5T#%Fbr

ent Soﬁ"ware and fngineering

BRI

School of Qnteﬂig

D1
Jm
&l

HEF

>
et
7))
L
(D ==
= ©
— LL
gt
O)
-
”mn/_
C
qV)
Z

/] he slides are main[y ac{aptec{ f;zom the o’zigina/ ones shated by Chaoclong ZAeng and e evinl '

: %ﬁ‘éiﬂ#'—i:_ﬁ%ﬁn
Vo) School of ntelligent and Engine

Implement Queue with CircularArray

e CircularArray supports Queue operations in O(1) time.

* Recall that when the array is full:
> Allocate a new array of double size.

» Copy existing items to the new array, and insert new element.

But now the Insert operation may take ®(n) time.

> Delete old array. So a sequence of 11 operations can take O(n?) time?

Not tight!

123 456 78 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

sfaeq
:

Amortized Analysis

* Technique for analyzing “average cost”:
> Often used in data structure analysis

> |dea: even when expensive operations must be performed, it is often possible
to get away with performing them rarely, so that the “average” cost per
operation is not so high.

> Note: Amortized analysis is different from what is commonly referred to as
average case analysis, because it does not make any assumption about the
distribution of the data values, whereas average case analysis assumes the
data are not “bad".

- That is, amortized analysis is a worst case analysis, but for a sequence of
operations, rather than for individual operations.

| BEERGHSIREFxR
I,

>
Z 2 / , ,
% <§ SCHOO[O nt@[ﬁgent SO' 'tware ancffngmeermg

Aggregate method for Amortized Analysis

* One assumes that there is no need to distinguish between the different
operations on the data structure.

> Then we just use aggregate method: add up the cost of all the operations and
then divide by the number of operations.

maximum amount of work done by any series of m operations
> aggregate cost—m——am—nAs o --—

m

» Let N = 2* for some constant k. The maximum copying cost of /V insertions in
CircularArrayisl +2+4+... 4281 =2k_1x N

N+ N

_ Therefore, the aggregate cost is O(Y

) = 0O(1)

Amortized Analysis

* Note: Different operations may have different amortized costs.

» Definition: Operations has amortized cost ¢(n), if for every k € N, the total

k
cost of any k operations is < Z c(n;).
i=1

th

> n; is the size of the data structure when applying the 1™ operation.

=
0 &btk T £O R4 1S
| BEERHS TEF6x
égg School of Qnt@[ﬁgent Sofrware and fngineering

Amortized Analysis

* Consider a sequence operations:

th h

» ¢, = actual cost of the i"" operation; ¢; = amortized cost of the i"" operation.

e For the amortized cost to be valid:

k k
L ch- < Zéiforanyk e N™.
i=1 i=1

k
Total cost of k operations is < Z C;
i=1

k A
Zi—l Ci

k

Average cost of k operations is <

| meERp S TR
of

Z School Qnt‘e[ﬁ'gent Sofrware and fngineering

Amortized Analysis

k
Definition: Operations has amortized cost ¢(n), if for every k € N7, the total cost of any k operations is < Z c(n;).

=1

th

> n; is the size of the data structure when applying the 1™ operation.

> Different operations may have different amortized costs.

Does Insert have amortized
Does Remove has amortized

- Consider CircularArray implementation of Queue.

Ignore cost of array alloc and free for now Suppose we do not shrink array now

wcwccwc wccccwccccc
14(141)= 3 3+(2+1) = 6

7+(4+1) =12

Actual total cost
Amortized total cost

12 > 10

| meERp S TR
of

Z School Qnt‘e[ﬁ'gent Sofrware and fngineering

Amortized Analysis

k
Definition: Operations has amortized cost ¢(n), if for every k € N7, the total cost of any k operations is < Z c(n;).

=1

th

> n; is the size of the data structure when applying the 1™ operation.

> Different operations may have different amortized costs.

Does Insert have amortized cost 3? (C(n) = 3 if operation is Insert.) |

(
|
|
[

- Consider CircularArray implementation of Queue.

So CircularArray operations has O(1) amortized cost?

Ignore cost of array alloc and free for now :
Even though some operation can cost ®(7)?

wawcc@ccc ccccwccccc cccc
0

T 2 4
T =
are and Fngineerin

|_Amortized Analysis
Techniques A

| BEERGHSIREFxR
g f eerit

h

« Consider a sequence operations: ¢; = actual cost of the i"" operation; (?l- = amortized cost

k k
of the i™ operation. Then, the amortized cost to be valid: 2 c; < Z ¢, forany k € N™.
i=1 i=1
« Imagine you have a bank account B with initial balance 0.

- For the i op., you spend & money:

» Recall that the actual cost of the i

op. Is ¢;
- If ¢; > c,, pay c, for the op., and deposit ¢; — c; into B.

> If ¢; < ¢;, pay ¢; for the op., and withdraw ¢; — ¢; into B.

« Amortized analysis valid if B = Zé‘zl(@i — ¢;) always > 0

ﬁ EAfﬁF'ﬁ *E—T—Bﬂ:
ool of Inte

Example CircularArray based Queue

¢; = 3 if the i™ operation is Insert, ¢; = 1 if the i operation is Remove.

. Goal: Prove Z C; < Z ¢; for any k € N operations.
i=1 i=1

 Strategy: account always non-negative via induction on k.

> [Basis] Prior to 1% op., account balance is 0.

» [Hypothesis] Prior to i op., account balance is always non-negative.

=

O &btk T F2 R4
PV, ZeERHS ITiEF6r
Z"x @5 School of Qnt‘e[ﬁ'gent Soﬁ'ware and Engineem’n

Exa{mple: CircularArray based Queue

> [Inductive Step] Consider the i op.

- If it’'s Remove, then we make no change to account value.

- If it’s Insert without expansion, we add 2 to account value.

- If it’s Insert with expansion. Assume expand from n to 2n, then we need to withdraw n — 1 value

+ Since last expand, each Insert adds 2, each Remove makes no change.

+ Last expand must be from n/2 to n.

+ Since last expand, there are at least n/2 Insert op.

+ |Immediately after last expand, account balance is non-negative (Hypothesis).

th

+ Thus prior to 1™ op., account balance > n. This is enough!

| BERGFSITiEFbr
f

5 School o Qnt@(ﬁgent Software and EEngineering

Example: Binary Counter

Inc(A):
1:=0
while i <n and A[i] =1
* The number is O initially, and Inc op. adds 1 to this Ali] :=0
number. io=1+ 1
if i<n
Ali] == 1

» Use length n binary array A to represent a number.

* Cost of In Inc: number of bits it flipped.

» Average cost of k Inc operations?

> Easy answer: O(n)

> More careful analysis... (Amortized analysis...)

iS5 Ti2F

igent Soﬁ'ware and fEng

The number is O initially, and Inc op. adds 1 to this number.

Cost of In Inc: number of bits it flipped.

In each Inc: 0 — 1: at most 1 bit, while 1 — 0O : many bits!

But a bit has to be set to 1 before it resets to 0!
If we deposit 1 whenever we O — 1, later | — O are “free”!

Each Inc does O — 1 at most once, so amortized cost is:

2 = O(1)

Inc(A):

1 =0

' Example: Binary Counter

while i <n and A[i] =1

Ali] :=0

=1+ 1
if i<n

Ali]l =1

EF M

ERRFS

School (f ﬂnt‘e[ﬁ'gent Soﬁ'ware and fngineering

Jm

Binary Counter

Example

e
7))
O
O

©

e
O

e

©
O

N

@
O
&

<

Actual total cost

The Potential Method

« Consider a sequence operations: ¢; = actual cost of the ;" operation; ¢

amortlzed cost of the i

Zci < Zéiforanyk e N™.
i=1 i=1

» Design a potential function ® that maps data structure status to real values

operation. Then, the amortized cost to be valld.

» D(D,): initial potential of the data structure, usually set to 0.

'th

> D(D;): potential of the data structure after 1™ operation.

» Define ¢, = ¢, + P(D,) — P(D,;_,)

l

» For amortized cost to be valid, need ®(D,) > D(D,) for all k.

The Potential Method

 “Potential” is like the balance in account in “Counting Method”.
> Potential slowly accumulates during “cheap” operations (deposit).
> Potential drops a lot after an “expensive” operation (withdraw).

 But the Potential Method could be more powerful in general...

TEFr

» How to define ®(D;) for Binary Counter? (Recall potential is like “balance”.)
» O(D;) = number of 1s in the array after the i Inc operation.
o Clearly “D(D,) > D(D,) for all k.” is satisfied, how large is ¢,?

> ¢; = (number of bits 0 — 1) + (number of bits 1 — 0)

> O(D,) — D(D;_;) = (number of bits 0 — 1) - (number of bits I — 0)

e C; =72 (number of bits0) — 1) <2

3

O&abthk T ¥O =24 (=
PV.| SEREHS TiEFbr
7‘5 4@5 School of Qnt@[ﬁgent Sofrware and fngineering

Back to CircularArray based Queue

 Now suppose we need to shrink array for space consideration

> Solution(1): Reduce array size to half when array only half loaded after
Remove. (Allocate new array of half size, copy items to new array, and
delete old array.)

> Solution(2): Reduce array size to half when array only 1/4 loaded after

Remove. (Allocate new array of half size, copy items to new array, and
delete old array.)

* Quiz: which one is better with respect to amortized cost?

| BEERHS TEF6x
9 School of an(ﬁ’gent Soﬁ'ware and Engineering

Further reading

+ [CLRS] Ch.17

V THOMAS H.CORMEN

CHARLES E. LEISERSON

RONALD L. RIVEST

\ CLIFFORD STEIN

INTRODUCTION TO

ALGCORITHMS

EDITION

