[h(k) = h(l)] ≤
1
m

k ≠ l k ∈ ℤp l ∈ ℤp
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A Typical Universal Hash Family
• Let , and .


• Claim 1: .


• Proof:


‣  


‣ but  and 


‣  is prime!

r = (ak + b) mod p s = (al + b) mod p

r ≠ s

r − s ≡ a(k − l) (mod p)

a ≢ 0 (mod p) k − l ≢ 0 (mod p)

p

That is:  does not generate collision at “  level”!hab mod p
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A Typical Universal Hash Family
• Let , and .


• Claim 2: Fix  and , there is a 1-to-1 mapping between  and  pairs.

r = (ak + b) mod p s = (al + b) mod p

k l (a, b) (r, s)

Given , we get unique .(r, s) (a, b)

 modular multiplicative inverse of , unique since  is primek − l p

‣ There are  pairs of , and  pairs of  if .(p − 1)p (a, b) (p − 1)p (r, s) r ≠ s

‣ Recall 


‣ 


‣

r − s ≡ a(k − l) (mod p)

a = ((r − s)((k − l)−1 mod p)) mod p

b = (r − ak) mod p

 , a ∈ ℤ*p b ∈ ℤp  0 ≤ r < p, 0 ≤ s < p
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A Typical Universal Hash Family
• Let , and .


• Claim 1: .


• Claim 2: Fix  and , there is a 1-to-1 mapping between  and  pairs.

r = (ak + b) mod p s = (al + b) mod p

r ≠ s

k l (a, b) (r, s)

• Thus, for any given pair of distinct inputs of  and , if we pick  uniformly at 
random from , the resulting pair  is equally likely to be any pair of 
distinct values modulo  .


• Therefore, the probability that distinct keys  and  collide is equal to the 
probability that 

k l (a, b)
ℤ*p × ℤp (r, s)

p

k l
r ≡ s (mod m)
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A Typical Universal Hash Family
• Let , and .


• Claim 1: .


• Claim 2: Fix  and , there is a 1-to-1 mapping between  and  pairs.

r = (ak + b) mod p s = (al + b) mod p

r ≠ s

k l (a, b) (r, s)

• Lemma: 





Pr
h∈ℋ

[h(k) = h(l)] = Pr
0≤r,s<p

[r ≡ s (mod m)]

= Pr[r ≡ s (mod m) when (r, s) are distinct values chosen from ℤp uniformly at random]

≤
(⌈ p

m ⌉) − 1

p − 1
≤

p + m − 1
m − 1

p − 1
=

(p − 1)/m
p − 1

=
1
m
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Open addressing
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Quick Review
• Hash Tables


‣ Store  keys from a huge universe  into a table of size 


‣ Use a hash function  to decide where to put each key 


• Collisions are inevitable!


‣ [Collision Resolution] Method 1: Chaining.

n U m ≈ n

h : U → [m]

U
0
1
2
3
4
5
6
7
8

x u

y w

h(x) = 0

h(u) = 2

h(y) = 5

h(w) = 8

z h(z) = 5

‣ [Collision Resolution] Method 2: Open addressing.



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Open Addressing
• Basic idea:


‣ No linked lists! All items store in the table, one item per bucket!


• Load factor 


• On collision?


‣ Probe a sequence of buckets until an empty one is found! 

α =
n
m

≤ 1
But hash function  is a function on key, 
how is the probe sequence determined?

h

0

245 1
2

366 3
4

111 5
6

571 7

533 8

h(321) = 1

key = 321

0

245 1
2

366 3
4

111 5
6

571 7

533 8

0

245 1
2

366 3

321 4

111 5
6

571 7

533 8

h(321) = 7

key = 321
h(321) = 4

key = 321
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Hash Function Re-defined

0

245 1
2

366 3
4

111 5
6

571 7

533 8

h(321,0) = 1

key = 321

0

245 1
2

366 3
4

111 5
6

571 7

533 8

0

245 1
2

366 3

321 4

111 5
6

571 7

533 8

h(321,1) = 7

key = 321
h(321,2) = 4

key = 321

• In case we use open addressing for collision resolution，


‣ h : U × {0, 1, . . . , m − 1} → {0, 1, . . . , m − 1}
key probe number table index



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Hash Function Re-defined
• In case we use open addressing for collision resolution，


‣ h : U × {0, 1, . . . , m − 1} → {0, 1, . . . , m − 1}
key probe number table index

HashInsert(T, k):
i := 0
repeat 

   j := h(k, i)
   if   T[j] = NULL

    T[j] := k
return j

else i := i + 1
until i = m
return “overflow”

HashSearch(T, k):
i := 0
repeat 

   j := h(k, i)
   if   T[j] = k

return j
i := i + 1

until i = m or T[j] = NULL
return NULL
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The Remove Operation
HashInsert(T, k):
i := 0
repeat 

   j := h(k, i)
   if   T[j] = NULL

    T[j] := k
return j

else i := i + 1
until i = m
return “overflow”

HashSearch(T, k):
i := 0
repeat 

   j := h(k, i)
   if   T[j] = k

return j
i := i + 1

until i = m or T[j] = NULL
return NULL

HashRemove(T, k):
pos := HashSearch(T, k)
if  pos != NULL

 T[pos] := NULL
return pos

0

245 1
2

366 3

321 4

111 5
6

571 7

533 8

0
1
2

366 3

321 4

111 5
6

571 7

533 8

h(245,0) = 1

Remove 245

0
1
2

366 3

321 4

111 5
6

571 7

533 8

h(321,0) = 1

Search 321

321 is here !
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The Remove Operation
HashInsert(T, k):
i := 0
repeat 

   j := h(k, i)
   if   T[j] = NULL

    T[j] := k
return j

else i := i + 1
until i = m
return “overflow”

HashSearch(T, k):
i := 0
repeat 

   j := h(k, i)
   if   T[j] = k

return j
i := i + 1

until i = m or T[j] = NULL
return NULL

HashRemove(T, k):
pos := HashSearch(T, k)
if  pos != NULL

 T[pos] := DEL
return pos

0

245 1
2

366 3

321 4

111 5
6

571 7

533 8

0

DEL 1
2

366 3

321 4

111 5
6

571 7

533 8

h(245,0) = 1

Remove 245

0

DEL 1
2

366 3

321 4

111 5
6

571 7

533 8

h(321,0) = 1

Search 321

0

DEL 1
2

366 3

321 4

111 5
6

571 7

533 8

h(321,1) =
7

Search 321

0

DEL 1
2

366 3

321 4

111 5
6

571 7

533 8

h(321,2) = 4
Search 321

or T[j] = DEL
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Linear Probing
• .


• The probe sequence is , , , …

h(k, i) = (h′ (k) + i) mod m

h′ (k) h′ (k) + 1 h′ (k) + 2

0

571 1

533 2

321 3
4
5

366 6

689 7
8

h(321,0) = 1

Insert 321 h(321,2) = 3h(321,1) = 2 Cluster• Another problem with linear probing: Clustering. 

‣ Empty slot after a “cluster” has higher chance 
to be chosen.


‣ “Cluster” grows larger and larger.


‣ Cluster” leads to higher search time, in theory.

 Here,  is an “auxiliary hash function”.h′ 

Since the initial probe position determines the entire probe sequence, 
only  distinct probe sequences are used with linear probing.m
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The remove mechanism 
(i.e., the DEL mark”) 

causes “anti-clustering” effect, 
improving the performance of 

linear-probing hash tables.
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Quadratic Probing

• .


• Problem with quadratic probing: (Secondary) Clustering.  

‣ Keys having same  values result in same probe sequences.


‣ As in linear probing, the initial probe determines the entire sequence, so 
only  distinct probe sequences are used.

h(k, i) = (h′ (k) + c1i + c2i2) mod m

h′ 

m

 Here,  is an “auxiliary hash function”.h′ 
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Double Hashing

• .h(k, i) = (h1(k) + i ⋅ h2(k)) mod m
 Here,   and  are both “auxiliary hash functions”.h1 h2

• Why “doubling” hashing?


‣ Observation 1: If  is good,  looks “random”.


‣ Observation 2: If  is good, probe sequence looks “random”.


‣ Linear and quadratic probing does not give Observation 2.

h1 h(k,0)

h2
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Double Hashing

• The value  must be relatively prime to  for the entire hash table to be searched. 
Conveniently, just let  be a prime number.


‣ Otherwise, if  and  have greatest common divisor  for some key , then a search 

for key  would examine only  of the hash table.


• Each possible  pair yields a distinct probe sequence


‣ As we vary the key, the initial probe position  and the offset  may vary independently.


‣ Double hashing can use  different probe sequences.

h2(k) m
m

m h2(k) d > 1 k

k
1
d

(h1(k), h2(k))
h1(k) h2(k)

Θ(m2)

 Here,   and  are both “auxiliary hash functions”.h1 h2• .h(k, i) = (h1(k) + i ⋅ h2(k)) mod m



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Performance of open-address hashing
• Recall the “Simple Uniform Hashing” Assumption:


‣ Every key is equally likely to map to every bucket


‣ Keys are mapped independently.


• The “Uniform Hashing” Assumption:


‣ The probe sequence of each key is equally likely to be any of the  permutations of 
.


• None of linear probing, quadratic probing, or double hashing fulfills the “uniform 
hashing” assumption!


‣ But double hashing does better than the other two.

m!
< 0, 1, . . . , m − 1 >
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Performance of open-address hashing

• Let event  be: The  probe leads to an occupied bucket.


• 


• 


 


•

Ai ith

Pr[Ai ∣ A1 ∩ A2 ∩ . . . ∩ Ai−1] =
n − (i − 1)
m − (i − 1)

≤
n
m

Pr[X ≥ i] = Pr[A1 ∩ A2 ∩ . . . ∩ Ai−1]

= Pr[A1] ⋅ Pr[A2 ∣ A1] ⋅ Pr[A3 ∣ A1 ∩ A2] . . . Pr[Ai−1 ∣ A1 ∩ A2 ∩ . . . ∩ Ai−2] ≤ (
n
m

)i−1 = αi−1

𝔼[X] =
∞

∑
i=1

Pr[X ≥ i] ≤
∞

∑
i=1

αi−1 = 1 + α + α2 + . . . . =
1

1 − α

Theorem Let random variable  be the number of probes made in an 

unsuccessful search, then . Here, .

X
𝔼[X] ≤

1
1 − α

α =
n
m

< 1

Always make  probe

Make  probe with probability 

Make  probe with probability 


…

1st

2nd ≈ α
3rd ≈ α2



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Performance of open-address hashing

• Let  be: the expected number of probes made when searching the  inserted key.


• Due to previous analysis, 


• 


Ni ith

Ni ≤
1

1 − i − 1
m

𝔼[X] ≤
1
n

⋅
n

∑
i=1

Ni ≤
1
n

⋅
n

∑
i=1

m
m − (i − 1)

=
m
n

⋅
n−1

∑
i=0

1
m − i

=
1
α

⋅
m

∑
k=m−n+1

1
k

≤
1
α

⋅ ∫
m

m−n

1
x

dx =
1
α

⋅ ln ( m
m − n ) =

1
α

⋅ ln ( 1
1 − α )

Theorem Let random variable  be the number of probes made in an 

successful search, then . Here, .

X

𝔼[X] ≤
1
α

ln ( 1
1 − α ) α =

n
m

< 1
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Chaining vs Open-addressing

• Good parts of Open-addressing:


‣ No memory allocation


- Chaining needs to allocate list-nodes


‣ Better cache performance


- Hash table stores in a continuous 
region in memory


- Fewer accesses brings table into 
cache

• Bad parts of Open-addressing:


‣ Sensitive to choice of hash functions


- Clustering is a common problem


‣ Sensitive to load factor


- Poor performance when α ≈ 1
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Efficient implementation of Ordered Dictionary 

Search(S,k) Insert(S,x) Remove(S,x)

Treap / SkipList

RB-Tree

Hashing 
（chaining）

  in expectation O(log n)   in expectation O(log n)   in expectation O(log n)

  in worst caseO(log n)   in worst caseO(log n)   in worst caseO(log n)

  in expectation O(1 + α)   in worst case O(1)   in worst caseO(1)

  in expectation O(
1

1 − α
) Same as searching

  (unsuccessful)  

 (successful)   

in expectation 

O(
1

1 − α
)

O ( 1
α

ln(
1

1 − α
))

Hashing 
（open addressing）
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Further reading

• [CLRS] Ch.11


