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The Greedy Strategy

 For many games, you should think ahead, a strategy which focuses on
iImmediate advantage could easily lead to defeat.

> Such as playing chess.

* But for many other games, you can do quite well by simply making
whichever move seems best at the moment, without worrying too much
about future consequences.

> Such as building an MST.



The Greedy Strategy

 The Greedy Algorithmic Strategy: given a problem, build up a solution
piece by piece, always choosing the next piece that offers the most
obvious and immediate benefit.

» Sometimes it gives optimal solution.
> Sometimes it gives near-optimal solution.

> Or, it simply falils...
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An Activity-Selection Problem

e Assume we have one hall and 7 activities § = {a,,"--, a,}.

~ Each activity has a start time s, and a finish time f .

> Two activities cannot happen simultaneously in the hall.

> Maximum number of activities we can schedule? -

>

time
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An Activity-Selection Problem

e Let’s start with “divide-and-conquer”

> Define §, to be the set of activities start after g, finishes;

> Define F; to be the set of activities finish before a; starts.

. OPT(S) = max {OPT(F;,) + 1 + OPT(S)}

1<i<n

DTS [T MET LRI IWACRGER (ISR CR G OPT(S) = max {1 + OPT(S,)}
1<i<n

Observation: To make OPT(S) as large as possible, the activity

that finishes first should finish as early as possible!
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An Activity-Selection Problem

* A greedy strategy to solve this problem:

ActivitySelection(S):

Sort § into increasing order of finish time

SOL :={a,}, a'=aq,

for i:=2ton

If a;.start_time > a’ finish_time

SOL :=SOL U {a;}
a' = a;

return SOL
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Correctness of the greedy strategy for this problem

* The Greedy Algorithm for the Activity-Selection Problem:

» Add earliest finish activity a’ to solution, remove ones overlapping with a'.
> Repeat until all activities are processed.

 How to formally prove this algorithm is correct?
> The firstly selected activity is in some optimal solution.

> The following selection is correct to this optimal solution.
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orrectness of the greedy strategy for this problem

Lemma 1 let a’ be the earliest finishing activity in S, then a’ is in some
optimal solution of the problem.

 Proof:

» Let OPT(S) be an optimal solution to the problem, let a be the earliest finishing
activity in OPT(S).

» Assume a’ & OPT(S), otherwise we are done.

» Then SOL(S) = OPT(S) + a’ — a is also a feasible solution, and it has same
size as OPT(S).

» So SOL(S) is also an optimal solution.
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Correctness of the greedy strategy for this problem

Lemma 2 let a’ be the earliest finishing activity in S, let S’ be the activities
starting after a’, then OPT(S") U {a'} is an optimal solution of the problem.

 Proof:

» Let OPT(S) be an optimal solution to the original problem, and a’ € OPT(S). (Lemma 1
ensures such solution exists.)

- Thus, OPT(S) = SOL(S) U {a'}.

> If OPT(S") U {a’} is not an optimal solution to the original problem, then it must be the
case that | SOL(S")| > | OPT(S")].

» But this contradicts that OPT(S’) is an optimal solution for problem §".
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Correctness of the greedy strategy for this problem

Theorem The greedy algorithm for the activity-selection problem is correct.

* Proof:
> By induction on size of §.
» When | S| = 1, the algorithm clearly is correct.

» When | S| = n. Due to Lemma 2, OPT(S) = OPT(S) U {a’}

» By induction hypothesis, the algorithm correctly finds OPT(S’). So we are done.



Elements of
the Greedy Strategy
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Elements of the Greedy Strategy

e |f an (optimization) problem has following two properties, then the greedy
strategy usually works for it:

> Optimal substructure.

> Greedy property.



Optimal Substructure

* A problem exhibits optimal substructure if an optimal solution to the problem contains
within it optimal solution(s) to subproblem(s):

» Size n problem P(n), and optimal solution of P(n) is OPTp,).

» Solving P(n) needs to solve size n’ < n subproblem P(n’).
> Optimal solution of P(n"): OPTp,,

> OPTp, contains a solution of P(n'): SOLp,

» Optimal Substructure Property: SOLp,,, = OPTp,,

- Or these two solutions provide same “utility” under certain metric.



Optimal Substructure

 Example:

» Lemma 2 in activity selection: let a’ be the earliest finishing activity in S, let
S’ be the activities starting after a’, then OPT(S") U {a’} is some OPT(S).

 There are problems that do NOT exhibit optimal substructure property!

> E.g., find the longest path between two vertices without repeating an edge.




Greedy -Choice Property

* At each step when building a solution, make the choice that looks best for the
current problem, without considering results from subproblems. That is, make
local greedy choice at each step.

> To solve P(n), currently have k choices a, to a,. If we choose a;, the problem
is reduced to a smaller size n; subproblem P(n;).

> |f the problem only admits optimal structure;

- Find i that maximize, Utility(a; + OPTp,)).

- We have to compute OPT}p,, for all i first.



Greedy -Choice Property

|dentifying a greedy—choiqe property is the challenging part!

> With greedy choice:

_ We have a way to pick correct i, without knowing any OPTP(HZ_).

> Example:

- Lemma 1 in activity selection: let a’ be the earliest finishing activity in
S, then a’ is in some optimal solution of the problem.
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" Fractional Knapsack Problem

» A thief robbing a warehouse finds n items A = {a, ..., q,|.

o |tem a.is worth v; dollars and weighs w; pounds. Y

» The thief can carry at most W pounds in his knapsack.

* The thief can carry fraction of items.

L%
PS5 L %3

 \What should the thief take to maximize his profit?
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" Fractional Knapsack Problem

* A greedy strategy:

V.
keep taking the most cost efficient item (i.e., max{—1} ) until the
Wi

>

knapsack is full.
* The greedy solution is optimal!
> Greedy-choice

> Optimal substructure
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~ Correctness of the greedy algorithm

» Lemma 1 [greedy-choice]: let a,, be a most cost efficient item in A, then in

some optimal solution, at least w, , = min{w,_, W} pounds of a,, are
taken.

 Proof:

» Consider an optimal solution, assume w’ < w, . pounds of a,, are taken.

> Now, substitute w,, — w’ pounds of other items with a,,,.

> Since a,, is most cost-efficient, the new solution cannot be worse.
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Correctness of the greedy algorithm

« Lemma 2 [optimal substructure]: let a,, be a most cost efficient item in A, then
“OPTy_mingw .w1(A — a,) with min{w,, W} pounds of a,,” is an optimal solution
of the problem.

e Proof:

» Consider some OPTy 4, containing min{w,,, W} pounds of a,,.

» |If optimal substructure does not hold, then OPTW( 4) 9ives
5 OLW—min{wm,W}(A o am) > OP TW—min{wm,W} (A o am)'

> But this contradicts the optimality of OPTy,_ine,, wi(A — ay,).
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- 0-1 Knapsack Problem

» A thief robbing a warehouse finds n items A = {a, ..., q,|.
o |tem a; is worth v; dollars and weighs w: pounds.

» The thief can carry at most W pounds in his knapsack.

* The thief cannot carry fraction of items!

 \What should the thief take to maximize his profit?



* A greedy strategy:

Vi

keep taking the most cost efficient item (i.e., max{—1} ) until the knapsack is full.
Wi

>

* The greedy solution is NOT optimal
* A simple counterexample:
> There are only two items.

> |[tem One has value 2 and weighs 1 pound.

> [tem Two has value W and weighs W pounds.

The greedy solution can be arbitrarily bad!
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Why greedy strategy fail?

« Lemma 1 [greedy-choice]: let a,, be a most cost efficient item that can fit
into the bag, then in some optimal solution, this item is taken.

Thus, this lemma cannot be proven!

> Consider an optimal solution, assume a,, is NOT taken.

> Now, substitutepounds of other items with a,, (all w,, pounds).

However, these w’ pounds of items may have aggregate value larger than v,_, since it may w’' > w .

What about the optimal substructure property? That is, is OPTW_WX(A — a,) with w, pounds of a,. is the optimal solution?
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A data compression problem

 Assume we have a data file containing 100k characters.
> Further assume the file only uses 6 characters.
> How to store this file to save space?

 Simplest way: use 3 bits to encode each char.
» 3=000,b=001,..,£=101

» This costs 300k bits In total.

e Can we do better?
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A data compression problem

 How to store this file to save space?

> |Instead of using fixed-length codeword for each char, we should let

frequent chars use shorter codewords. That is, use a variable-length
code.

Frequency

Fixed-length code

varaible-length code 00

7
7
7

How to decode bit string 0007
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A data compression problem

« How to store this file to save space?

> Instead of using fixed-length codeword for each char, we should let frequent
chars use shorter codewords. That is, use a variable-length code.

> To avoid ambiguity in decoding, variable-length code should be prefix-free:
no codeword is also a prefix of some other codeword.

9k 5k

Frequency 16k
Fixed-length code 000 001 010 011 100 101

varaible-length code 0 101 100 el 1101 1100

. . o
Fixed-length code vs Variable-length code: 300k vs 224k. This is =25% saving.
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Properties of prefix-free code

100K

 Use a binary tree to visualize a prefix-free code.

» Each leaf denotes a char.

0 1 0 1 0 1
a 45K b: 13K c:12KEB d: 16K e:9K f:5K

> Each internal node: left branch is 0O, right branch is 1.

» Path from root to leaf is the codeword of that char.

m' Optimal code must be represented by a full binary

tree: a tree each node having zero or two children.

0 1 0
c:12K b:13K 14K

5k

Ok

Frequency 16k

Fixed-length code 000 001 010 011 100 101

varaible-length code 0 101 100 111 1101 1100
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Length of encoded message

» Consider a file using a size n alphabet C = {c¢, ..., c,}. For each character,
let /. be the frequency of char c..

* Let 1 be a full binary tree representing a prefix-free code.For each character
c;, let d(i) be the depth of ¢; in T.

n
Length of encoded message is Z f: - d (1)
i=1

>

» Alternatively, recursively (bottom-up) define each internal node’s frequency
to be sum of its two children.

>

Length of encoded message is Z I

uetree\root



Huffman Codes

 How to construct optimal prefix-free code?

 Huffman Codes: Merge the two least frequent chars and recurse.

Huffman(C):
Build a priority queue Q based on frequency
for i:==1ton-1
Allocate new node z
x .= z.left .= Q.ExtractMin()
y .= z.right .= Q.ExtractMin()
z.frequency .= x.frequency + y.frequency
O .Insert(z)
return Q.ExtractMin()

»Time complexity is O(n log n)
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Huffman Codes

0 1
c:12K b:13K

c:12K b:13K

* .
- *
-------------------------------------------------------------------------------------------------------------------------------------------
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Correctness of Huffman Codes

n
Length of encoded message is computed by 2 f: - dr(1) or Z 1.,

=1 uctree\root

 Huffman Codes: Merge the two least frequent chars and recurse.

 Lemma 1 [greedy choice]: Let x and y be two least frequent chars, then in some
optimal code tree, x and y are siblings and have largest depth.

« Lemma 2 [optimal substructure]: Let x and y be two least frequent chars in C.
Let C, = C — {x,y} + {2} with f, = f, + f, . Let T’ be an optimal code tree for

C.. Let T be a code tree obtained from 1, by replacing leaf node z with an
internal node having x and y as children. Then, 1'is an optimal code tree for C.
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Correctness of Huffman Codes

Lemma 1 [greedy choice]: Let x and y be two least frequent chars, then in
some optimal code tree, x and y are siblings and have largest depth.

* Proof sketch:
» Let 7" be an optimal code tree with depth d

> Assume a and b are not x and y. (Otherwise we are done.) & &

» Let a and b be siblings with depth d. (Recall T is a full binary tree.)

» Let 7" be the code tree obtained by swapping a and x.
» cost(T") = cost(T) +(d —dp(x)) - f, — (d —dp(x)) - f,= cost(T) + (d — d(x)) - (f, —F,) < cost(T)
» Swapping b and y, obtaining 7", further reduces the total cost.

» So 7" must also be an optimal code tree.
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Correctness of Huffman Codes

Lemma 2 [optimal substructure]: Let x and y be two least frequent chars in C.
Let C, = C — {x,y} + {2} with f, = f, + [, . Let T be an optimal code tree for

CZ. Let /" be a code tree obtained from 1’ by replacing leaf node z with an
internal node having x and y as children. Then, T is an optimal code tree for C.

e Proof sketch:

» Let 7" be an optimal code tree for C, with x and y being sibling leaves.

Cost(T") = f, + f, + Z Ju =Lt +cosT) 2 [+ f, + cosl(T) = cosT)

uceT\root and ué{x,y}

 So T must be an optimal code tree for C.
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Set Cover

® town
e Suppose we need to build schools for n towns. —— two towns less than 30km
e Each school must be in a town, no child should travel ¢

more than 30km to reach a school. b
L | d
 Minimum number of schools we need to build?
a €
k
h




Set Cover

e The Set Cover Problem:

» Input: a universe U of n elements; and & = {$,..,3,,} whereeach §; C U.

C

Output: € C & such that U S;=U b
S.EE d

d [
» That is, a subset of & that “covers” U. ‘@
g

 Goal: minimize | € | .
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Set Cover

 Simple greedy strategy:

 Keep picking the town that covers most
remaining uncovered towns, until we are done.

> Pick the set that covers most uncovered
elements, until all elements are covered.

» Greedy solution: a, f, ¢,

Can we do better?
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Set Cover

e The optimal solutionis b, e, i

 Nevertheless, the greedy solution a, f, ¢, j is
very close!

> But, how close?
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Greedy solution of Set Cover is close to optimal

Theorem Suppose the optimal solution uses k sets, then the greedy
strategy will use at most k£ In n sets.

* Proof:

» Let n, be number of uncovered elements after ¢ iterations. (Thus n, = n.)

» These n, elements can be covered by some k sets. (The optimal solution will do)

n
c : 5
. 90 one of the remaining sets will cover at least — of these uncovered elements.

. Thusn,, <n——=n(l——)

k k

« With r = kInn we have n, < 1, by then we must have done!
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Greedy solution of Set Cover is close to optimal

o Simple greedy strategy: Keep picking the set the covers most uncovered elements, until all elements
are covered.

» Theorem Suppose the optimal solution uses k sets, then the greedy strategy will use at most k£ 1n n
sets.

» So the greedy strategy gives a In n approximation algorithm, and it has efficient implementation.
(Polynomial runtime.)

e Can we do better?

> Most likely, NO! If we only care about efficient algorithms.

- ] There is no polynomial-runtime (1 — 0(1)) - In n approximation
algorithm unless P = NP.
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Summary

 Basic idea of greedy strategy: At each step when building a solution, make the
choice that looks best at that moment, based on some metric.

 Properties that make greedy strategy work:

> Optimal substructure [usually easy to prove]: optimal solution to the problem
contains within it optimal solution(s) to subproblem(s).

> Greedy choice [could be hard to identify and prove]: the greedy choice is
contained within some optimal solution.

* Greed gives optimal solutions: MST, Huffman codes, ...

* Greed gives near-optimal solutions: Set cover, ...

* Greed gives arbitrarily bad solutions: 0-1 knapsack, ...




Further reading

. [CLRS] Ch.16 (16.1-16.3, 35.3)

e [Erickson v1] Ch.4 (4.5)

Algorithms

Jeff Erickson

Approximation

Alg()r‘ith ms

David P. Williamson + David B. Shmoys

The DESIGN of
APPROXIMATION
ALGORITHMS

Refer to [Vazirani] and [Williamson & Shmoys]
for more approximation algorithms



