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Minimum Spanning Trees (MST)
• Consider a connected, undirected, weighted graph .


• That is, we have a graph  together with a weight function  that assigns a real 
weight  to each edge .


• A spanning tree is a tree containing all nodes in  and a subset  of all the edges .


• A minimum spanning tree (MST) is a spanning tree whose total weight  is 

minimized.

G

G = (V, E) w : E → ℝ
w(u, v) (u, v) ∈ E

V T E

w(T) = ∑
(u,v)∈T
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Application of MST
• Network Design:


‣ E.g., build a minimum cost network connecting all nodes.


- Transportation networks.


- Water supply networks.


- Telecommunication networks.


- Computer networks.


• Many other applications…


‣ E.g., important subroutine in more advanced algorithms. 


- One such application is used in a classical approximation algorithm for solving TSP.
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Computing MST
• Consider the following generic method:


‣ Starting with all nodes and an empty set of edges .


‣ Find some edge to add to , maintaining the loop invariant that “  is a subset of 
some MST”. (At anytime,  is the edge set of a spanning forest.)


‣ Repeat above step until we have a spanning tree. (The resulting spanning tree 
must be a MST.)

A

A A
A

GenericMST(G,w):
A := 
while  A is not a spanning tree

  (u,v) := find_a_edge_maintaining_the_loop_invariant()
  A := A  {(u, v)}

return A

∅

∪

Easy to determine, e.g., |A | = n − 1

These edges are called “safe edges”, how to identify them?
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Identifying Safe Edges
• A cut  of  is a partition of  into 

two parts.


• An edge crosses the cut  if one of its 
endpoint is in  and the other endpoint is in .


• A cut respects an edge set  if no edge in  crosses 
the cut.


• An edge is a light edge crossing a cut if the edge has 
minimum weight among all edges crossing the cut.

(S, V − S) G = (V, E) V
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Identifying Safe Edges

• Proof:


‣ Let  be an MST containing , assume  does not include .


‣ Connecting  forms a cycle in , and in that cycle some edge 
other than  crosses the cut. Let  be that edge.


‣  must be a spanning tree.


‣ Since  is a light edge crossing the cut,  must be an MST, 
and is safe for  in .

T A T (u, v)

(u, v) T
(u, v) (x, y) ∈ T

T′￼ = T − (x, y) + (u, v)

(u, v) T′￼

(u, v) A T′￼

Theorem [Cut Property]  Assume  is included in the edge set of some MST, let  
be any cut respecting . If  is a light edge crossing the cut, then  is safe for .

A (S, V − S)
A (u, v) (u, v) A

Su x

v yV − S

A

T



智能软件与⼯程学院

School of Intelligent Software and Engineering 

Computing MST
Theorem [Cut Property]  Assume  is included in the edge set of some MST, let  
be any cut respecting . If  is a light edge crossing the cut, then  is safe for .

A (S, V − S)
A (u, v) (u, v) A

Corollary Assume  is included in some MST, let . Then for any connected 
component in , its minimum-weight-outgoing-edge (MWOE) in  is safe for .

A GA = (V, A)
GA G A

GenericMST(G,w):
A := 
while  A is not a spanning tree

  (u,v) := find_a_safe_edge()
  A := A  {(u, v)}

return A

∅

∪

In , an edge in a CC is “outgoing” if it connects to another CCGA
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Kruskal’s Algorithm
• Cut property: Assume  is included in some MST, let 

. Then for any connected component in , 
its MWOE in  is safe for .


• Strategy for finding safe edge in Kruskal’s algorithm: Find 
minimum weight edge connecting two CC in .

A
GA = (V, A) GA

G A

GA

KruskalMST(G,w):
A := 
Sort edges into weight increasing order
for each edge (u,v) taken in weight increasing order
if  adding edge (u,v) does not form cycle in A

  A := A  {(u, v)}
return A

∅

∪

• Put another way:


‣ Start with  CC (each node itself is a CC) 
and .


‣ Find minimum weight edge connecting two 
CC. (# of CC reduced by 1.)


‣ Repeat until one CC remains.

n
A = ∅

Joseph Kruskal
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Kruskal’s Algorithm
• Eden weights in increasing order:   2 3 4 5 8 10 12 14 16 18 26 30
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Kruskal’s Algorithm

• How to determine an edge forms a cycle? 


‣ Put another way, how to determine if the 
edge is connecting two CC?

KruskalMST(G,w):
A := 
Sort edges into weight increasing order
for each edge (u,v) taken in weight increasing order
if  adding edge (u,v) does not form cycle in A

  A := A  {(u, v)}
return A

∅

∪

Use disjoint-set data structure！

Each set is a CC,  and  in same CC if:


Find(u) = Find(v).
u v
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Kruskal’s Algorithm

• Runtime of Kruskal’s algorithm?


‣  when using disjoint-set data structureO(m log n)

KruskalMST(G,w):
A := 
Sort edges into weight increasing order
for  each node u in V

MakeSet(u)
for each edge (u,v) taken in weight increasing order
if  Find(u) != Find(v)

  A := A  {(u, v)}
Union(u, v)

return A

∅

∪

 O(m log m) = O(m log n)

 O(n)

 O(m log* n)

m ≤ n2
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Prim’s Algorithm
• Strategy for finding safe edge in Prim’s algorithm: Keep finding MWOE in one fixed CC in .GA

PrimMST(G,w):
A := 

 := {x}
while   is not a spanning tree

  Find MWOE (u, v) of 
  A := A  {(u, v)}
   :=   {v}

return A

∅
Cx

Cx
Cx

∪
Cx Cx ∪

• Put another way:


‣ Start with  CC (each node itself is a CC) and . Pick a node x.


‣ Find MWOE of the component containing x (# of CC reduced by 1.)


‣ Repeat until one CC remains.

n A = ∅

Vojtěch Jarník Robert C. Prim Edsger W. Dijkstra
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Prim’s Algorithm
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Prim’s Algorithm

• How to find MWOE efficiently?


• Put another way: how to find the next 
node that is closest to ?


‣ Use a priority queue to maintain each 
remaining node’s distance to .

Cx

Cx

PrimMST(G,w):
A := 

 := {x}
while   is not a spanning tree

  Find MWOE (u, v) of 
  A := A  {(u, v)}
   :=   {v}

return A

∅
Cx

Cx
Cx

∪
Cx Cx ∪
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Prim’s Algorithm
PrimMST(G,w):
x := Pick an arbitrary node in G
for each node u in V

  u.dist := INF,  u.parent := NIL,  u.in := False
x.dist := 0
PriorityQueue Q := Build a priority queue based on “dist” values
while  Q is not empty

  u := Q.ExtractMin()
  u.in := True
  for  each edge (u,v) in E

    if  v.in = False and w(u,v) < v.dist
      v.parent := u, v.dist := w(u,v)
      Q.Update(v, w(u,v))

O(n)

O(n)

O(n lg n)

O(m lg n)

 using binary heap to implement priority queueO(m lg n)

Could be faster using better priority queue implementation （By using fibonacci heaps instead)
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DFS, BFS, Prim, and others…
DFSIterSkeleton(G, s):
Stack Q
Q.push(s)
while !Q.empty()

u := Q.pop()
if  !u.visited

u.visited := True
for each edge (u, v) in E

Q.push(v)

BFSSkeletonAlt(G, s):
FIFOQueue Q
Q.enque(s)
while !Q.empty()

u := Q.dequeue()
if  !u.visited

u.visited := True
for each edge (u, v) in E

Q.enque(v)

GraphExploreSkeleton(G, s):
GenericQueue Q
Q.add(s)
while !Q.empty()

u := Q.remove()
if  !u.visited

u.visited := True
for each edge (u, v) in E

Q.add(v)

PrimMSTSkeleton(G, x):
PriorityQueue Q
Q.add(x)
while !Q.empty()

u := Q.remove()
if  !u.visited

u.visited := True
for each edge (u, v) in E

if !v.visited and …
Q.update(v, …)
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Borůvka’s Algorithm
• Borůvka’s algorithm for computing MST (actually the earliest MST 

algorithm):

‣ Starting with all nodes and an empty set of edges .


‣ Find MWOE for every remaining CC in , add all of them to .


‣ Repeat above step until we have a spanning tree.

A

GA A

Otakar Borůvka
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Borůvka’s Algorithm
• Is it okay to add multiple edges simultaneously?
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Borůvka’s Algorithm
• Is it okay to add multiple edges simultaneously?


• But it may result in circles?


‣ Assuming all edge weights are distinct, if CC  propose MWOE  to 
connect to , and  proposes MWOE  to connect to , then .

C1 e1
C2 C2 e2 C1 e1 = e2
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Borůvka’s Algorithm
KruskalMST(G,w):
Gʹ := (V, )
do 
  ccCount := CountCCAndLabel(Gʹ)                 //Do DFS/BFS, count #of CC, give ccNum to nodes.
  for i := 1 to ccCount

    safeEdge[i] := NIL
  for  each edge (u,v) in E(G)

    if  u.ccNum != v.ccNum
      if  safeEdge[u.ccNum] = NIL or w(u,v) < w(safeEdge[u.ccNum])

        safeEdge[u.ccNum] := (u,v)
      if  safeEdge[v.ccNum] = NIL or w(u,v) < w(safeEdge[v.ccNum])

        safeEdge[v.ccNum] := (u,v)
  for i := 1 to ccCount

    Add safeEdge[i] to E(Gʹ)
while  ccCount > 1
return E(Gʹ)

∅

O(n)

O(n)

O(m + n) = O(m)

O(n)

 interactionsO(lg n)

Total runtime is O(m lg n)
belong to the ccNumth  CC

WHY?
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Borůvka’s Algorithm

• Why Borůvka’s algorithm is interesting?


‣ The number of components in  can drop by significantly more than a 
factor of 2 in a single iteration, reducing the number of iterations below 
the worst-case .


‣ Borůvka’s algorithm allows for parallelism naturally; while the other two 
are intrinsically sequential.


‣ Generalizations of Borůvka’s algorithm lead to faster algorithms.

G′￼

O(lg n)
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Summary
• The “Cut Property” leads to many MST algorithms: Assume  is included in some 

MST, let  be any cut respecting . If  is a light edge crossing the 
cut, then  is safe for .


• Classical algorithms for MST, all with runtime :


‣ Kruskal (UnionFind): keep connecting two CC with min-weight edge. 


‣ Prim (PriorityQueue): grow single CC by adding MWOE.


‣ Borůvka: add MWOE for all CC in parallel in each iteration.


• Can we do MST in  time?


‣ Randomized algorithm with expected  runtime exists.

A
(S, V − S) A (u, v)
(u, v) A

O(m ⋅ log n)

O(m)

O(m)
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Further reading
• [CLRS] Ch.23


• [Erickson] Ch.7


