图及其遍历

Graphs and Graph Traversal

钮桧涛
Nanjing University
2023 Fall

The slides are mainly adapted fiom the original ones shared by Chaodong Zheng and Kevin Wayne．Thanks for their supports！

Graphs are Everywhere！

－Transportation Networks．
－Nodes：Airports；Edges：Nonstop flights．

－Communication Networks．
－Nodes：Computers；Edges：Physical links．
－Social Networks．

－Nodes：People；Edges：Friendship．

Followed by many graph problems

Coloring Maps

－Nodes：Countries； Edges：Neighboring countries．
－Question of Interest： Chromatic number？

Scheduling Exams
－Nodes：Exams； Edges：Conflicts．
－Question of Interest： Chromatic number？

Solving Sliding Puzzle
－Nodes：States； Edges：Legit moves
－Question of Interest： Shortest path？

Solving Rubik＇s Cube
－Nodes：States；
Edges：Legit moves
－Question of Interest： God＇s Number？

Representing graphs in computers

－Adjacency Matrix

－Consider a graph $G=(V, E)$ ，where $|V|=n$ and $|E|=m$
－The Adjacency Matrix of G is an $n \times n$ matrix $A=\left(a_{i j}\right)$ where

$$
-a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

－The matrix will be symmetry if G is undirected．
－The matrix will always cost $\Theta\left(n^{2}\right)$ memory，regardless of m ．

| | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 1 | 0 | 0 | 1 |
| 2 | 1 | 0 | 1 | 1 | 1 |
| 3 | 0 | 1 | 0 | 1 | 0 |
| 4 | 0 | 1 | 1 | 0 | 1 |
| 5 | 1 | 1 | 0 | 1 | 0 |

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

Representing graphs in computers
－Adjacency List
－Consider a graph $G=(V, E)$ ，where $|V|=n$ and $|E|=m$
－The Adjacency List of G is a collection of n lists：
－One for each vertex $u \in V$
－In the list for u ，vertex v exists iff edge $(u, v) \in E$
－Each edge appears twice if G is undirected．
－The space cost is $\Theta(n+m)$

Adjacency Matrix and Adjacency List

－Fast Query：Are u and v neighbors？
－Slow Query：Find me any neighbor of u ．
－Slow Query：Enumerate all neighbors of u ．

Adjacency List
－Fast Query：Find me any neighbor of u ．
－Fast Query：Enumerate all neighbors of u ．
－Slow Query：Are u and v neighbors？

Searching in a Graph（or，Graph Traversal）

－Goal：Start at source node s and find some node t ．
－Or：Visit all nodes reachable from s ．
－Two Basic Strategies：
－Breadth－First Search（BFS）
－Depth－First Search（DFS）
－Many applications，beside searching and traversal！
－Usually use adjacency list when discussing BFS／DFS．（At least in this course．．．）

877777177 Breadth－First Search

\qquad
\qquad

53

Abstract

7
\qquad
\qquad

Breadth－First Search（BFS）

－Basic Idea of BFS：
－Start at the source node s ；
－Visit other nodes（reachable from s）＂layer by layer＂．

－More precise description：
－Start at the source node s ；
－Visit nodes at distance 1 from s ；
－Visit nodes at distance 2 from s ；
Visit all distance d nodes， before visit any distance $d+1$ node．

BFS Implementation

－How to implement BFS？（Hint：recall traversal－by－layer in trees）BFSSkeleton（G，s）：
－Use a FIFO Queue！
－Nodes have 3 status：

$$
\text { for each } u \text { in } V
$$

$$
\text { u.dist }:=I N F, \text { u.discovered }:=\text { False }
$$

$$
\text { s.dist }:=0, \text { s.discovered }:=\text { True }
$$

Q.enque(s)
－Undiscovered（WHITE）：Not in queue yet．
－Discovered but not visited（ GRAY ）：In queue but not processed．
－Visited
BLACK ）：Ejected from queue and processed．

BFS Implementation

$\operatorname{BFS}(G, s)$ ：

for each u in V
u．c ：＝WHITE，u．d ：＝INF，u．p $:=$ NIL
s．c $:=$ GRAY ，s．d $:=0$ ，s．p $:=$ NIL
Q．enque（s）
while ！Q．empty（）
u ：＝Q．dequeue（）
u．c ：＝BLACK
for each edge (u, v) in E
if $v . c=$ WHITE

$$
\begin{aligned}
& v . c:=\text { GRAY } \\
& v . d:=u . d+1 \\
& v . p:=u \\
& \text { Q.enque(v) }
\end{aligned}
$$

Sample Execution

（a）

（b）

（c）

r	t	x
1	2	2

（d）

（e）

（f）

Q| v | u | y |
| :---: | :---: | :---: |
| 2 | 3 | 3 |

（g）

（h）

（i）

Performance of BFS

－Runtime of BFS？（Assuming G is connected．）
－＂While＂loop $\Theta(n)$ times．
－Each node in Q at most once．
－＂For＂loop $\Theta(m)$ times．
－Each edge visited at most once or twice．
－Runtime of BFS is $\Theta(n+m)$ ．

BFS（G，s）：

for each u in V

$$
\begin{aligned}
& \text { u.c }:=\text { WHITE, u.d }:=\text { INF, u.p }:=\text { NIL } \\
& \text { s.c }:=\text { GRAY, s.d }:=0, \text { s.p }:=\text { NIL } \\
& \text { Q.enque(s) } \\
& \text { while }!Q . e m p t y() \\
& u:=Q . d e q u e u e() \\
& \text { u.c }:=\text { BLACK } \\
& \text { for each edge }(u, v) \text { in } E \\
& \text { if v.c }=W H I T E \\
& \text { v.c }:=\text { GRAY } \\
& \text { v.d }:=u . d+1 \\
& \text { v.p }:=u \\
& \text { Q.enque(v) }
\end{aligned}
$$

Correctness and Properties of BFS

Theorem BFS visits a node iff it is reachable from s ．

Proof：

－［only if］If a node is not reachable from s ，then BFS does not visit it，since BFS only moves along edges．
－［if］If a node is reachable from s ，then BFS visits it．
－Claim：For all $k \geq 0$ ，all nodes within k hops of s are visited．
－［Basis］：Clearly s is visited．
－［Hypothesis］：All nodes within $k-1$ hops of s are visited．

Correctness and Properties of BFS

Theorem BFS visits a node iff it is reachable from s ．
－［Inductive Step］：Consider a node v that is k hops away from s ．Let u be v＇s neighbor on（one of）v＇s shortest path back to s

By induction hypothesis，u gets visited．

When BFS visits u ，node v is already GRAY or BLACK，or will be put in Q ．
Either way，v eventually gets visited．

Theorem BFS correctly computes u ．dist，for every node u that is reachable from s
－［Proof Idea］Use induction to show：
－For all $d \geq 0$ ，there is a moment at which：
－（a）every node u with $\operatorname{dist}(s, u) \leq d$ correctly computes u ．dist；
－（b）every other node v has $v . d i s t=\infty$ ；
－（c）Q contains exactly the nodes d hops away from s ．

Correctness and Properties of BFS

Theorem BFS correctly computes u ．dist，for every node u that is reachable from s

Corollary For any $u \neq s$ that is reachable from s ，one of the shortest path from s to u is a shortest path from s to $u . p$ followed by the edge（ $u . p, u$ ）
－$G_{p}=\left(V_{p}, E_{p}\right)$ is a breadth－first tree，which can print on a shortest path from any node v to the source node s ．Here：
－$V_{p}=\{u \in V: u . p \neq \mathrm{NIL}\} \cup\{s\}$,
－$E_{p}=\left\{(u \cdot p, u): u \in V_{p}-\{s\}\right\}$.

One last note on BFS

－What if the graph is not connected？

BFS（G）：

for each u in V

$$
\text { u.c }:=\text { WHITE, u.d }:=I N F, \text { u.p }:=N I L
$$

－Easy，do a BFS for each connected component！for each u in V

$$
\begin{aligned}
& \text { if u.c }=\text { WHITE } \\
& \begin{array}{l}
\text { u.c }:=\text { GRAY , u.d }:=0, \text { u.p }:=\text { NIL } \\
\text { Q.enque }(u) \\
\text { while }!\text { Q.empty(}) \\
v \\
\text { v.c }:=\text { Q.dequeue }() \\
\text { for each edge }(v, w) \text { in } E \\
\text { if } w . c=W H I T E \\
w . c
\end{array} \\
& \text { w.d GRAY } \\
& \text { w.p }:=w . d+1 \\
& \text { Q.enque }(w)
\end{aligned}
$$

Depth-First Search

Depth－First Search（DFS）

－Much like exploring a maze：
－Use a ball of string and a piece of chalk．
－Follow path（unwind string and mark at intersections），until stuck（reach dead－end or already－visited place）．
－Backtrack（rewind string），until find unexplored neighbor（intersection with unexplored direction）．

－Repeat above two steps．

Depth-First Search (DFS)

- How to do this for a graph, in computer?
- Chalk: boolean variables.
- String: a stack.

DFSIterSkeleton(G, s):

Stack Q
Q.push(s)
while !Q.empty()
$u:=Q . p o p()$
if !u.visited
for each edge (u, v) in E Q.push(v)

DFSSkeleton（G，s）：

s．visited $:=$ True
for each edge (s, v) in E
if ！v．visited
DFSSkelecton (G, v)

DFSIterSkeleton (G, s) ：

Stack Q

Q．push（s）
while ！Q．empty（）

$u:=Q . p o p()$
if ！u．visited
for each edge (u, v) in E $Q . p u s h(v)$

Depth－First Search（DFS）

－What if the graph is not（strongly）connected？
－Do DFS from multiple sources．

DFSAll（G）：

for each node u in V
v．visited $:=$ False
for each node u in V
if ！u．visited
$\operatorname{DFSSkelecton}(G, u)$
DFSSkeleton（G，s）：
s．visited $:=$ True
for each edge (s, v) in E
if ！v．visited
DFSSkelecton (G, v)

DFSAll（G）：

for each node u in V

$$
\text { v.visited }:=\text { False }
$$

for each node u in V
if ！u．visited
DFSIterSkelecton（G，u ）
DFSIterSkeleton（ G, s ）：
Stack Q
Q．push（s）
while ！Q．empty（）
$u:=Q . p o p()$
if ！u．visited
for each edge (u, v) in E

Depth－First Search（DFS）
 \section*{DFSAll（G）：}

for each node u in V
u．color ：＝WHITE
u．parent $:=$ NIL
for each node u in V
if u ．color $=$ WHITE $\operatorname{DFS}(G, u)$
－Finished［ BLACK］：DFSSkeleton（ G, u ）returned
－ $\operatorname{DFS}(G, u)$ builds a tree among nodes reachable from u ：

DFS（G，s）：

s．color ：＝GRAY
－Root of this tree is u ．
－For each non－root，its parent is the node that makes it turn GRAY．
for each edge (s, v) in E
if v. color $=$ WHITE v．parent $:=s$ $\operatorname{DFS}(G, v)$
－DFS on entire graph builds a forest．
s．color $:=B L A C K$

Destherirstern（

－DFS provides（at least）two chances to process each node：
－Pre－Visit：WHITE \rightarrow GRAY
－Post－Visit：GRAY \rightarrow BLACK

DFSAll（G）：

PreProcess（ G ）
for each node u in V

$$
\text { u.color }:=\text { WHITE }
$$

u．parent $:=$ NIL
for each node u in V
if ！u．visited DFS（G，u）

DFS（G，s）：

PreVisit（s）
s．color ：＝GRAY
for each edge（ s, v ）in E
if v. color $=$ WHITE v. parent $:=s$ $\operatorname{DFS}(G, v)$
s．color ：＝BLACK
PostVisit（s）
－Sample application：Track active intervals of nodes
－Clock ticks whenever some node＇s color changes．
－Discovery time：when the node turns to GRAY．
－Finish time：when the node turns to BLACK．

PreProcess（G）：

time $:=0$

PreVisit（s）：

$$
\text { time }:=\text { time }+1
$$

Note：here it indicates the discovery time

PostProcess（G）：

$$
\text { time }:=\text { time }+1
$$

$s . f:=$ time

DFS(G, s):

PreVisit(s)
s.color := GRAY
for each edge (s, v) in E
if $v . c o l o r=$ WHITE

$$
\begin{aligned}
& \qquad \begin{array}{l}
\text { v.parent }:=s \\
\\
\operatorname{DFS}(G, v)
\end{array} \\
& \text { s.color }:=B L A C K \\
& \text { PostVisit }(s)
\end{aligned}
$$

PreProcess(G):

time $:=0$
PreVisit(s):

$$
\text { time }:=\text { time }+1
$$

s.d $:=$ time

PostProcess(G):
time $:=$ time +1
s.f:= time

Runtime of DFS

- Time spent on each node: $O(1)$
- $\operatorname{DFS}(G, u)$ is called once for each node u.
- Time spent on each edge: $O(1)$
- Each edge is examined $O(1)$ times.

```
DFSAll(G):
PreProcess(G)
for each node }u\mathrm{ in }
    u.color:= WHITE
    u.parent := NIL
for each node }u\mathrm{ in }
    if !u.visited
        DFS(G,u)
```

```
DFS(G, s):
PreVisit(s)
s.color := GRAY
for each edge ( }s,v)\mathrm{ in }
    if v.color = WHITE
        v.parent :=s
        DFS(G,v)
s.color := BLACK
PostVisit(s)
```

PreProcess(G):
time $:=0$
PreVisit(s):
time $:=$ time +1
s.d := time

PostProcess(G):
time $:=$ time +1
s.f:= time

Classification of edges

－DFS process classify edges of input graph into four types．
－Tree Edges：Edges in the DFS forest．
－Back Edges：Edges (u, v) connecting u to an ancestor v in a DFS tree．
－Forward Edges：Non－tree edges (u, v) connecting u to a descendant v in a DFS tree．
－Cross Edges：Other edges．（Connecting nodes in same DFS tree with no ancestor－ descendant relation，or connecting nodes in different DFS trees．）

Properties of DFS: Parenthesis Theorem

Theorem: Active intervals of two nodes are either: (a) entirely disjoint; or (b) one is entirely contained within another.

- For any two nodes u and v, exactly one of following holds:
- (a) $[u . d, u . f]$ and $[v . d, v . f]$ are disjoint, and u, v have no ancestor-descendant relation in the DFS forest;
- (b) $[u . d, u . f] \subset[v . d, v . f]$, and u is a descendant of v in a DFS tree;
- (c) $[v . d, v . f] \subset[u . d, u . f]$, and u is an ancestor of v in a DFS tree.

Properties of DFS: Parenthesis Theorem

- Proof: Consider two nodes u and v. W.I.o.g., assume $u . d<v . d$.
- If $v . d<u . f$, then v is discovered (WHITE \rightarrow GRAY) while u is being processed (GRAY); and DFS will finish v first, before returning to u.
- In this case, $[v . d, v . f] \subset[u . d, u . f]$, and u is an ancestor of v.
- If $v . d>u . f$, then obviously $u . d<u . f<v . d<v . f$; and DFS has finished exploring u (BLACK), before v is discovered (WHITE \rightarrow GRAY).
- In this case, [u.d, u.f] and [v.d,v.f] are disjoint, and u, v have no ancestordescendant relation.

Properties of DFS: White-path Theorem

Theorem In the DFS forest, v is a descendant of u iff when u is discovered, there is a path in the graph from u to v containing only WHITE nodes.

- Proof of $[\Longrightarrow]$
- Claim: If v is a proper descendant of u, then v is WHITE when u is discovered.
- Since if v is a is a proper descendant of u, then $u . d<v . d$.
- For any node along the path from u to v in the DFS forest, above claim holds.
- Therefore, $[\Longrightarrow$] direction of the theorem holds.

[^0]
Properties of DFS: White-path Theorem

- Proof of $[\Longleftarrow$]:
- W.I.o.g., assume v is the first node along the path that does not become a descendant of u.
- So we have $\left[v_{k} \cdot d, v_{k} \cdot f\right] \subset[u . d, u . f]$.
- But v is discovered after u is discovered, and must before v_{k} is finished.
- So we have u.d $<v . d<v_{k} . f \leq u . f$.
- Then it must be $[v . d, v . f] \subset[u . d, u . f]$, implying v is a descendant of u.

Properties of DFS：Classification of edges

－Determine (u, v) type by color of v during DFS execution．
－Tree Edges：Edges in the DFS forest．
Node v is WHITE
－Back Edges：Edges (u, v) connecting u to an ancestor v in a DFS tree．
－Forward Edges：Non－tree edges (u, v) connecting u to a descendant v in
Node v is BLACK a DFS tree．
－Cross Edges：Other edges．（Connecting nodes in same DFS tree with no
Node v is BLACK ancestor－descendant relation，or connecting nodes in different DFS trees．）

Properties of DFS：Types of edges in undirected graphs

－Will all four types of edges appear in DFS of undirected graphs？
Theorem In DFS of an undirected graph G ，every edge of G is either a tree edge or a back edge．
－Proof：
－Consider an arbitrary edge（u，v）．W．l．o．g．，assume u．d $<$ v．d ．
－Edge (u, v) must be explored while u is GRAY．

```
WHY?
```

－Consider the first time the edge (u, v) is explored．

Properties of DFS: Types of edges in undirected graphs

- Proof (continued):
- If the direction is $u \rightarrow v$. Then, v must be WHITE by then, for otherwise the edge would have been explored from direction $v \rightarrow u$ earlier.
- In such case, the edge (u, v) becomes a tree edge.
- If the direction is $v \rightarrow u$. Then, the edge is "GRAY \rightarrow GRAY".
- In such case, the edge (u, v) becomes a back edge.

DFS，BFS，and others．．．

DFSIterSkeleton（ G, s ）：

Stack Q
Q．push（s）
while ！Q．empty（）
$u:=Q . p o p()$
if ！u．visited
u．visited ：＝True
for each edge (u, v) in E Q．push（v）

```
BFSSkeletonAlt(G, s):
FIFOQueue Q
Q.enque(s)
while !Q.empty()
    u := Q.dequеиe()
    if !u.visited
        u.visited := True
        for each edge (u,v) in E
    Q.enque(v)
```

GraphExploreSkeleton（ G, s ）：
GenericQueue Q
Q．add（s）
while ！Q．empty（）
$u:=$ Q．remove（）
if ！u．visited
u．visited ：＝True
for each edge (u, v) in E
Q．add（v）

Further reading

－［CLRS］Ch． 22 （22．1－22．3）

[^0]: WHITE \rightarrow GRAY

