贪心策略 Greedy Strategy

钮鋥涛
Nanjing University
2023 Fall

The slides are mainly adapted fiom the original ones shared by Chaodong Zheng and Kevin Wayne．Thanks for their supports！

The Greedy Strategy

- For many games, you should think ahead, a strategy which focuses on immediate advantage could easily lead to defeat.
- Such as playing chess.
- But for many other games, you can do quite well by simply making whichever move seems best at the moment, without worrying too much about future consequences.
- Such as building an MST.

The Greedy Strategy

- The Greedy Algorithmic Strategy: given a problem, build up a solution piece by piece, always choosing the next piece that offers the most obvious and immediate benefit.
- Sometimes it gives optimal solution.
- Sometimes it gives near-optimal solution.
- Or, it simply fails...

An Activity－Selection Problem

－Assume we have one hall and n activities $S=\left\{a_{1}, \cdots, a_{n}\right\}$ ．
－Each activity has a start time s_{i} and a finish time f_{i} ．
－Two activities cannot happen simultaneously in the hall．

An Activity－Selection Problem

－Let＇s start with＂divide－and－conquer＂
－Define S_{i} to be the set of activities start after a_{i} finishes；
－Define F_{i} to be the set of activities finish before a_{i} starts．
－$O P T(S)=\max \left\{O P T\left(F_{i}\right)+1+O P T\left(S_{i}\right)\right\}$

$$
1 \leq i \leq n
$$

In any solution，some activity is the first to finish．

$$
O P T(S)=\max _{1 \leq i \leq n}\left\{1+O P T\left(S_{i}\right)\right\}
$$

Observation：To make OPT（S）as large as possible，the activity that finishes first should finish as early as possible！

An Activity-Selection Problem

- A greedy strategy to solve this problem:

ActivitySelection(S):

Sort S into increasing order of finish time
SOL := $\left\{a_{1}\right\}, a^{\prime}=a_{1}$
for $i:=2$ to n
If a_{i} start_time $>a^{\prime}$.finish_time
$S O L:=S O L \cup\left\{a_{i}\right\}$
$a^{\prime}:=a_{i}$
return $S O L$

Correctness of the greedy strategy for this problem

－The Greedy Algorithm for the Activity－Selection Problem：
－Add earliest finish activity a^{\prime} to solution，remove ones overlapping with a^{\prime} ．
－Repeat until all activities are processed．
－How to formally prove this algorithm is correct？
－The firstly selected activity is in some optimal solution．
－The following selection is correct to this optimal solution．

Correctness of the greedy strategy for this problem

Lemma 1 let a^{\prime} be the earliest finishing activity in S, then a^{\prime} is in some optimal solution of the problem.

- Proof:
- Let $\operatorname{OPT}(S)$ be an optimal solution to the problem, let a be the earliest finishing activity in $O P T(S)$.
- Assume $a^{\prime} \notin O P T(S)$, otherwise we are done.
- Then $\operatorname{SOL}(S)=O P T(S)+a^{\prime}-a$ is also a feasible solution, and it has same size as $O P T(S)$.
- So $\operatorname{SOL}(S)$ is also an optimal solution.

Correctness of the greedy strategy for this problem

Lemma 2 let a^{\prime} be the earliest finishing activity in S, let S^{\prime} be the activities starting after a^{\prime}, then $O P T\left(S^{\prime}\right) \cup\left\{a^{\prime}\right\}$ is an optimal solution of the problem.

- Proof:
- Let $O P T(S)$ be an optimal solution to the original problem, and $a^{\prime} \in O P T(S)$. (Lemma 1 ensures such solution exists.)
- Thus, $O P T(S)=S O L\left(S^{\prime}\right) \cup\left\{a^{\prime}\right\}$.
- If $O P T\left(S^{\prime}\right) \cup\left\{a^{\prime}\right\}$ is not an optimal solution to the original problem, then it must be the case that $\left|S O L\left(S^{\prime}\right)\right|>\left|O P T\left(S^{\prime}\right)\right|$.
- But this contradicts that $O P T\left(S^{\prime}\right)$ is an optimal solution for problem S^{\prime}.

Correctness of the greedy strategy for this problem

Theorem The greedy algorithm for the activity-selection problem is correct.

- Proof:
- By induction on size of S.
- When $|S|=1$, the algorithm clearly is correct.
- When $|S|=n$. Due to Lemma 2, $O P T(S)=O P T\left(S^{\prime}\right) \cup\left\{a^{\prime}\right\}$
- By induction hypothesis, the algorithm correctly finds $O P T\left(S^{\prime}\right)$. So we are done.

Elements of
 the Greedy Strategy

Elements of the Greedy Strategy

－If an（optimization）problem has following two properties，then the greedy strategy usually works for it：
－Optimal substructure．
－Greedy property．

Optimal Substructure

－A problem exhibits optimal substructure if an optimal solution to the problem contains within it optimal solution（s）to subproblem（s）：
－Size n problem $P(n)$ ，and optimal solution of $P(n)$ is $O P T_{P(n)}$ ．
－Solving $P(n)$ needs to solve size $n^{\prime}<n$ subproblem $P\left(n^{\prime}\right)$ ．
－Optimal solution of $P\left(n^{\prime}\right): O P T_{P\left(n^{\prime}\right)}$
－$O P T_{P(n)}$ contains a solution of $P\left(n^{\prime}\right): S O L_{P\left(n^{\prime}\right)}$
－Optimal Substructure Property：$S O L_{P\left(n^{\prime}\right)}=O P T_{P\left(n^{\prime}\right)}$
－Or these two solutions provide same＂utility＂under certain metric．

Optimal Substructure

－Example：
－Lemma 2 in activity selection：let a^{\prime} be the earliest finishing activity in S ，let S^{\prime} be the activities starting after a^{\prime} ，then $O P T\left(S^{\prime}\right) \cup\left\{a^{\prime}\right\}$ is some $O P T(S)$ ．
－There are problems that do NOT exhibit optimal substructure property！
－E．g．，find the longest path between two vertices without repeating an edge．

Greedy-Choice Property

- At each step when building a solution, make the choice that looks best for the current problem, without considering results from subproblems. That is, make local greedy choice at each step.
- To solve $P(n)$, currently have k choices a_{1} to a_{k}. If we choose a_{i}, the problem is reduced to a smaller size n_{i} subproblem $P\left(n_{i}\right)$.
- If the problem only admits optimal structure:
- Find i that maximize, $\operatorname{Utility}\left(a_{i}+O P T_{P\left(n_{i}\right)}\right)$.
- We have to compute $O P T_{P\left(n_{i}\right)}$ for all i first.

Greerymancerary

Identifying a greedy-choice property is the challenging part!

- With greedy choice:
- We have a way to pick correct i, without knowing any $O P T_{P\left(n_{i}\right)}$.
- Example:
- Lemma 1 in activity selection: let a^{\prime} be the earliest finishing activity in S, then a^{\prime} is in some optimal solution of the problem.

Fractional Knapsack Problem

－A thief robbing a warehouse finds n items $A=\left\{a_{1}, \ldots, a_{n}\right\}$ ．
－Item a_{i} is worth v_{i} dollars and weighs w_{i} pounds．
－The thief can carry at most W pounds in his knapsack．
－The thief can carry fraction of items．
－What should the thief take to maximize his profit？

Fractional Knapsack Problem

－A greedy strategy：
－keep taking the most cost efficient item（i．e．， $\max \left\{\frac{v_{i}}{w_{i}}\right\}$ ）until the knapsack is full．
－The greedy solution is optimal！
－Greedy－choice
－Optimal substructure

Correctness of the greedy algorithm

- Lemma 1 [greedy-choice]: let a_{m} be a most cost efficient item in A, then in some optimal solution, at least $w_{m^{\prime}}=\min \left\{w_{m}, W\right\}$ pounds of a_{m} are taken.
- Proof:
- Consider an optimal solution, assume $w^{\prime}<w_{m^{\prime}}$ pounds of a_{m} are taken.
- Now, substitute $w_{m^{\prime}}-w^{\prime}$ pounds of other items with a_{m}.
- Since a_{m} is most cost-efficient, the new solution cannot be worse.

Correctness of the greedy algorithm

- Lemma 2 [optimal substructure]: let a_{m} be a most cost efficient item in A, then " $O P T_{W-\min \left\{w_{m}, W\right\}}\left(A-a_{m}\right)$ with $\min \left\{w_{m}, W\right\}$ pounds of a_{m} " is an optimal solution of the problem.
- Proof:
- Consider some $O P T_{W(A)}$ containing $\min \left\{w_{m}, W\right\}$ pounds of a_{m}.
- If optimal substructure does not hold, then $O P T_{W(A)}$ gives

$$
S O L_{W-\min \left\{w_{m}, W\right\}}\left(A-a_{m}\right)>O P T_{W-\min \left\{w_{m}, W\right\}}\left(A-a_{m}\right) .
$$

- But this contradicts the optimality of $O P T_{W-\min \left\{w_{m}, W\right\}}\left(A-a_{m}\right)$.

0-1 Knapsack Problem

- A thief robbing a warehouse finds n items $A=\left\{a_{1}, \ldots, a_{n}\right\}$.
- Item a_{i} is worth v_{i} dollars and weighs w_{i} pounds.
- The thief can carry at most W pounds in his knapsack.
- The thief cannot carry fraction of items!
- What should the thief take to maximize his profit?

0-1 Knapsack Problem

- A greedy strategy:
- keep taking the most cost efficient item (i.e., $\max \left\{\frac{v_{i}}{w_{i}}\right\}$) until the knapsack is full.
- The greedy solution is NOT optimal!
- A simple counterexample:
- There are only two items.
- Item One has value 2 and weighs 1 pound.
- Item Two has value W and weighs W pounds.

Why greedy strategy fail？

－Lemma 1 ［greedy－choice］：let a_{m} be a most cost efficient item that can fit into the bag，then in some optimal solution，this item is taken．
－ Thus，this lemma cannot be proven！
－Consider an optimal solution，assume a_{m} is NOT taken． $\operatorname{can} w^{\prime}<w_{m} ?$
－Now，substitute $w^{\prime} \geq w_{m}$ pounds of other items with a_{m}（all w_{m} pounds）．
－However，these w^{\prime} pounds of items may have aggregate value larger than v_{m} ，since it may $w^{\prime}>w_{m}$ ．

A data compression problem

－Assume we have a data file containing 100k characters．
－Further assume the file only uses 6 characters．
－How to store this file to save space？
－Simplest way：use 3 bits to encode each char．
－$a=000, b=001, \ldots, f=101$
－This costs 300k bits in total．
－Can we do better？

A data compression problem

－How to store this file to save space？
－Instead of using fixed－length codeword for each char，we should let frequent chars use shorter codewords．That is，use a variable－length code．

	a	b	c	d	e	f
Frequency	45 k	13 k	12 k	16 k	9 k	5 k
Fixed－length code	000	001	010	011	100	101
varaible－length code	0	00	01	1	10	11

How to decode bit string 000 ？

A data compression problem

－How to store this file to save space？
－Instead of using fixed－length codeword for each char，we should let frequent chars use shorter codewords．That is，use a variable－length code．
－To avoid ambiguity in decoding，variable－length code should be prefix－free： no codeword is also a prefix of some other codeword．

	a	b	c	d	e	\mathbf{f}
Frequency	$45 k$	$13 k$	$12 k$	$16 k$	$9 k$	$5 k$
Fixed－length code	000	001	010	011	100	101
varaible－length code	0	101	100	111	1101	1100

Properties of prefix－free code

－Use a binary tree to visualize a prefix－free code．
－Each leaf denotes a char．
－Each internal node：left branch is 0 ，right branch is 1 ．
－Path from root to leaf is the codeword of that char．

－Optimal code must be represented by a full binary tree：a tree each node having zero or two children．

	a	b	c	d	e	f
Frequency	$45 k$	$13 k$	$12 k$	$16 k$	$9 k$	$5 k$
Fixed－length code	000	001	010	011	100	101
varaible－length code	0	101	100	111	1101	1100

Length of encoded message

－Consider a file using a size n alphabet $C=\left\{c_{1}, \ldots, c_{n}\right\}$ ．For each character， let f_{i} be the frequency of char c_{i} ．
－Let T be a full binary tree representing a prefix－free code．For each character c_{i} ，let $d_{T}(i)$ be the depth of c_{i} in T ．
－Length of encoded message is $\sum_{i=1}^{n} f_{i} \cdot d_{T}(i)$
－Alternatively，recursively（bottom－up）define each internal node＇s frequency to be sum of its two children．

Length of encoded message is

Huffman Codes

－How to construct optimal prefix－free code？
－Huffman Codes：Merge the two least frequent chars and recurse．

```
Huffman(C):
Build a priority queue Q based on frequency
for }i:=1\mathrm{ to }n-
    Allocate new node z
    x := z.left := Q.ExtractMin()
    y:= z.right := Q.ExtractMin()
    z.frequency := x.frequency + y.frequency
    Q.Insert(z)
return Q.ExtractMin()
```

智能软件与工程学院

Huffman Codes

Correctness of Huffman Codes

－Huffman Codes：Merge the two least frequent chars and recurse．
－Lemma 1 ［greedy choice］：Let x and y be two least frequent chars，then in some optimal code tree，x and y are siblings and have largest depth．
－Lemma 2 ［optimal substructure］：Let x and y be two least frequent chars in C ． Let $C_{z}=C-\{x, y\}+\{z\}$ with $f_{z}=f_{x}+f_{y}$ ．Let T_{z} be an optimal code tree for C_{z} ．Let T be a code tree obtained from T_{z} by replacing leaf node z with an internal node having x and y as children．Then，T is an optimal code tree for C ．

Correctness of Huffman Codes

Lemma 1 [greedy choice]: Let x and y be two least frequent chars, then in some optimal code tree, x and y are siblings and have largest depth.

- Proof sketch:
- Let T be an optimal code tree with depth d.
- Let a and b be siblings with depth d. (Recall T is a full binary tree.)
- Assume a and b are not x and y. (Otherwise we are done.)

- Let T^{\prime} be the code tree obtained by swapping a and x.
- $\operatorname{cost}\left(T^{\prime}\right)=\operatorname{cost}(T)+\left(d-d_{T}(x)\right) \cdot f_{x}-\left(d-d_{T}(x)\right) \cdot f_{a}=\operatorname{cost}(T)+\left(d-d_{T}(x)\right) \cdot\left(f_{x}-f_{a}\right) \leq \operatorname{cost}(T)$
- Swapping b and y, obtaining $T^{\prime \prime}$, further reduces the total cost.
- So $T^{\prime \prime}$ must also be an optimal code tree.

Correctness of Huffman Codes

Lemma 2 ［optimal substructure］：Let x and y be two least frequent chars in C ． Let $C_{z}=C-\{x, y\}+\{z\}$ with $f_{z}=f_{x}+f_{y}$ ．Let T_{z} be an optimal code tree for C_{z} ．Let T be a code tree obtained from T_{z} by replacing leaf node z with an internal node having x and y as children．Then，T is an optimal code tree for C ．
－Proof sketch：
－Let T^{\prime} be an optimal code tree for C ，with x and y being sibling leaves．
－ $\operatorname{Cost}\left(T^{\prime}\right)=f_{x}+f_{y}+\sum_{u \in T^{\prime} \backslash \text { root and } u \notin\{x, y\}} f_{u}=f_{x}+f_{y}+\operatorname{cost}\left(T_{z}^{\prime}\right) \geq f_{x}+f_{y}+\operatorname{cost}\left(T_{z}\right)=\operatorname{cost}(T)$
－So T must be an optimal code tree for C ．

Set Cover

- Suppose we need to build schools for n towns.
- town
_- two towns less than 30km
- Each school must be in a town, no child should travel more than 30 km to reach a school.
- Minimum number of schools we need to build?

Set Cover

－The Set Cover Problem：
－Input：a universe U of n elements；and $\mathcal{S}=\left\{S_{1}, \ldots, S_{m}\right\}$ where each $S_{i} \subseteq U$ ．
－Output： $\mathscr{C} \subseteq \mathcal{S}$ such that $\bigcup_{S_{i} \in \mathscr{C}} S_{i}=U$
－That is，a subset of \mathcal{S} that＂covers＂U ．
－Goal：minimize $|\mathscr{C}|$

Set Cover

- Simple greedy strategy:
- Keep picking the town that covers most remaining uncovered towns, until we are done.
- Pick the set that covers most uncovered elements, until all elements are covered.
- Greedy solution: a, f, c, j

Set Cover

- The optimal solution is b, e, i
- Nevertheless, the greedy solution a, f, c, j is very close!
- But, how close?

Greedy solution of Set Cover is close to optimal

Theorem Suppose the optimal solution uses k sets，then the greedy strategy will use at most $k \ln n$ sets．
－Proof：
－Let n_{t} be number of uncovered elements after t iterations．（Thus $n_{0}=n$ ．）
－These n_{t} elements can be covered by some k sets．（The optimal solution will do）
．So one of the remaining sets will cover at least $\frac{n_{t}}{k}$ of these uncovered elements．
－Thus $n_{t+1} \leq n_{t}-\frac{n_{t}}{k}=n_{t}\left(1-\frac{1}{k}\right)$
－$n_{t} \leq n_{0}\left(1-\frac{1}{k}\right)^{t}<n_{0}\left(e^{-\frac{1}{k}}\right)^{t}=n \cdot e^{-\frac{t}{k}} \quad e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} \geq 1+x$ ，for $x \geq-1$ ，and when $x \neq 0$ ，the inequality holds
－With $t=k \ln n$ we have $n_{t}<1$ ，by then we must have done！

Greedy solution of Set Cover is close to optimal

－Simple greedy strategy：Keep picking the set the covers most uncovered elements，until all elements are covered．
－Theorem Suppose the optimal solution uses k sets，then the greedy strategy will use at most $k \ln n$ sets．
－So the greedy strategy gives a $\ln n$ approximation algorithm，and it has efficient implementation． （Polynomial runtime．）
－Can we do better？
－Most likely，NO！If we only care about efficient algorithms．
－［Dinur \＆Steuer STOC14］There is no polynomial－runtime $(1-o(1)) \cdot \ln n$ approximation algorithm unless $\mathbf{P}=\mathbf{N P}$ ．

Summary

－Basic idea of greedy strategy：At each step when building a solution，make the choice that looks best at that moment，based on some metric．
－Properties that make greedy strategy work：
－Optimal substructure［usually easy to prove］：optimal solution to the problem contains within it optimal solution（s）to subproblem（s）．
－Greedy choice［could be hard to identify and prove］：the greedy choice is contained within some optimal solution．
－Greed gives optimal solutions：MST，Huffman codes，．．．
－Greed gives near－optimal solutions：Set cover，．．．
－Greed gives arbitrarily bad solutions：0－1 knapsack，．．．

Further reading

－［CLRS］Ch． 16 （16．1－16．3，35．3）
－［Erickson v1］Ch． 4 （4．5）

Refer to［Vazirani］and［Williamson \＆Shmoys］ for more approximation algorithms

