
智能软件与⼯程学院
School of Intelligent Software and Engineering

平摊分析
Amortized analysis

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne.Thanks for their supports!

钮鑫涛
Nanjing University

2023 Fall

智能软件与⼯程学院
School of Intelligent Software and Engineering

Implement Queue with CircularArray
• CircularArray supports Queue operations in time.

• Recall that when the array is full:

‣ Allocate a new array of double size.

‣ Copy existing items to the new array, and insert new element.

‣ Delete old array.

O(1)

s f a e q m b t

1 2 3 4 5 6 7 8

tail head

f a e q m b t s x

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tailhead

Insert x

But now the Insert operation may take time.
So a sequence of operations can take time?

Θ(n)
n O(n2) Not tight!

智能软件与⼯程学院
School of Intelligent Software and Engineering

Amortized Analysis
• Technique for analyzing “average cost”:

‣ Often used in data structure analysis

‣ Idea: even when expensive operations must be performed, it is often possible
to get away with performing them rarely, so that the “average” cost per
operation is not so high.

‣ Note: Amortized analysis is different from what is commonly referred to as
average case analysis, because it does not make any assumption about the
distribution of the data values, whereas average case analysis assumes the
data are not “bad".

- That is, amortized analysis is a worst case analysis, but for a sequence of
operations, rather than for individual operations.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Aggregate method for Amortized Analysis
• One assumes that there is no need to distinguish between the different

operations on the data structure.

‣ Then we just use aggregate method: add up the cost of all the operations and
then divide by the number of operations.

‣

‣ Let for some constant . The maximum copying cost of insertions in
CircularArray is

- Therefore, the aggregate cost is

aggregate cost =
maximum amount of work done by any series of m operations

m

N = 2k k N
1 + 2 + 4 + . . . + 2k−1 = 2k − 1 ≈ N

O(
N + N

N
) = O(1)

Ignore cost of array alloc and free for now

智能软件与⼯程学院
School of Intelligent Software and Engineering

Amortized Analysis

• Note: Different operations may have different amortized costs.

• Definition: Operations has amortized cost , if for every , the total

cost of any operations is .

‣ is the size of the data structure when applying the operation.

̂c(n) k ∈ ℕ+

k ≤
k

∑
i=1

̂c(ni)

ni ith

智能软件与⼯程学院
School of Intelligent Software and Engineering

Amortized Analysis
• Consider a sequence operations:

‣ = actual cost of the operation; = amortized cost of the operation.

• For the amortized cost to be valid:

‣ for any .

Total cost of operations is

Average cost of operations is

ci ith ̂ci ith

k

∑
i=1

ci ≤
k

∑
i=1

̂ci k ∈ ℕ+

k ≤
k

∑
i=1

̂ci

k ≤
∑k

i=1 ̂ci

k

智能软件与⼯程学院
School of Intelligent Software and Engineering

Amortized Analysis
• Definition: Operations has amortized cost , if for every , the total cost of any operations is .

‣ is the size of the data structure when applying the operation.

‣ Different operations may have different amortized costs.

- Consider CircularArray implementation of Queue.

̂c(n) k ∈ ℕ+ k ≤
k

∑
i=1

̂c(ni)

ni ith

Ignore cost of array alloc and free for now

Actual total cost

Amortized total cost

c cInsert c

1+(1+1)= 3

2+2 = 4

c c c

3+(2+1) = 6

4+2 = 6

Insert c c c c c

6+1 = 7

6+2 = 8

Insert c c c c c c

7+(4+1) = 12

8+2 = 10

Insert cc

1

2

Insert c

Does Insert have amortized cost 2? (if operation is Insert.)
Does Remove has amortized cost 1? (if operation is Remove.)

̂c(n) = 2
̂c(n) = 1

12 > 10

Suppose we do not shrink array now

智能软件与⼯程学院
School of Intelligent Software and Engineering

Amortized Analysis
• Definition: Operations has amortized cost , if for every , the total cost of any operations is .

‣ is the size of the data structure when applying the operation.

‣ Different operations may have different amortized costs.

- Consider CircularArray implementation of Queue.

̂c(n) k ∈ ℕ+ k ≤
k

∑
i=1

̂c(ni)

ni ith

Ignore cost of array alloc and free for now

Actual total cost

Amortized total cost

c c

1+(1+1)= 3

3+3 = 6

c c c

3+(2+1) = 6

6+3 = 9

c c c c

6+1 = 7

9+3 = 12

c c c c c

7+(4+1) = 12

12+3 = 15

c

1

3

Does Insert have amortized cost 3? (if operation is Insert.)
Does Remove has amortized cost 1? (if operation is Remove.)

̂c(n) = 3
̂c(n) = 1

Insert c Insert c Insert c Insert c Insert c

12 + 1 =13

15 + 1 = 16

Remove c c c c c

So CircularArray operations has amortized cost?
Even though some operation can cost ?

O(1)
Θ(n)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Amortized Analysis
Techniques

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Accounting Method
• Consider a sequence operations: = actual cost of the operation; = amortized cost

of the operation. Then, the amortized cost to be valid: for any .

ci ith ̂ci

ith
k

∑
i=1

ci ≤
k

∑
i=1

̂ci k ∈ ℕ+

• Imagine you have a bank account with initial balance .

• For the op., you spend money:

‣ Recall that the actual cost of the op. is

‣ If , pay for the op., and deposit into .

‣ If , pay for the op., and withdraw into .

• Amortized analysis valid if always

B 0

ith ̂ci

ith ci

̂ci ≥ ci ci ̂ci − ci B

̂ci < ci ci ci − ̂ci B

B = Σk
i=1(̂ci − ci) ≥ 0

智能软件与⼯程学院
School of Intelligent Software and Engineering

Example: CircularArray based Queue

• if the operation is Insert, if the operation is Remove.

• Goal: Prove for any operations.

• Strategy: account always non-negative via induction on .

‣ [Basis] Prior to op., account balance is .

‣ [Hypothesis] Prior to op., account balance is always non-negative.

̂ci = 3 ith ̂ci = 1 ith

k

∑
i=1

ci ≤
k

∑
i=1

̂ci k ∈ ℕ+

k

1st 0

ith

智能软件与⼯程学院
School of Intelligent Software and Engineering

Example: CircularArray based Queue
‣ [Inductive Step] Consider the op.

- If it’s Remove, then we make no change to account value.

- If it’s Insert without expansion, we add to account value.

- If it’s Insert with expansion. Assume expand from to , then we need to withdraw value

ith

2

n 2n n − 1

̂ci − ci = 1 − 1 = 0

̂ci − ci = 3 − 1 = 2

ci − ̂ci = n + 1 − 2 = n − 1✦ Last expand must be from to .

✦ Since last expand, each Insert adds , each Remove makes no change.

✦ Since last expand, there are at least Insert op.

✦ Immediately after last expand, account balance is non-negative (Hypothesis).

✦ Thus prior to op., account balance . This is enough!

n/2 n

2

n/2

ith ≥ n

智能软件与⼯程学院
School of Intelligent Software and Engineering

Example: Binary Counter
• Use length binary array to represent a number.

• The number is initially, and Inc op. adds to this
number.

• Cost of In Inc: number of bits it flipped.

• Average cost of Inc operations?

n A

0 1

k

Inc(A):
i := 0
while i < n and A[i] = 1

 A[i] := 0
i := i + 1

if i < n
A[i] := 1

0 1 0 0 1 1

A[0]A[n − 1]

0 1 0 1 0 0

Inc()

‣ Easy answer:

‣ More careful analysis… (Amortized analysis…)

O(n)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Example: Binary Counter
• The number is initially, and Inc op. adds to this number.

• Cost of In Inc: number of bits it flipped.

• In each Inc: : at most 1 bit, while : many bits!

0 1

0 → 1 1 → 0

Inc(A):
i := 0
while i < n and A[i] = 1

 A[i] := 0
i := i + 1

if i < n
A[i] := 1

0 1 0 0 1 1

A[0]A[n − 1]

0 1 0 1 0 0

Inc()

• But a bit has to be set to before it resets to 0!

• If we deposit whenever we , later are “free”!

• Each Inc does at most once, so amortized cost is:

1

1 0 → 1 1 → 0

0 → 1
2 = O(1)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Example: Binary Counter
0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 1 1

0 0 0 1 0 0

Actual total cost Amortized total cost

1

1 + 2 = 3

3 + 1 = 4

4 + 3 = 7

× 2

× 4

× 6

× 8

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Potential Method

• Design a potential function that maps data structure status to real values

‣ : initial potential of the data structure, usually set to 0.

‣ : potential of the data structure after operation.

• Define

• For amortized cost to be valid, need for all .

Φ

Φ(D0)

Φ(Di) ith

̂ci = ci + Φ(Di) − Φ(Di−1)

Φ(Dk) ≥ Φ(D0) k

• Consider a sequence operations: = actual cost of the operation; =
amortized cost of the operation. Then, the amortized cost to be valid:

 for any .

ci ith ̂ci
ith

k

∑
i=1

ci ≤
k

∑
i=1

̂ci k ∈ ℕ+
Now let us consider the amortized cost in a higher level than

the specific value in one operation (accounting)!

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Potential Method

• “Potential” is like the balance in account in “Counting Method”.

‣ Potential slowly accumulates during “cheap” operations (deposit).

‣ Potential drops a lot after an “expensive” operation (withdraw).

• But the Potential Method could be more powerful in general…

智能软件与⼯程学院
School of Intelligent Software and Engineering

Example: Binary Counter
• How to define for Binary Counter? (Recall potential is like “balance”.)

• = number of s in the array after the Inc operation.

• Clearly “ for all .” is satisfied, how large is ?

‣ = (number of bits) + (number of bits)

‣ = (number of bits) - (number of bits)

•

Φ(Di)

Φ(Di) 1 ith

Φ(Dk) ≥ Φ(D0) k ̂ci

ci 0 → 1 1 → 0

Φ(Di) − Φ(Di−1) 0 → 1 1 → 0

̂ci = 2 ⋅ (number of bits 0 → 1) ≤ 2
0 1 0 0 1 1

0 1 0 1 0 0

Inc()

智能软件与⼯程学院
School of Intelligent Software and Engineering

Back to CircularArray based Queue

• Now suppose we need to shrink array for space consideration

‣ Solution(1): Reduce array size to half when array only half loaded after
Remove. (Allocate new array of half size, copy items to new array, and
delete old array.)

‣ Solution(2): Reduce array size to half when array only loaded after
Remove. (Allocate new array of half size, copy items to new array, and
delete old array.)

• Quiz: which one is better with respect to amortized cost?

1/4

智能软件与⼯程学院
School of Intelligent Software and Engineering

Further reading

• [CLRS] Ch.17

