
智能软件与⼯程学院

School of Intelligent Software and Engineering

贪⼼策略

Greedy Strategy

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne.Thanks for their supports!

钮鑫涛

Nanjing University

2023 Fall

智能软件与⼯程学院

School of Intelligent Software and Engineering

The Greedy Strategy

• For many games, you should think ahead, a strategy which focuses on
immediate advantage could easily lead to defeat.

‣ Such as playing chess.

• But for many other games, you can do quite well by simply making
whichever move seems best at the moment, without worrying too much
about future consequences.

‣ Such as building an MST.

智能软件与⼯程学院

School of Intelligent Software and Engineering

The Greedy Strategy

• The Greedy Algorithmic Strategy: given a problem, build up a solution
piece by piece, always choosing the next piece that offers the most
obvious and immediate benefit.

‣ Sometimes it gives optimal solution.

‣ Sometimes it gives near-optimal solution.

‣ Or, it simply fails…

智能软件与⼯程学院

School of Intelligent Software and Engineering

An Activity-Selection Problem
• Assume we have one hall and activities = { ,…, }.

‣ Each activity has a start time and a finish time .

‣ Two activities cannot happen simultaneously in the hall.

‣ Maximum number of activities we can schedule?

n S a1 an

si fi

time time

🤔

智能软件与⼯程学院

School of Intelligent Software and Engineering

An Activity-Selection Problem
• Let’s start with “divide-and-conquer”

‣ Define to be the set of activities start after finishes;

‣ Define to be the set of activities finish before starts.

‣

Si ai

Fi ai

OPT(S) = max
1≤i≤n

{OPT(Fi) + 1 + OPT(Si)}

Observation: To make OPT(S) as large as possible, the activity
that finishes first should finish as early as possible!

In any solution, some activity is the first to finish. OPT(S) = max
1≤i≤n

{1 + OPT(Si)}

智能软件与⼯程学院

School of Intelligent Software and Engineering

An Activity-Selection Problem
• A greedy strategy to solve this problem:

ActivitySelection(S):
Sort S into increasing order of finish time
SOL := { }, =
for i := 2 to n

 If .start_time > .finish_time
 SOL := SOL { }
 :=

return SOL

a1 a′￼ a1

ai a′￼

∪ ai
a′￼ ai

智能软件与⼯程学院

School of Intelligent Software and Engineering

time time

time time

time

智能软件与⼯程学院

School of Intelligent Software and Engineering

Correctness of the greedy strategy for this problem

• The Greedy Algorithm for the Activity-Selection Problem:

‣ Add earliest finish activity to solution, remove ones overlapping with .

‣ Repeat until all activities are processed.

a′￼ a′￼

• How to formally prove this algorithm is correct?

‣ The firstly selected activity is in some optimal solution.

‣ The following selection is correct to this optimal solution.

智能软件与⼯程学院

School of Intelligent Software and Engineering

• Proof:

‣ Let be an optimal solution to the problem, let be the earliest finishing
activity in .

‣ Assume , otherwise we are done.

‣ Then is also a feasible solution, and it has same
size as .

‣ So is also an optimal solution.

OPT(S) a
OPT(S)

a′￼ ∉ OPT(S)

SOL(S) = OPT(S) + a′￼− a
OPT(S)

SOL(S)

Lemma 1 let be the earliest finishing activity in , then is in some
optimal solution of the problem.

a′￼ S a′￼

Correctness of the greedy strategy for this problem

智能软件与⼯程学院

School of Intelligent Software and Engineering

• Proof:

‣ Let be an optimal solution to the original problem, and . (Lemma 1
ensures such solution exists.)

‣ Thus, .

‣ If is not an optimal solution to the original problem, then it must be the
case that .

‣ But this contradicts that is an optimal solution for problem .

OPT(S) a′￼ ∈ OPT(S)

OPT(S) = SOL(S′￼) ∪ {a′￼}

OPT(S′￼) ∪ {a′￼}
|SOL(S′￼) | > |OPT(S′￼) |

OPT(S′￼) S′￼

Correctness of the greedy strategy for this problem

Lemma 2 let be the earliest finishing activity in , let be the activities
starting after , then is an optimal solution of the problem.

a′￼ S S′￼

a′￼ OPT(S′￼) ∪ {a′￼}

智能软件与⼯程学院

School of Intelligent Software and Engineering

• Proof:

‣ By induction on size of .

‣ When , the algorithm clearly is correct.

‣ When . Due to Lemma 2,

‣ By induction hypothesis, the algorithm correctly finds . So we are done.

S

|S | = 1

|S | = n OPT(S) = OPT(S′￼) ∪ {a′￼}

OPT(S′￼)

Correctness of the greedy strategy for this problem

Theorem The greedy algorithm for the activity-selection problem is correct.

智能软件与⼯程学院

School of Intelligent Software and Engineering

Elements of

the Greedy Strategy

智能软件与⼯程学院

School of Intelligent Software and Engineering

Elements of the Greedy Strategy

• If an (optimization) problem has following two properties, then the greedy
strategy usually works for it:

‣ Optimal substructure.

‣ Greedy property.

智能软件与⼯程学院

School of Intelligent Software and Engineering

Optimal Substructure
• A problem exhibits optimal substructure if an optimal solution to the problem contains

within it optimal solution(s) to subproblem(s):

‣ Size problem , and optimal solution of is .

‣ Solving needs to solve size subproblem .

‣ Optimal solution of :

‣ contains a solution of :

‣ Optimal Substructure Property: =

- Or these two solutions provide same “utility” under certain metric.

n P(n) P(n) OPTP(n)

P(n) n′￼ < n P(n′￼)

P(n′￼) OPTP(n′￼)

OPTP(n) P(n′￼) SOLP(n′￼)

SOLP(n′￼) OPTP(n′￼)

智能软件与⼯程学院

School of Intelligent Software and Engineering

Optimal Substructure
• Example:

‣ Lemma 2 in activity selection: let be the earliest finishing activity in , let
 be the activities starting after , then is some .

a′￼ S
S′￼ a′￼ OPT(S′￼) ∪ {a′￼} OPT(S)

• There are problems that do NOT exhibit optimal substructure property!

‣ E.g., find the longest path between two vertices without repeating an edge.

B C

DE

A

1

1

1
1

1

智能软件与⼯程学院

School of Intelligent Software and Engineering

Greedy-Choice Property
• At each step when building a solution, make the choice that looks best for the

current problem, without considering results from subproblems. That is, make
local greedy choice at each step.

‣ To solve , currently have choices to . If we choose , the problem
is reduced to a smaller size subproblem .

‣ If the problem only admits optimal structure:

- Find that maximize, Utility .

- We have to compute for all first.

P(n) k a1 ak ai
ni P(ni)

i (ai + OPTP(ni))

OPTP(ni) i

智能软件与⼯程学院

School of Intelligent Software and Engineering

Greedy-Choice Property

‣ With greedy choice:

- We have a way to pick correct , without knowing any .

‣ Example:

- Lemma 1 in activity selection: let be the earliest finishing activity in
, then is in some optimal solution of the problem.

i OPTP(ni)

a′￼

S a′￼

Identifying a greedy-choice property is the challenging part!

智能软件与⼯程学院

School of Intelligent Software and Engineering

Fractional Knapsack Problem

• A thief robbing a warehouse finds items .

• Item is worth dollars and weighs pounds.

• The thief can carry at most pounds in his knapsack.

• The thief can carry fraction of items.

• What should the thief take to maximize his profit?

n A = {a1, …, an}

ai vi wi

W

智能软件与⼯程学院

School of Intelligent Software and Engineering

Fractional Knapsack Problem
• A greedy strategy:

‣ keep taking the most cost efficient item (i.e.,) until the

knapsack is full.

• The greedy solution is optimal!

‣ Greedy-choice

‣ Optimal substructure

max{
vi

wi
}

智能软件与⼯程学院

School of Intelligent Software and Engineering

Correctness of the greedy algorithm
• Lemma 1 [greedy-choice]: let be a most cost efficient item in , then in

some optimal solution, at least pounds of are
taken.

• Proof:

‣ Consider an optimal solution, assume pounds of are taken.

‣ Now, substitute pounds of other items with .

‣ Since is most cost-efficient, the new solution cannot be worse.

am A
wm′￼

= min{wm, W} am

w′￼ < wm′￼
am

wm′￼
− w′￼ am

am

智能软件与⼯程学院

School of Intelligent Software and Engineering

Correctness of the greedy algorithm
• Lemma 2 [optimal substructure]: let be a most cost efficient item in , then

“ with pounds of ” is an optimal solution
of the problem.

• Proof:

‣ Consider some containing pounds of .

‣ If optimal substructure does not hold, then gives
.

‣ But this contradicts the optimality of .

am A
OPTW−min{wm,W}(A − am) min{wm, W} am

OPTW(A) min{wm, W} am

OPTW(A)
SOLW−min{wm,W}(A − am) > OPTW−min{wm,W}(A − am)

OPTW−min{wm,W}(A − am)

智能软件与⼯程学院

School of Intelligent Software and Engineering

0-1 Knapsack Problem

• A thief robbing a warehouse finds items .

• Item is worth dollars and weighs pounds.

• The thief can carry at most pounds in his knapsack.

• The thief cannot carry fraction of items!

• What should the thief take to maximize his profit?

n A = {a1, …, an}

ai vi wi

W

智能软件与⼯程学院

School of Intelligent Software and Engineering

0-1 Knapsack Problem
• A greedy strategy:

‣ keep taking the most cost efficient item (i.e.,) until the knapsack is full.

• The greedy solution is NOT optimal!

• A simple counterexample:

‣ There are only two items.

‣ Item One has value 2 and weighs 1 pound.

‣ Item Two has value and weighs pounds.

max{
vi

wi
}

W W
The greedy solution can be arbitrarily bad!

智能软件与⼯程学院

School of Intelligent Software and Engineering

Why greedy strategy fail?

• Lemma 1 [greedy-choice]: let be a most cost efficient item that can fit
into the bag, then in some optimal solution, this item is taken.

• Proof:

‣ Consider an optimal solution, assume is NOT taken.

‣ Now, substitute pounds of other items with (all pounds).

‣ Since is the most cost-efficient, the new solution cannot be worse.

am

am

w′￼ = wm am wm

am

w′￼ ≥ wm

can ?w′￼ < wm

However, these pounds of items may have aggregate value larger than , since it may .w′￼ vm w′￼ > wm

Thus, this lemma cannot be proven!

What about the optimal substructure property? That is, is with pounds of is the optimal solution?OPTW−wx
(A − ax) wx ax

智能软件与⼯程学院

School of Intelligent Software and Engineering

A data compression problem
• Assume we have a data file containing 100k characters.

‣ Further assume the file only uses 6 characters.

‣ How to store this file to save space?

• Simplest way: use 3 bits to encode each char.

‣ a=000,b=001,…,f=101

‣ This costs 300k bits in total.

• Can we do better?

智能软件与⼯程学院

School of Intelligent Software and Engineering

A data compression problem
• How to store this file to save space?

‣ Instead of using fixed-length codeword for each char, we should let
frequent chars use shorter codewords. That is, use a variable-length
code.

a b c d e f

Frequency 45k 13k 12k 16k 9k 5k

Fixed-length code 000 001 010 011 100 101

varaible-length code 0 00 01 1 10 11

How to decode bit string 000?

智能软件与⼯程学院

School of Intelligent Software and Engineering

A data compression problem
• How to store this file to save space?

‣ Instead of using fixed-length codeword for each char, we should let frequent
chars use shorter codewords. That is, use a variable-length code.

‣ To avoid ambiguity in decoding, variable-length code should be prefix-free:
no codeword is also a prefix of some other codeword.

a b c d e f

Frequency 45k 13k 12k 16k 9k 5k

Fixed-length code 000 001 010 011 100 101

varaible-length code 0 101 100 111 1101 1100

Fixed-length code vs Variable-length code: 300k vs 224k. This is ≈25% saving. Is it optimal?

智能软件与⼯程学院

School of Intelligent Software and Engineering

Properties of prefix-free code
• Use a binary tree to visualize a prefix-free code.

‣ Each leaf denotes a char.

‣ Each internal node: left branch is 0, right branch is 1.

‣ Path from root to leaf is the codeword of that char.

‣ Optimal code must be represented by a full binary
tree: a tree each node having zero or two children.WHY?

100K

86K 14K

58K 28K 14K

a:45K b:13K c:12K d:16K e:9K f:5K

0 1

0 1 0

0 1 0 1 0 1

a b c d e f

Frequency 45k 13k 12k 16k 9k 5k

Fixed-length code 000 001 010 011 100 101

varaible-length code 0 101 100 111 1101 1100

100K

55K

25K 30K

a:45K

b:13Kc:12K d:16K

e:9K f:5K

0 1

0 1

0

1

0 11

14K

0

智能软件与⼯程学院

School of Intelligent Software and Engineering

Length of encoded message
• Consider a file using a size alphabet . For each character,

let be the frequency of char .

• Let be a full binary tree representing a prefix-free code.For each character
, let be the depth of in .

‣ Length of encoded message is

• Alternatively, recursively (bottom-up) define each internal node’s frequency
to be sum of its two children.

‣ Length of encoded message is

n C = {c1, . . . , cn}
fi ci

T
ci dT(i) ci T

n

∑
i=1

fi ⋅ dT(i)

∑
u∈tree\root

fu

智能软件与⼯程学院

School of Intelligent Software and Engineering

Huffman Codes
• How to construct optimal prefix-free code?

• Huffman Codes: Merge the two least frequent chars and recurse.

Huffman(C):
Build a priority queue Q based on frequency
for i := 1 to n - 1

 Allocate new node z
 x := z.left := Q.ExtractMin()
 y := z.right := Q.ExtractMin()
 z.frequency := x.frequency + y.frequency
 Q.Insert(z)

return Q.ExtractMin()

Time complexity is O(n log n)

智能软件与⼯程学院

School of Intelligent Software and Engineering

Huffman Codes
a:45Kb:13Kc:12K d:16Ke:9Kf:5K a:45Kb:13Kc:12K d:16K

e:9Kf:5K

14K a:45K

b:13Kc:12K

d:16K

e:9Kf:5K

14K 25K

a:45K

b:13Kc:12K d:16K

e:9Kf:5K

14K

25K 30K

0 1

a:45K

b:13Kc:12K d:16K

e:9Kf:5K

14K

25K 30K

0 1 0 1

0 1

0 1

0 1

0 1 0 10 1

25K
0 1

a:45K

b:13Kc:12K d:16K

e:9Kf:5K

14K

25K 30K

0 1 0 1

0 1

25K
0 1

100K
0 1

智能软件与⼯程学院

School of Intelligent Software and Engineering

Correctness of Huffman Codes

• Length of encoded message is computed by or

• Huffman Codes: Merge the two least frequent chars and recurse.

• Lemma 1 [greedy choice]: Let and be two least frequent chars, then in some
optimal code tree, and are siblings and have largest depth.

• Lemma 2 [optimal substructure]: Let and be two least frequent chars in .
Let with . Let be an optimal code tree for

. Let be a code tree obtained from by replacing leaf node with an
internal node having and as children. Then, is an optimal code tree for .

n

∑
i=1

fi ⋅ dT(i) ∑
u∈tree\root

fu

x y
x y

x y C
Cz = C − {x, y} + {z} fz = fx + fy Tz

Cz T Tz z
x y T C

智能软件与⼯程学院

School of Intelligent Software and Engineering

Correctness of Huffman Codes

• Proof sketch:

‣ Let be an optimal code tree with depth .

‣ Let and be siblings with depth . (Recall is a full binary tree.)

‣ Assume and are not and . (Otherwise we are done.)

‣ Let be the code tree obtained by swapping and .

‣ =

‣ Swapping and , obtaining , further reduces the total cost.

‣ So must also be an optimal code tree.

T d

a b d T

a b x y

T′￼ a x

cost(T′￼) = cost(T) + (d − dT(x)) ⋅ fx − (d − dT(x)) ⋅ fa cost(T) + (d − dT(x)) ⋅ (fx − fa) ≤ cost(T)

b y T′￼′￼

T′￼′￼

Lemma 1 [greedy choice]: Let and be two least frequent chars, then in
some optimal code tree, and are siblings and have largest depth.

x y
x y

x

y

a b

a

y

x b

T T′￼

智能软件与⼯程学院

School of Intelligent Software and Engineering

Correctness of Huffman Codes

• Proof sketch:

• Let be an optimal code tree for , with and being sibling leaves.

•

• So T must be an optimal code tree for C.

T′￼ C x y

Cost(T′￼) = fx + fy + ∑
u∈T′￼\root and u∉{x,y}

fu = fx + fy + cost(T′￼z) ≥ fx + fy + cost(Tz) = cost(T)

Lemma 2 [optimal substructure]: Let and be two least frequent chars in .
Let with . Let be an optimal code tree for

. Let be a code tree obtained from by replacing leaf node with an
internal node having and as children. Then, is an optimal code tree for .

x y C
Cz = C − {x, y} + {z} fz = fx + fy Tz

Cz T Tz z
x y T C

智能软件与⼯程学院

School of Intelligent Software and Engineering

Set Cover

• Suppose we need to build schools for towns.

• Each school must be in a town, no child should travel
more than 30km to reach a school.

• Minimum number of schools we need to build?

n

c

d

b

a e

f

g
k

h
i

j

town

two towns less than 30km

智能软件与⼯程学院

School of Intelligent Software and Engineering

Set Cover
• The Set Cover Problem:

• Input: a universe of elements; and where each .

• Output: such that

‣ That is, a subset of that “covers” .

• Goal: minimize

U n 𝒮 = {S1, . . , Sm} Si ⊆ U

𝒞 ⊆ 𝒮 ⋃
Si∈𝒞

Si = U

𝒮 U

|𝒞 |

c

d

b

a e

f

g
k

h
i

j

智能软件与⼯程学院

School of Intelligent Software and Engineering

Set Cover
• Simple greedy strategy:

• Keep picking the town that covers most
remaining uncovered towns, until we are done.

‣ Pick the set that covers most uncovered
elements, until all elements are covered.

• Greedy solution: a, f, c, j

c

d

b

a e

f

g
k

h
i

j
Can we do better?

智能软件与⼯程学院

School of Intelligent Software and Engineering

Set Cover

• The optimal solution is

• Nevertheless, the greedy solution is
very close!

b, e, i

a, f, c, j c

d

b

a e

f

g
k

h
i

j

‣ But, how close?

智能软件与⼯程学院

School of Intelligent Software and Engineering

Greedy solution of Set Cover is close to optimal

• Proof:

• Let be number of uncovered elements after iterations. (Thus .)

• These elements can be covered by some sets. (The optimal solution will do)

• So one of the remaining sets will cover at least of these uncovered elements.

• Thus

•

• With we have , by then we must have done!

nt t n0 = n

nt k

nt

k

nt+1 ≤ nt −
nt

k
= nt(1 −

1
k

)

nt ≤ n0(1 −
1
k

)t < n0(e− 1
k)t = n ⋅ e− t

k

t = k ln n nt < 1

Theorem Suppose the optimal solution uses sets, then the greedy
strategy will use at most sets.

k
k ln n

, for , and when the inequality holdsex = lim
n→∞

(1 +
x
n

)n ≥ 1 + x x ≥ − 1 x ≠ 0,

智能软件与⼯程学院

School of Intelligent Software and Engineering

Greedy solution of Set Cover is close to optimal

• Simple greedy strategy: Keep picking the set the covers most uncovered elements, until all elements
are covered.

• Theorem Suppose the optimal solution uses sets, then the greedy strategy will use at most
sets.

• So the greedy strategy gives a approximation algorithm, and it has efficient implementation.
(Polynomial runtime.)

• Can we do better?

‣ Most likely, NO! If we only care about efficient algorithms.

- [Dinur & Steuer STOC14] There is no polynomial-runtime approximation
algorithm unless P = NP.

k k ln n

ln n

(1 − o(1)) ⋅ ln n

智能软件与⼯程学院

School of Intelligent Software and Engineering

Summary
• Basic idea of greedy strategy: At each step when building a solution, make the

choice that looks best at that moment, based on some metric.

• Properties that make greedy strategy work:

‣ Optimal substructure [usually easy to prove]: optimal solution to the problem
contains within it optimal solution(s) to subproblem(s).

‣ Greedy choice [could be hard to identify and prove]: the greedy choice is
contained within some optimal solution.

• Greed gives optimal solutions: MST, Huffman codes, …

• Greed gives near-optimal solutions: Set cover, …

• Greed gives arbitrarily bad solutions: 0-1 knapsack, …

智能软件与⼯程学院

School of Intelligent Software and Engineering

Further reading
• [CLRS] Ch.16 (16.1-16.3, 35.3)

• [Erickson v1] Ch.4 (4.5)

Refer to [Vazirani] and [Williamson & Shmoys]
for more approximation algorithms

