
智能软件与⼯程学院

School of Intelligent Software and Engineering

最⼩⽣成树

Minimum Spanning Trees

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne.Thanks for their supports!

钮鑫涛

Nanjing University

2023 Fall

智能软件与⼯程学院

School of Intelligent Software and Engineering

Minimum Spanning Trees (MST)
• Consider a connected, undirected, weighted graph .

• That is, we have a graph together with a weight function that assigns a real
weight to each edge .

• A spanning tree is a tree containing all nodes in and a subset of all the edges .

• A minimum spanning tree (MST) is a spanning tree whose total weight is

minimized.

G

G = (V, E) w : E → ℝ
w(u, v) (u, v) ∈ E

V T E

w(T) = ∑
(u,v)∈T

w(u, v)

A

B C

D

E F

D

8 5
10

2 3

3012 1618

14
4 26

A

B C

D

E F

D

8 5
10

2 3

3012 1618

14
4 26

A

B C

D

E F

D

8 5
10

2 3

3012 1618

14
4 26

智能软件与⼯程学院

School of Intelligent Software and Engineering

Application of MST
• Network Design:

‣ E.g., build a minimum cost network connecting all nodes.

- Transportation networks.

- Water supply networks.

- Telecommunication networks.

- Computer networks.

• Many other applications…

‣ E.g., important subroutine in more advanced algorithms.

- One such application is used in a classical approximation algorithm for solving TSP.

智能软件与⼯程学院

School of Intelligent Software and Engineering

Computing MST
• Consider the following generic method:

‣ Starting with all nodes and an empty set of edges .

‣ Find some edge to add to , maintaining the loop invariant that “ is a subset of
some MST”. (At anytime, is the edge set of a spanning forest.)

‣ Repeat above step until we have a spanning tree. (The resulting spanning tree
must be a MST.)

A

A A
A

GenericMST(G,w):
A :=
while A is not a spanning tree

 (u,v) := find_a_edge_maintaining_the_loop_invariant()
 A := A {(u, v)}

return A

∅

∪

Easy to determine, e.g., |A | = n − 1

These edges are called “safe edges”, how to identify them?

智能软件与⼯程学院

School of Intelligent Software and Engineering

Identifying Safe Edges
• A cut of is a partition of into

two parts.

• An edge crosses the cut if one of its
endpoint is in and the other endpoint is in .

• A cut respects an edge set if no edge in crosses
the cut.

• An edge is a light edge crossing a cut if the edge has
minimum weight among all edges crossing the cut.

(S, V − S) G = (V, E) V

(S, V − S)
S V − S

A A

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

S

V − S

Edge crosses

Light Edge

Cut () respectsS, V − S

智能软件与⼯程学院

School of Intelligent Software and Engineering

Identifying Safe Edges

• Proof:

‣ Let be an MST containing , assume does not include .

‣ Connecting forms a cycle in , and in that cycle some edge
other than crosses the cut. Let be that edge.

‣ must be a spanning tree.

‣ Since is a light edge crossing the cut, must be an MST,
and is safe for in .

T A T (u, v)

(u, v) T
(u, v) (x, y) ∈ T

T′￼ = T − (x, y) + (u, v)

(u, v) T′￼

(u, v) A T′￼

Theorem [Cut Property] Assume is included in the edge set of some MST, let
be any cut respecting . If is a light edge crossing the cut, then is safe for .

A (S, V − S)
A (u, v) (u, v) A

Su x

v yV − S

A

T

智能软件与⼯程学院

School of Intelligent Software and Engineering

Computing MST
Theorem [Cut Property] Assume is included in the edge set of some MST, let
be any cut respecting . If is a light edge crossing the cut, then is safe for .

A (S, V − S)
A (u, v) (u, v) A

Corollary Assume is included in some MST, let . Then for any connected
component in , its minimum-weight-outgoing-edge (MWOE) in is safe for .

A GA = (V, A)
GA G A

GenericMST(G,w):
A :=
while A is not a spanning tree

 (u,v) := find_a_safe_edge()
 A := A {(u, v)}

return A

∅

∪

In , an edge in a CC is “outgoing” if it connects to another CCGA

智能软件与⼯程学院

School of Intelligent Software and Engineering

Kruskal’s Algorithm
• Cut property: Assume is included in some MST, let

. Then for any connected component in ,
its MWOE in is safe for .

• Strategy for finding safe edge in Kruskal’s algorithm: Find
minimum weight edge connecting two CC in .

A
GA = (V, A) GA

G A

GA

KruskalMST(G,w):
A :=
Sort edges into weight increasing order
for each edge (u,v) taken in weight increasing order
if adding edge (u,v) does not form cycle in A

 A := A {(u, v)}
return A

∅

∪

• Put another way:

‣ Start with CC (each node itself is a CC)
and .

‣ Find minimum weight edge connecting two
CC. (# of CC reduced by 1.)

‣ Repeat until one CC remains.

n
A = ∅

Joseph Kruskal

智能软件与⼯程学院

School of Intelligent Software and Engineering

Kruskal’s Algorithm
• Eden weights in increasing order: 2 3 4 5 8 10 12 14 16 18 26 30

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

智能软件与⼯程学院

School of Intelligent Software and Engineering

Kruskal’s Algorithm

• How to determine an edge forms a cycle?

‣ Put another way, how to determine if the
edge is connecting two CC?

KruskalMST(G,w):
A :=
Sort edges into weight increasing order
for each edge (u,v) taken in weight increasing order
if adding edge (u,v) does not form cycle in A

 A := A {(u, v)}
return A

∅

∪

Use disjoint-set data structure！

Each set is a CC, and in same CC if:

Find(u) = Find(v).
u v

智能软件与⼯程学院

School of Intelligent Software and Engineering

Kruskal’s Algorithm

• Runtime of Kruskal’s algorithm?

‣ when using disjoint-set data structureO(m log n)

KruskalMST(G,w):
A :=
Sort edges into weight increasing order
for each node u in V

MakeSet(u)
for each edge (u,v) taken in weight increasing order
if Find(u) != Find(v)

 A := A {(u, v)}
Union(u, v)

return A

∅

∪

 O(m log m) = O(m log n)

 O(n)

 O(m log* n)

m ≤ n2

智能软件与⼯程学院

School of Intelligent Software and Engineering

Prim’s Algorithm
• Strategy for finding safe edge in Prim’s algorithm: Keep finding MWOE in one fixed CC in .GA

PrimMST(G,w):
A :=

 := {x}
while is not a spanning tree

 Find MWOE (u, v) of
 A := A {(u, v)}
 := {v}

return A

∅
Cx

Cx
Cx

∪
Cx Cx ∪

• Put another way:

‣ Start with CC (each node itself is a CC) and . Pick a node x.

‣ Find MWOE of the component containing x (# of CC reduced by 1.)

‣ Repeat until one CC remains.

n A = ∅

Vojtěch Jarník Robert C. Prim Edsger W. Dijkstra

智能软件与⼯程学院

School of Intelligent Software and Engineering

Prim’s Algorithm
A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

智能软件与⼯程学院

School of Intelligent Software and Engineering

Prim’s Algorithm

• How to find MWOE efficiently?

• Put another way: how to find the next
node that is closest to ?

‣ Use a priority queue to maintain each
remaining node’s distance to .

Cx

Cx

PrimMST(G,w):
A :=

 := {x}
while is not a spanning tree

 Find MWOE (u, v) of
 A := A {(u, v)}
 := {v}

return A

∅
Cx

Cx
Cx

∪
Cx Cx ∪

智能软件与⼯程学院

School of Intelligent Software and Engineering

Prim’s Algorithm
PrimMST(G,w):
x := Pick an arbitrary node in G
for each node u in V

 u.dist := INF, u.parent := NIL, u.in := False
x.dist := 0
PriorityQueue Q := Build a priority queue based on “dist” values
while Q is not empty

 u := Q.ExtractMin()
 u.in := True
 for each edge (u,v) in E

 if v.in = False and w(u,v) < v.dist
 v.parent := u, v.dist := w(u,v)
 Q.Update(v, w(u,v))

O(n)

O(n)

O(n lg n)

O(m lg n)

 using binary heap to implement priority queueO(m lg n)

Could be faster using better priority queue implementation （By using fibonacci heaps instead)

智能软件与⼯程学院

School of Intelligent Software and Engineering

DFS, BFS, Prim, and others…
DFSIterSkeleton(G, s):
Stack Q
Q.push(s)
while !Q.empty()

u := Q.pop()
if !u.visited

u.visited := True
for each edge (u, v) in E

Q.push(v)

BFSSkeletonAlt(G, s):
FIFOQueue Q
Q.enque(s)
while !Q.empty()

u := Q.dequeue()
if !u.visited

u.visited := True
for each edge (u, v) in E

Q.enque(v)

GraphExploreSkeleton(G, s):
GenericQueue Q
Q.add(s)
while !Q.empty()

u := Q.remove()
if !u.visited

u.visited := True
for each edge (u, v) in E

Q.add(v)

PrimMSTSkeleton(G, x):
PriorityQueue Q
Q.add(x)
while !Q.empty()

u := Q.remove()
if !u.visited

u.visited := True
for each edge (u, v) in E

if !v.visited and …
Q.update(v, …)

智能软件与⼯程学院

School of Intelligent Software and Engineering

Borůvka’s Algorithm
• Borůvka’s algorithm for computing MST (actually the earliest MST

algorithm):

‣ Starting with all nodes and an empty set of edges .

‣ Find MWOE for every remaining CC in , add all of them to .

‣ Repeat above step until we have a spanning tree.

A

GA A

Otakar Borůvka
A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

智能软件与⼯程学院

School of Intelligent Software and Engineering

Borůvka’s Algorithm
• Is it okay to add multiple edges simultaneously?

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
16

14

4 26

18

A

B C

D

E F

D

8 5
10

2 3

3012
16

14

4 26

18

A

B C

D

E F

D

8 5
10

2 3

3012
16

14

4 26

18

智能软件与⼯程学院

School of Intelligent Software and Engineering

Borůvka’s Algorithm
• Is it okay to add multiple edges simultaneously?

• But it may result in circles?

‣ Assuming all edge weights are distinct, if CC propose MWOE to
connect to , and proposes MWOE to connect to , then .

C1 e1
C2 C2 e2 C1 e1 = e2

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

A

B C

D

E F

D

8 5
10

2 3

3012
1618

14

4 26

智能软件与⼯程学院

School of Intelligent Software and Engineering

Borůvka’s Algorithm
KruskalMST(G,w):
Gʹ := (V,)
do
 ccCount := CountCCAndLabel(Gʹ) //Do DFS/BFS, count #of CC, give ccNum to nodes.
 for i := 1 to ccCount

 safeEdge[i] := NIL
 for each edge (u,v) in E(G)

 if u.ccNum != v.ccNum
 if safeEdge[u.ccNum] = NIL or w(u,v) < w(safeEdge[u.ccNum])

 safeEdge[u.ccNum] := (u,v)
 if safeEdge[v.ccNum] = NIL or w(u,v) < w(safeEdge[v.ccNum])

 safeEdge[v.ccNum] := (u,v)
 for i := 1 to ccCount

 Add safeEdge[i] to E(Gʹ)
while ccCount > 1
return E(Gʹ)

∅

O(n)

O(n)

O(m + n) = O(m)

O(n)

 interactionsO(lg n)

Total runtime is O(m lg n)
belong to the ccNumth CC

WHY?

智能软件与⼯程学院

School of Intelligent Software and Engineering

Borůvka’s Algorithm

• Why Borůvka’s algorithm is interesting?

‣ The number of components in can drop by significantly more than a
factor of 2 in a single iteration, reducing the number of iterations below
the worst-case .

‣ Borůvka’s algorithm allows for parallelism naturally; while the other two
are intrinsically sequential.

‣ Generalizations of Borůvka’s algorithm lead to faster algorithms.

G′￼

O(lg n)

智能软件与⼯程学院

School of Intelligent Software and Engineering

Summary
• The “Cut Property” leads to many MST algorithms: Assume is included in some

MST, let be any cut respecting . If is a light edge crossing the
cut, then is safe for .

• Classical algorithms for MST, all with runtime :

‣ Kruskal (UnionFind): keep connecting two CC with min-weight edge.

‣ Prim (PriorityQueue): grow single CC by adding MWOE.

‣ Borůvka: add MWOE for all CC in parallel in each iteration.

• Can we do MST in time?

‣ Randomized algorithm with expected runtime exists.

A
(S, V − S) A (u, v)
(u, v) A

O(m ⋅ log n)

O(m)

O(m)

智能软件与⼯程学院

School of Intelligent Software and Engineering

Further reading
• [CLRS] Ch.23

• [Erickson] Ch.7

