平婎分析 Amortized analysis

钮崟涛
Nanjing University
2023 Fall

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne．Thanks for their supports！

Implement Queue with CircularArray

－CircularArray supports Queue operations in $O(1)$ time．
－Recall that when the array is full：
－Allocate a new array of double size．
－Copy existing items to the new array，and insert new element．
－Delete old array．

But now the Insert operation may take $\Theta(n)$ time．	Not tight！
So a sequence of n operations can take $O\left(n^{2}\right)$ time？	

Amortized Analysis

- Technique for analyzing "average cost":
- Often used in data structure analysis
- Idea: even when expensive operations must be performed, it is often possible to get away with performing them rarely, so that the "average" cost per operation is not so high.
- Note: Amortized analysis is different from what is commonly referred to as average case analysis, because it does not make any assumption about the distribution of the data values, whereas average case analysis assumes the data are not "bad".
- That is, amortized analysis is a worst case analysis, but for a sequence of operations, rather than for individual operations.

Aggregate method for Amortized Analysis

－One assumes that there is no need to distinguish between the different operations on the data structure．
－Then we just use aggregate method：add up the cost of all the operations and then divide by the number of operations．
－aggregate cost $=\frac{\text { maximum amount of work done by any series of } m \text { operations }}{m}$ m
－Let $N=2^{k}$ for some constant k ．The maximum copying cost of N insertions in CircularArray is $1+2+4+\ldots+2^{k-1}=2^{k}-1 \approx N$

Ignore cost of array alloc and free for now
－Therefore，the aggregate cost is $O\left(\frac{N+N}{N}\right)=O(1)$

Amortized Analysis

- Note: Different operations may have different amortized costs.
- Definition: Operations has amortized cost $\hat{c}(n)$, if for every $k \in \mathbb{N}^{+}$, the total cost of any k operations is $\leq \sum_{i=1}^{k} \hat{c}\left(n_{i}\right)$.
- n_{i} is the size of the data structure when applying the $i^{\text {th }}$ operation.

Amortized Analysis

－Consider a sequence operations：
－$c_{i}=$ actual cost of the $i^{\text {th }}$ operation；$\hat{c}_{i}=$ amortized cost of the $i^{\text {th }}$ operation．
－For the amortized cost to be valid：

Total cost of k operations is $\leq \sum_{i=1}^{k} \hat{c}_{i}$
Average cost of k operations is $\leq \frac{\sum_{i=1}^{k} \hat{c}_{i}}{k}$

Amortized Analysis

Definition：Operations has amortized cost $\hat{c}(n)$ ，if for every $k \in \mathbb{N}^{+}$，the total cost of any k operations is $\leq \sum_{i=1}^{k} \hat{c}\left(n_{i}\right)$ ．
－n_{i} is the size of the data structure when applying the $i^{t h}$ operation．
－Different operations may have different amortized costs．
－Consider CircularArray implementation of Queue．

Ignore cost of array alloc and free for now
Suppose we do not shrink array now

Amortized Analysis

Definition：Operations has amortized cost $\hat{c}(n)$ ，if for every $k \in \mathbb{N}^{+}$，the total cost of any k operations is $\leq \sum_{i=1}^{k} \hat{c}\left(n_{i}\right)$ ．
－n_{i} is the size of the data structure when applying the $i^{\text {th }}$ operation．
－Different operations may have different amortized costs．
－Consider CircularArray implementation of Queue．

Does Insert have amortized cost 3？（ $\hat{c}(n)=3$ if operation is Insert．） Does Remove has amortized cost 1 ？（ $\hat{c}(n)=1$ if operation is Remove．）

Ignore cost of array alloc and free for now
So CircularArray operations has O（1）amortized cost？
Even though some operation can cost $\Theta(n)$ ？

 \title{
Amortized Analysis
 \title{
Amortized Analysis Techniques Techniques

 蒝
}

 蒝
}

The Accounting Method

－Consider a sequence operations：$c_{i}=$ actual cost of the $i^{t h}$ operation；$\hat{c}_{i}=$ amortized cost of the $i^{\text {th }}$ operation．Then，the amortized cost to be valid：$\sum_{i=1}^{k} c_{i} \leq \sum_{i=1}^{k} \hat{c}_{i}$ for any $k \in \mathbb{N}^{+}$．
－Imagine you have a bank account B with initial balance 0 ．
－For the $i^{\text {th }}$ op．，you spend \hat{c}_{i} money：
－Recall that the actual cost of the $i^{t h} \mathrm{op}$ ．is c_{i}
－If $\hat{c}_{i} \geq c_{i}$ ，pay c_{i} for the op．，and deposit $\hat{c}_{i}-c_{i}$ into B ．
－If $\hat{c}_{i}<c_{i}$ ，pay c_{i} for the op．，and withdraw $c_{i}-\hat{c}_{i}$ into B ．
－Amortized analysis valid if $B=\sum_{i=1}^{k}\left(\hat{c}_{i}-c_{i}\right)$ always ≥ 0

Example：CircularArray based Queue

－$\hat{c}_{i}=3$ if the $i^{\text {th }}$ operation is Insert，$\hat{c}_{i}=1$ if the $i^{\text {th }}$ operation is Remove．
．Goal：Prove $\sum_{i=1}^{k} c_{i} \leq \sum_{i=1}^{k} \hat{c}_{i}$ for any $k \in \mathbb{N}^{+}$operations．
－Strategy：account always non－negative via induction on k ．
－［Basis］Prior to $1^{s t}$ op．，account balance is 0 ．
－［Hypothesis］Prior to $i^{t h}$ op．，account balance is always non－negative．

Example：CircularArray based Queue

－［Inductive Step］Consider the $i^{\text {th }}$ op．
－If it＇s Remove，then we make no change to account value．

$$
\hat{c}_{i}-c_{i}=1-1=0
$$

－If it＇s Insert without expansion，we add 2 to account value．$\quad \hat{c}_{i}-c_{i}=3-1=2$
－If it＇s Insert with expansion．Assume expand from n to $2 n$ ，then we need to withdraw $n-1$ value
－Last expand must be from $n / 2$ to n ．

$$
c_{i}-\hat{c}_{i}=n+1-2=n-1
$$

＋Since last expand，each Insert adds 2，each Remove makes no change．
＋Since last expand，there are at least $n / 2$ Insert op．
＋Immediately after last expand，account balance is non－negative（Hypothesis）．
＋Thus prior to $i^{t h}$ op．，account balance $\geq n$ ．This is enough！

Example：Binary Counter

－Use length n binary array A to represent a number．
－The number is 0 initially，and Inc op．adds 1 to this number．

$$
\begin{aligned}
& \underline{\operatorname{Inc}(\mathrm{A}):} \\
& i:=0 \\
& \text { while } i<n \text { and } A[i]=1 \\
& \quad A[i]:=0 \\
& \quad i:=i+1 \\
& \text { if } i<n \\
& \quad A[i]:=1
\end{aligned}
$$

Example：Binary Counter

－The number is 0 initially，and Inc op．adds 1 to this number．
－Cost of In Inc：number of bits it flipped．
－In each Inc： $0 \rightarrow 1$ ：at most 1 bit，while $1 \rightarrow 0$ ：many bits！

Inc（A）：

$$
i:=0
$$

$$
\text { while } i<n \text { and } A[i]=1
$$

$$
A[i]:=0
$$

$$
i:=i+1
$$

$$
\text { if } i<n
$$

－But a bit has to be set to 1 before it resets to 0 ！

$$
A[i]:=1
$$

－If we deposit 1 whenever we $0 \rightarrow 1$ ，later $1 \rightarrow 0$ are＂free＂！
－Each Inc does $0 \rightarrow 1$ at most once，so amortized cost is： $2=O(1)$

Example：Binary Counter

$4+3=7$
（1．）$\times 2$
（1．）$\times 4$
（1．）$\times 6$
（1．）$\times 6$
（1．）$\times 8$

The Potential Method

- Consider a sequence operations: $c_{i}=$ actual cost of the $i^{\text {th }}$ operation; $\hat{c}_{i}=$ amortized cost of the $i^{\text {th }}$ operation. Then, the amortized cost to be valid:

$$
\sum_{i=1}^{k} c_{i} \leq \sum_{i=1}^{k} \hat{c}_{i} \text { for any } k \in \mathbb{N}^{+}
$$

Now let us consider the amortized cost in a higher level than the specific value in one operation (accounting)!

- Design a potential function Φ that maps data structure status to real values
- $\Phi\left(D_{0}\right)$: initial potential of the data structure, usually set to 0 .
- $\Phi\left(D_{i}\right)$: potential of the data structure after $i^{\text {th }}$ operation.
- Define $\hat{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)$
- For amortized cost to be valid, need $\Phi\left(D_{k}\right) \geq \Phi\left(D_{0}\right)$ for all k.

The Potential Method

- "Potential" is like the balance in account in "Counting Method".
- Potential slowly accumulates during "cheap" operations (deposit).
- Potential drops a lot after an "expensive" operation (withdraw).
- But the Potential Method could be more powerful in general...

－How to define $\Phi\left(D_{i}\right)$ for Binary Counter？（Recall potential is like＂balance＂．）
－$\Phi\left(D_{i}\right)=$ number of 1 s in the array after the $i^{\text {th }}$ Inc operation．
－Clearly＂$\Phi\left(D_{k}\right) \geq \Phi\left(D_{0}\right)$ for all k ．＂is satisfied，how large is \hat{c}_{i} ？
－$c_{i}=($ number of bits $0 \rightarrow 1)+($ number of bits $1 \rightarrow 0)$
－$\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)=($ number of bits $0 \rightarrow 1)$－（number of bits $\left.1 \rightarrow 0\right)$
－$\hat{c}_{i}=2 \cdot($ number of bits $0 \rightarrow 1) \leq 2$

0	1	0	0	1	1

Back to CircularArray based Queue

－Now suppose we need to shrink array for space consideration
－Solution（1）：Reduce array size to half when array only half loaded after Remove．（Allocate new array of half size，copy items to new array，and delete old array．）
－Solution（2）：Reduce array size to half when array only $1 / 4$ loaded after Remove．（Allocate new array of half size，copy items to new array，and delete old array．）
－Quiz：which one is better with respect to amortized cost？

Further reading

－［CLRS］Ch． 17

