

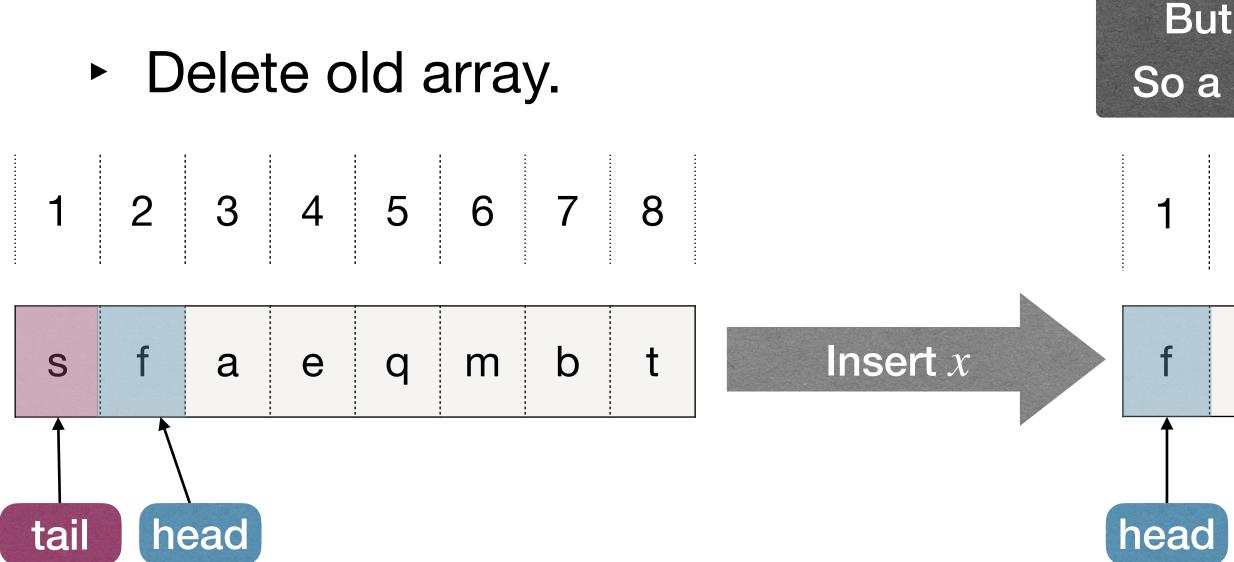
平摊分析 Amortized analysis

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne. Thanks for their supports!

钮鑫涛 Nanjing University 2023 Fall

Implement Queue with CircularArray

- CircularArray supports Queue operations in O(1) time.
- Recall that when the array is full:
 - Allocate a new array of double size.
 - Copy existing items to the new array, and insert new element.



				ert c f <i>n</i> o			Augente and a strength						Not	: tig
	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	а	е	q	m	b	t	S	X						
C								tail						



- Technique for analyzing "average cost":
 - Often used in data structure analysis
 - operation is not so high.
 - data are not "bad".
 - operations, rather than for individual operations.

Idea: even when expensive operations must be performed, it is often possible to get away with performing them rarely, so that the "average" cost per

Note: Amortized analysis is different from what is commonly referred to as average case analysis, because it does **not** make any assumption about the distribution of the data values, whereas average case analysis assumes the

- That is, amortized analysis is a worst case analysis, but for a sequence of

Aggregate method for Amortized Analysis

- One assumes that there is no need to distinguish between the different operations on the data structure.
 - then divide by the number of operations.

maximum amount of work done by any series of *m* operations

- ▶ aggregate cost = -
- CircularArray is $1 + 2 + 4 + ... + 2^{k-1} = 2^k 1 \approx N$

Ignore cost of array alloc and free for now

_ Therefore, the aggregate cost is

Then we just use aggregate method: add up the cost of all the operations and

 \mathcal{M}

• Let $N = 2^k$ for some constant k. The maximum copying cost of N insertions in

$$O(\frac{N+N}{N}) = O(1)$$

- Note: Different operations may have different amortized costs.
- **Definition**: Operations has amortized cost $\hat{c}(n)$, if for every $k \in \mathbb{N}^+$, the total cost of any k operations is $\leq \sum \hat{c}(n_i)$. i=1
 - n_i is the size of the data structure when applying the i^{th} operation.

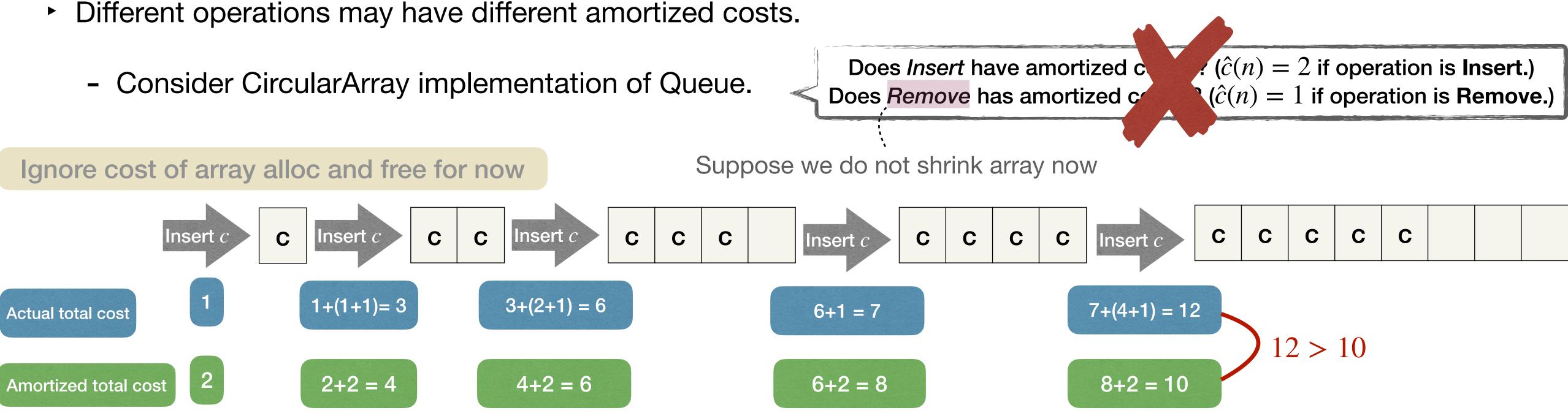
- Consider a sequence operations:
 - c_i = actual cost of the i^{th} operation; \hat{c}_i = amortized cost of the i^{th} operation.
- For the amortized cost to be valid: \bullet

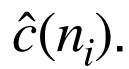
$$\sum_{i=1}^{k} c_i \leq \sum_{i=1}^{k} \hat{c}_i \text{ for any } k \in \mathbb{N}^+.$$

Total cost of *k* operations is $\leq \sum_{i=1}^{n} \hat{c}_{i}$

i=]

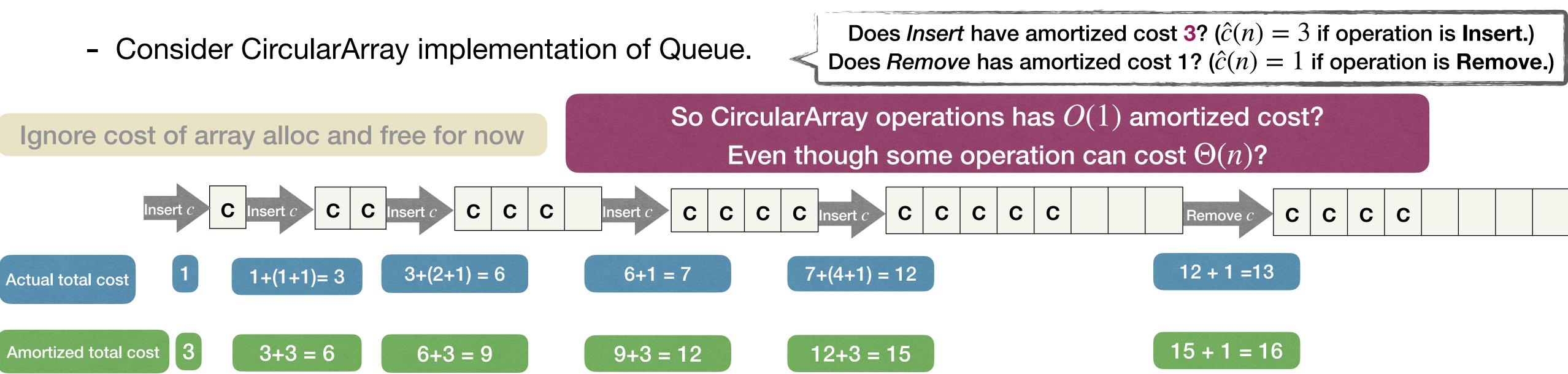
- Definition: Operations has amortized cost $\hat{c}(n)$, if for every $k \in \mathbb{N}^+$, the total cost of any k operations is $\leq k$
 - n_i is the size of the data structure when applying the i^{th} operation.



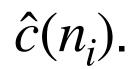


i=1

- - n_i is the size of the data structure when applying the i^{th} operation.
 - Different operations may have different amortized costs.



Definition: Operations has amortized cost $\hat{c}(n)$, if for every $k \in \mathbb{N}^+$, the total cost of any k operations is $\leq \frac{1}{2}$



i=1

Amortized Analysis Techniques

The Accounting Method

- Consider a sequence operations: c_i = actual cost of the i^{th} operation; \hat{c}_i = amortized cost of the i^{th} operation. Then, the amortized cost to be valid: $\sum c_i \leq \sum \hat{c}_i$ for any $k \in \mathbb{N}^+$. i=1i=1
- Imagine you have a bank account B with initial balance 0.
- For the i^{th} op., you spend \hat{c}_i money:
 - Recall that the actual cost of the i^{th} op. is c_i
 - If $\hat{c}_i \ge c_i$, pay c_i for the op., and **deposit** $\hat{c}_i c_i$ into B.
 - If $\hat{c}_i < c_i$, pay c_i for the op., and withdraw $c_i \hat{c}_i$ into B.
- Amortized analysis valid if $B = \sum_{i=1}^{k} (\hat{c}_i c_i)$ always ≥ 0

Example: CircularArray based Queue

• $\hat{c}_i = 3$ if the i^{th} operation is **Insert**, $\hat{c}_i = 1$ if the i^{th} operation is **Remove**.

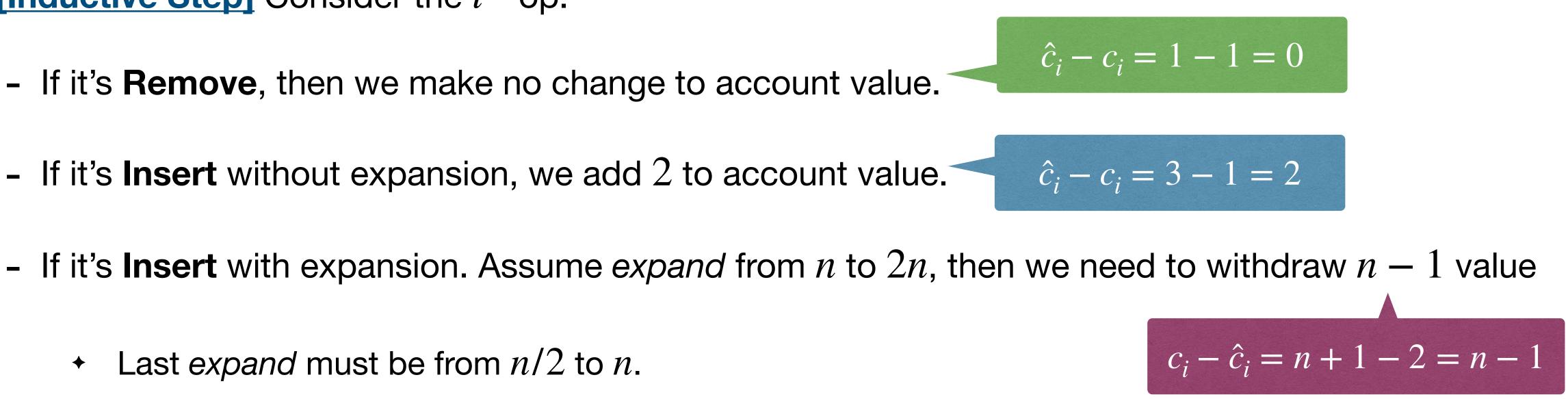
Goal: Prove
$$\sum_{i=1}^{k} c_i \leq \sum_{i=1}^{k} \hat{c}_i$$
 for an

- Strategy: account always non-negative via induction on k.
 - **[Basis]** Prior to 1^{st} op., account balance is 0.
 - [Hypothesis] Prior to ith op., account balance is always non-negative.

ny $k \in \mathbb{N}^+$ operations.

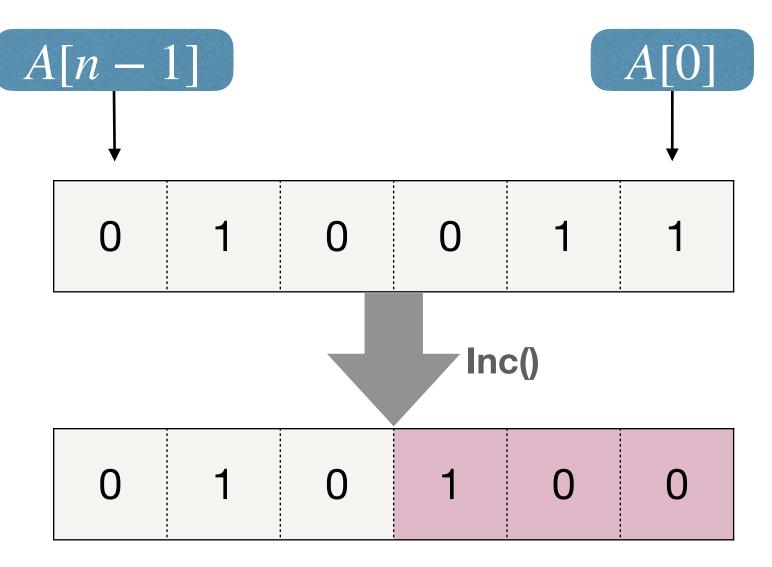
Example: CircularArray based Queue

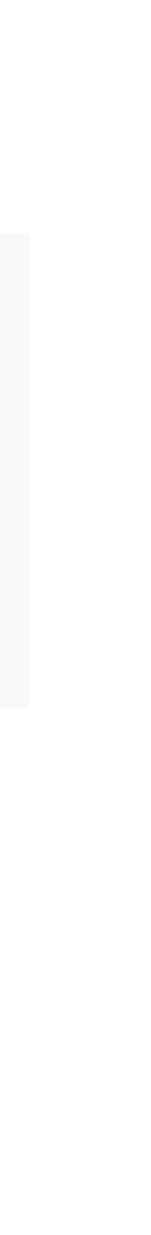
- Inductive Step] Consider the ith op.
 - If it's **Remove**, then we make no change to account value.
 - If it's **Insert** without expansion, we add 2 to account value.
 - - Last expand must be from n/2 to n.
 - Since last *expand*, each **Insert** adds 2, each **Remove** makes no change.
 - Since last *expand*, there are at least n/2 **Insert** op.
 - Immediately after last *expand*, account balance is non-negative (Hypothesis).
 - + Thus prior to i^{th} op., account balance $\geq n$. This is enough!



- Use length *n* binary array A to represent a number.
- The number is 0 initially, and *Inc* op. adds 1 to this number.
- Cost of In *Inc*: number of bits it flipped.
- Average cost of *k Inc* operations?
 - Easy answer: O(n)
 - More careful analysis... (Amortized analysis...)

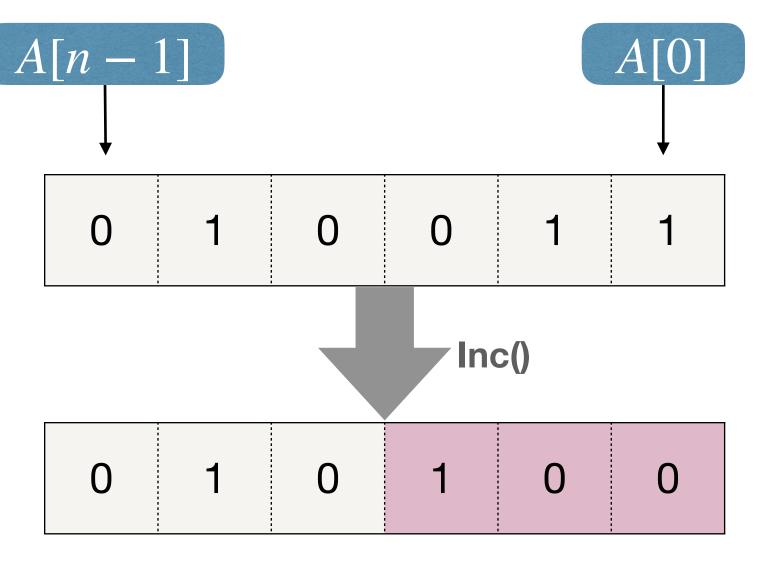
Inc(A): i := 0while i < n and A[i] = 1A[i] := 0i := i + 1if i < nA[i] := 1

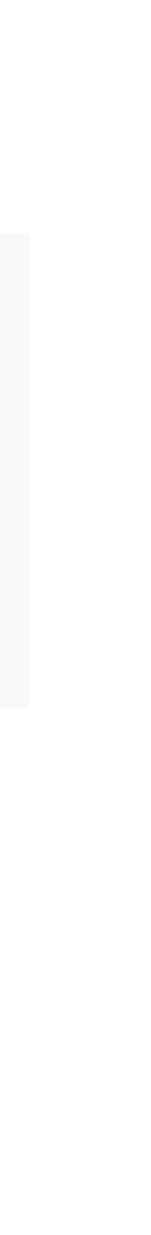


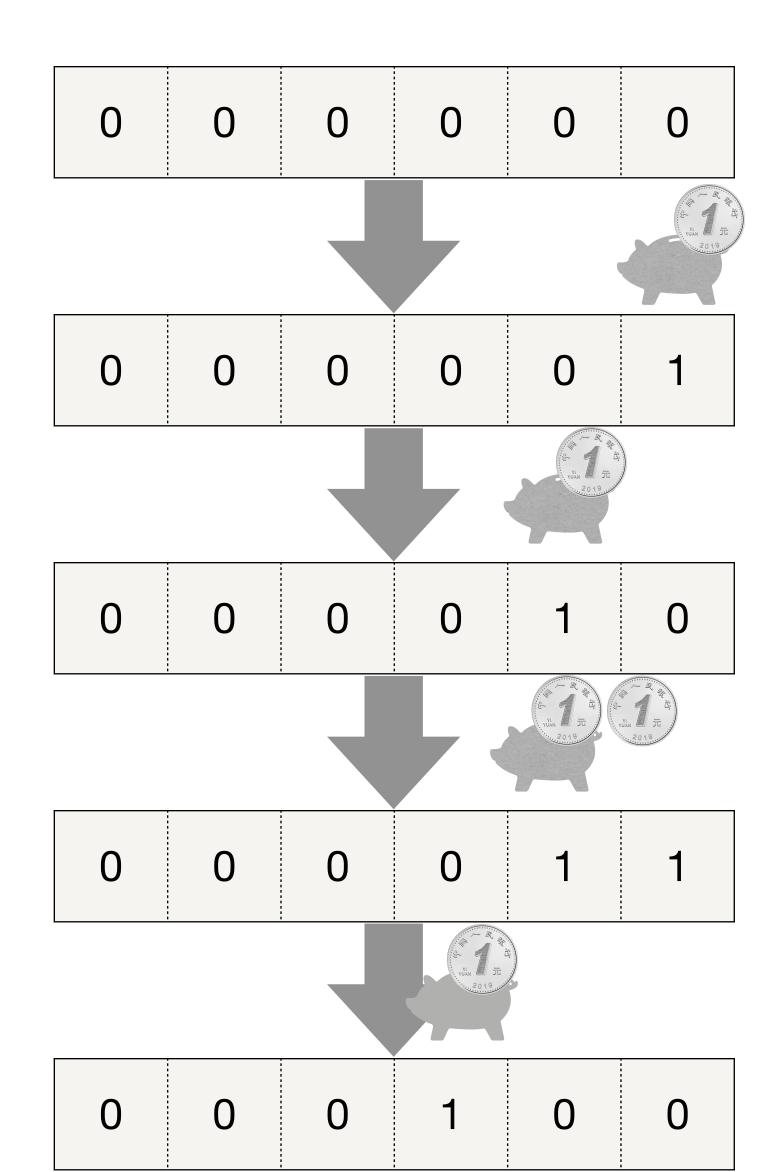


- The number is 0 initially, and *Inc* op. adds 1 to this number.
- Cost of In *Inc*: number of bits it flipped.
- In each *Inc*: $0 \rightarrow 1$: at most 1 bit, while $1 \rightarrow 0$: many bits!
- But a bit has to be set to 1 before it resets to 0!
- If we deposit 1 whenever we $0 \rightarrow 1$, later $1 \rightarrow 0$ are "free"!
- Each *lnc* does $0 \rightarrow 1$ at most once, so amortized cost is: 2 = O(1)

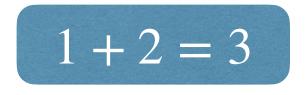
Inc(A): i := 0while i < n and A[i] = 1A[i] := 0i := i + 1if i < nA[i] := 1

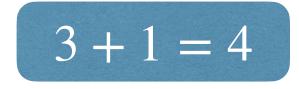


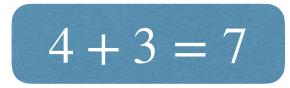




Actual total cost







Amortized total cost

The Potential Method

amortized cost of the i^{th} operation. Then, the amortized cost to be valid: $k \qquad k$

$$\sum_{i=1}^{C_i} C_i \text{ for any } k \in \mathbb{N}'.$$

- Design a potential function Φ that maps data structure status to real values lacksquare
 - $\Phi(D_0)$: initial potential of the data structure, usually set to 0.
 - $\Phi(D_i)$: potential of the data structure after i^{th} operation.
- Define $\hat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1})$
- For amortized cost to be valid, need $\Phi(D_k) \ge \Phi(D_0)$ for all k.

• Consider a sequence operations: c_i = actual cost of the i^{th} operation; \hat{c}_i =

Now let us consider the amortized cost in a higher level than the specific value in one operation (accounting)!

The Potential Method

- "Potential" is like the balance in account in "Counting Method".
 - Potential slowly accumulates during "cheap" operations (deposit).
 - Potential drops a lot after an "expensive" operation (withdraw).
- But the Potential Method could be more powerful in general...

- How to define $\Phi(D_i)$ for Binary Counter? (Recall potential is like "balance".)
- $\Phi(D_i) =$ number of 1s in the array after the i^{th} **Inc** operation.
- Clearly " $\Phi(D_k) \ge \Phi(D_0)$ for all k." is satisfied, how large is \hat{c}_i ?
 - $c_i = (\text{number of bits } 0 \rightarrow 1) + (\text{number of bits } 1 \rightarrow 0)$
 - \mathbf{O} \mathbf{O} ()Inc()
- $\Phi(D_i) \Phi(D_{i-1}) = (\text{number of bits } 0 \rightarrow 1) (\text{number of bits } 1 \rightarrow 0)$ • $\hat{c}_i = 2 \cdot (\text{number of bits } 0 \rightarrow 1) \le 2$

0	

0

0

0

Back to CircularArray based Queue

- Now suppose we need to shrink array for space consideration
 - delete old array.)
 - delete old array.)
- Quiz: which one is better with respect to amortized cost?

Solution(1): Reduce array size to half when array only half loaded after Remove. (Allocate new array of half size, copy items to new array, and

Solution(2): Reduce array size to half when array only 1/4 loaded after Remove. (Allocate new array of half size, copy items to new array, and

Further reading

• [CLRS] Ch.17

