

# 单源最短路径 Single-Source Shortest Path

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne. Thanks for their supports!

#### 钮鑫涛 Nanjing University 2023 Fall





# The Shortest Path Problem

- Given a map, what's the shortest path from s to t?
- Consider a graph G = (V, E) and a weight function wthat associates a real-valued weight w(u, v) to each edge (u, v). Given s and t in V, what's the min weight path from s to t?





# The Shortest Path Problem

- Weights are not always lengths.
  - E.g., time, cost, ... to walk the edge.
- The graph can be **directed**.
  - Thus  $w(u, v) \neq w(v, u)$  possible.
- Negative edge weight allowed.
- Negative cycle not allowed.
  - Problem not well-defined then.



### Single-Source Shortest Path (SSSP)

- The SSSP Problem: Given a graph G = (V, E) and a weight function w, given a source node s, find a shortest path from s to every node  $u \in V$ .
- Consider <u>directed</u> graphs <u>without</u> negative cycle.
  - Case 1: Unit weight.
  - Case 2: Arbitrary positive weight.
  - Case 3: Arbitrary weight without cycle.
  - Case 4: Arbitrary weight.





# SSSP in unit weight graphs

- How to solve SSSP in an unit weight graph?
  - That is, a graph in which each edge is of weight 1.
- "Traverse by layer" in an unweighted graph!
  - Visit all distance d nods before visiting any distance d + 1 node.
  - Simple, just use BFS!







# SSSP in positive weight graphs

- Solve SSSP in a graph with <u>arbitrary positive weights</u>?
- Extension of unit graph SSSP algorithm:
  - Add dummy nodes on edges so graph becomes unit weight graph.
  - Run BFS on the resulting graph.



The problem is that it is too slow when edge weights are large!





# Extension of the BFS algorithm

- To save time, bypass the events that process dummy nodes!
  - Imagine we have an alarm clock  $T_{\mu}$  for each node u.
  - Alarm for source node s goes off at time 0.



- At any time, value of  $T_u$  is an estimate of dist(s, u).
- At any time,  $T_{\mu} \ge dist(s, \mu)$ , with equality holds when  $T_{\mu}$  goes off.



# Dijkstra's algorithm

- How to implement the "alarm clock"?
  - Use priority queue (such as binary heap).



Edsger W. Dijkstra

DijkstraSSSP(G, s): Shortest-path Tree (Similar to BFS tree.) for each *u* in *V u.dist* := *INF*, *u.parent* := *NIL* s.dist := 0Build priority queue Q based on dist while *!Q.empty(*) u := Q.ExtractMin()for each edge (u,v) in E if v.dist > u.dist + w(u, v)v.dist := u.dist + w(u, v)v.parent := uQ.UpdateKey(v)





#### Dijkstra's algorithm <u>DijkstraSSP(G, s):</u> for each *u* in *V u.dist* := *INF*, *u.parent* := *NIL* s.dist := 0Build priority queue Q based on dist while !Q.empty() u := Q.ExtractMin()for each edge (u,v) in E if v.dist > u.dist + w(u, v)v.dist := u.dist + w(u, v)v.parent := uQ.UpdateKey(v)

- Correctness of Dijkstra's algorithm?
  - Similar to the correctness proof of BFS.
- Efficiency of Dijkstra's algorithm?
  - $O((n + m) \cdot \log n)$  when using a binary heap.





- and shortest paths are known.
  - Growth should be <u>orderly</u>: closest nodes first.
- Given "known region R",



• What's BFS doing: <u>expand</u> outward from s, growing the <u>region</u> to which distances





closet node to s), let the shortest path from s to v is  $s \rightsquigarrow v$ .

(Otherwise v is not the next closet node to s)

• Given "known region R", assume v is such node to expand to (that is, the next

• It must be  $dist(s, v) \ge dist(s, v')$ , for any  $v' \in R$ . (Otherwise it is already  $v \in R$ )

• Let the last node of the path  $s \rightsquigarrow v$  before v be u, then it must be  $u \in R$ .







- Given "known region R",
  - ${dist(s, u') + w($ **Find** min  $u' \in R, v' \in V - R$

$$(u',v')\},$$

• Any satisfied node v is the next node to expand to (the next closet node to s)





- - Given "known region R", expend to the node with min

```
DijkstraSSSPAbs(G, s):
for each u in V
      u.dist := INF
s.dist := 0
R := \emptyset
while R \mathrel{!}= V
      Find node v in V - R with min v.dist
      Add v to R
      for each edge (v, z) in E
            if z.dist > v.dist + w(v, z)
                  z.dist := v.dist + w(v, z)
```



• BFS expands outward from s, growing the region to which distances and shortest paths are known.

 $\{dist(s, u') + w(u', v')\}.$  $u' \in R, v' \in V - R$ 

> DijkstraSSP(G, s): for each *u* in *V u.dist* := *INF*, *u.parent* := *NIL* s.dist := 0Build priority queue Q based on dist while !*Q.empty*() u := Q.ExtractMin()for each edge (u,v) in E if v.dist > u.dist + w(u, v)v.dist := u.dist + w(u, v)v.parent := uQ.UpdateKey(v)

Priority queue implementation





















### DFS, BFS, Prim, Dijkstra, and others...

#### DFSIterSkeleton(G, s):

Stack Q Q.push(s) while !Q.empty() u := Q.pop()if !u.visited u.visited := Truefor each edge (u, v) in E Q.push(v)

# DijkstraSSSPSkeleton(G, x):PriorityQueue QQ.add(x)while !Q.empty()u := Q.remove()if !u.visitedu.visited := Truefor each edge (u, v) in Eif !v.visited and ...Q.update(v, ...)

BFSSkeletonAlt(G, s):FIFOQueue QQ.enque(s)while !Q.empty()u := Q.dequeue()if !u.visitedu.visited := Truefor each edge (u, v) in EQ.enque(v)

GraphExploreSkeleton(G, s): GenericQueue Q Q.add(s)while !Q.empty() u := Q.remove()if !u.visited u.visited := Truefor each edge (u, v) in E Q.add(v)

#### PrimMSTSkeleton(G, x):

 $\begin{aligned} PriorityQueue Q\\ Q.add(x)\\ \text{while } !Q.empty()\\ u &:= Q.remove()\\ \text{if } !u.visited\\ u.visited &:= True\\ \text{for each edge } (u, v) \text{ in } E\\ \text{if } !v.visited \text{ and } \dots\\ Q.update(v, \dots) \end{aligned}$ 



- Dijkstra's algorithm no longer works!
- Why would this happen?
- Dijkstra's algorithm for finding next closest node to expend to:
- Given "known region R", find min  $u' \in R, v' \in V$

• This is because: Let the last node of the path  $s \rightarrow v$  before v be u, then it must be  $u \in R$ . (Otherwise v is not the next closet node to s)

However, negative edge makes this does not hold!

$$\{ dist(s, u') + w(u', v') \} .$$







 "Shortest path from s to any node closer than v" no longer holds! Shortest distance from *S* to node *A* is 3? No!!! Try  $S \rightarrow C \rightarrow B \rightarrow A$ 

• "Shortest path from s to any node v must pass through nodes that are





- But how *dist* values are maintained in Dijkstra is helpful:
  - Initially set s. dist = 0, and for each node  $u \neq s$ , set u.  $dist = \infty$ .
  - When processing edge (u, v), execute procedure Update(u, v):
    v. dist = min{v. dist, u. dist + w(u, v)}
- This way two properties are maintained:
  - For any v, at any time, v. dist is either an overestimate, or correct.
  - Assume u is the last node on a shortest path from s to v. If u. dist is correct and we run Update (u, v), then v. dist becomes correct.



- Update (u, v) is <u>safe</u> and <u>helpful</u>!

Solution [Safe] Regardless of the sequence of Update operations we execute, for any node v, value v. *dist* is either an overestimate or correct.

[Helpful] With correct sequence of Update, we get correct v. dist.





- Consider a shortest path from s to v.  $\bullet$ 
  - **Update (u\_k, v)** are executed, then we correctly obtain the shortest path.
  - arbitrary Update sequence, and still get shortest path from s to v.
- Algorithm: simply Update <u>all</u> edges, for k + 1 times!



• Observation 1: if Update (s,  $u_1$ ), Update ( $u_1$ ,  $u_2$ ), ..., Update ( $u_{k-1}$ ,  $u_k$ ),

• Observation 2: in above sequence, before and after each Update, we can add

Update all edges Update all edges  $\mathcal{U}_k$ .....





• But how large is k + 1?

- Observation 3: any shortest path cannot contain a cycle. (WHY?)
- Algorithm: simply <code>Update</code> all edges, for n-1 times!
  - The Bellman-Ford Algorithm!



- Bellman-Ford Algorithm:
  - Update all edges;
  - Repeat above step for n-1 times.
- The complexity is :  $\Theta(n(m+n))$



**Richard E. Bellman** 



Lester Randolph Ford Jr.

# The Bellman-Ford Algorithm

BellmanFordSSSP(G, s): for each *u* in *V* u.dist := INF, u.parent := NILs.dist := 0**repeat** *n* - 1 times for each edge (u, v) in E if v.dist > u.dist + w(u, v)v.dist := u.dist + w(u, v)v.parent := u





# The Bellman-Ford Algorithm





# The Bellman-Ford Algorithm

- What if the graph contains a negative cycle?
  - Then the Observation 3 (any shortest) path cannot contain a cycle.) does not hold!
  - It means that after n-1 repetitions of "Update all edges", some node v still has  $v \cdot dist > u \cdot dist + w(u, v)$ .

Bellman-Ford can also detect negative cycle!

BellmanFordSSSP(G, s): for each *u* in *V* u.dist := INF, u.parent := NILs.dist := 0**repeat** *n* - 1 times for each edge (u, v) in E if v.dist > u.dist + w(u, v)v.dist := u.dist + w(u, v)v.parent := ufor each edge (u, v) in E If v.dist > u.dist + w(u, v)return "negative circles"







### SSSP in DAG (with negative weights)

- Bellman-Ford still works, but we car more efficient!
- Core idea of Bellman-Ford: perform sequence of Update that includes e shortest path as a subsequence.
- Observation: in DAG, every path, thue very shortest path, is a subsequence the topological order.

O(m+n) time complexity

| n be   | DAGSSSP(G,s):                                            |
|--------|----------------------------------------------------------|
|        | for each <i>u</i> in <i>V</i>                            |
|        | u.dist := INF, u.parent := NIL                           |
| a      | s.dist := 0                                              |
| every  | Run DFS to obtain topological order                      |
|        | for each node u in topological order                     |
|        | for each <i>edge</i> ( <i>u</i> , <i>v</i> ) in <i>E</i> |
| US     | if $v.dist > u.dist + w(u, v)$                           |
| ice in | v.dist := u.dist + w(u, v)                               |
|        | v.parent := u                                            |



















### Application of SSSP in DAG: Computing Critical Path

- For some step(s), it can only begin after certain steps are done.
- These dependency can be modeled as a DAG. (PERT Chart)
- How fast can you finish this task?
- Equivalently, **longest path**, a.k.a. **critical path**, in the DAG?
- Negate edge weights and compute a shortest path.



Assume you want to finish a task that involves multiple steps. Each step takes some time.







## Summary

- shortest path from s to every node  $v \in V$ .
- ullet
- algorithm.  $O((n + m)\log n)$ runtime.
- runtime.
- $\Theta(n(m+n))$  runtime, can detect negative cycle.

The shortest path problem has <u>optimal substructure</u> property.

Update is a safe and helpful operation.

• The SSSP Problem: Given a graph G = (V, E) and a weight function w, given a source node s, find a

**Case 1**: Unit weight graphs (directed or undirected): Simply use BFS. O(n + m) runtime.

• Case 2: Arbitrary positive weight graphs (directed or undirected) : Dijkstra's algorithm. A greedy

• Case 3: Arbitrary weight without cycle in directed graphs: Update in topological order. O(n + m)

• Case 4: Arbitrary weight without negative cycle in directed graphs: Bellman-Ford algorithm.





# Pathfinding\*





a destination t, preferably efficiently.



# (Shortest) Pathfinding\*

• Given a graph G = (V, E), how to find a (shortest) path from a source s to









#### We could use BFS or Dijkstra.





#### But we could be <u>MUCH</u> faster!





# Greedy Best-First Search

#### <u>GreedyBFS(G, s, t):</u>

- s.est\_to\_goal := heuristic(s,t) Build priority queue Q based on est\_to\_goal while !Q.empty() u := Q.ExtractMin()for each *edge* (u,v) in *E* if  $v \notin Q$  $v.est\_to\_goal := heuristic(v,t)$ v.parent := uQ.Add(v)
- A (not necessarily accurate) estimate on the distance from v to t.

Does greedy BFS always generate correct answer?

• On 2D grid, we can set  $heuristic(v,t) = ManhattanDist(v,t) = |v \cdot x - t \cdot x| + |v \cdot y - t \cdot y|$ .







#### Greedy BFS does not always generate correct answer



#### PathfindingFramework(G, s, t):

for each node u in V

*u.metric* := *INFINITY* 

*s.metric* := *CalcMetric*(*s*,*s*,*t*)

Build priority queue Q based on metric while !Q.empty()

u := Q.ExtractMin()

for each *edge* (u,v) in *E* 

new\_metric := UpdateMetric(v, u, s, t)

if  $v \notin Q$  or new\_metric < v.metric

*v.metric* := *new\_metric* 

v.parent := u

Q.AddorUpdate(v)

**GreedyBFS**: *est\_to\_goal(s, t)* **Dijkstra**:  $est_to\_source(s,s) := 0$ 

#### **GreedyBFS**: *est\_to\_goal*(*v*, *t*) **Dijkstra**:

update\_est\_to\_source(v,u,s)

 $min\{v.metric, u.metric + dist(u,v)\}$ a.k.a,  $min\{v.metric, dist(s, u) + dist(u,v)\}$ 

GreedyBFS is fast, but may be incorrect; Dijkstra's algorithm is slower, but always correct; Can we have an algorithm that is both fast and correct?









- For each node *u*:
  - *u.est\_to\_s* maintains an (over or accurate) estimate of dist(u,s), and this value changes during execution;
  - u.est\_to\_t maintains an (under or accurate) estimate of dist(u,t), and this value does not change during execution.
  - Use  $u.est_to_s + u.est_to_t$  as the metric to guide the search!
- Usually set to the straight-line distance between *u* and *t*.

### The A\* algorithm

AStarPathfinding(G, s, t):

for each node u in V

 $u.est\_to\_s := INFINITY$ 

 $u.est\_to\_t := heuristic(u,t)$ 

*u.metric* := *u.est\_to\_s* + *u.est\_to\_t* 

*s.est\_to\_s* := 0, *s.metric* := *s.est\_to\_s* + *s.est\_to\_t* Build priority queue Q based on metric while !Q.empty()

u := Q.ExtractMin()

for each *edge* (u,v) in *E* 

if  $v \notin Q$  or  $v.est_to_s > u.est_to_s + dist(u, v)$ 

 $v.est\_to\_s := u.est\_to\_s + dist(u, v)$ 

*v.metric* := *v.est\_to\_s* + *v.est\_to\_t* 

v.parent := u

Q.Add(v)





# The A\* algorithm

#### Dijkstra's Algorithm

|    |    |    |    |    |    |    |    | <u> </u> |    |    |    |    |    |    |
|----|----|----|----|----|----|----|----|----------|----|----|----|----|----|----|
| 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20       | 21 | 22 | 23 |    |    |    |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19       | 20 | 21 | X  |    |    |    |
| 10 | 11 | 12 | 13 | 14 |    |    |    |          |    |    |    |    |    |    |
| 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17       | 18 | 19 | 20 |    |    |    |
| 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16       | 17 | 18 | 19 |    |    |    |
| 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15       | 16 | 17 | 18 |    | 22 |    |
| 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14       | 15 | 16 | 17 |    | 21 | 22 |
| 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13       | 14 | 15 | 16 |    | 20 | 21 |
| 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12       | 13 | 14 | 15 |    | 19 | 20 |
| 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11       | 12 | 13 | 14 |    | 18 | 19 |
| 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10       | 11 | 12 | 13 |    | 17 | 18 |
| 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9        | 10 | 11 | 12 |    | 16 | 17 |
| Ê  | 1  |    |    |    |    |    |    |          |    |    |    |    | 15 | 16 |
| 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9        | 10 | 11 | 12 | 13 | 14 | 15 |
| 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10       | 11 | 12 | 13 | 14 | 15 | 16 |



#### **Greedy Best-First**

| 6  | 5  | 4  | 3 | 2 |   |  |  |
|----|----|----|---|---|---|--|--|
| 5  | 4  | 3  | 2 | 1 | X |  |  |
|    |    |    |   |   |   |  |  |
| 7  | 6  | 5  | 4 | 3 | 2 |  |  |
| 8  | 7  | 6  | 5 | 4 | 3 |  |  |
| 9  | 8  | 7  | 6 | 5 | 4 |  |  |
| 10 | 9  | 8  | 7 | 6 | 5 |  |  |
| 11 | 10 | 9  | 8 | 7 | 6 |  |  |
|    |    | 10 | 9 | 8 | 7 |  |  |
|    |    |    |   | 9 | 8 |  |  |
|    |    |    |   |   | 9 |  |  |
|    |    |    |   |   |   |  |  |
|    |    |    |   |   |   |  |  |
|    |    |    |   |   |   |  |  |
|    |    |    |   |   |   |  |  |
|    |    |    |   |   |   |  |  |

A\* Search

|    |    |    |    | 24 | 24 | 24 | 24 | 24 | 24 | 24 |    |
|----|----|----|----|----|----|----|----|----|----|----|----|
|    |    |    | 24 |    | 22 |    |    |    |    |    | X  |
|    |    |    | 24 | 22 |    |    |    |    |    |    |    |
|    |    |    | 24 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
|    |    |    | 24 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
|    |    |    | 24 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
|    |    |    | 24 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
|    |    |    | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
|    |    | 22 | 22 | 22 | 22 | 24 | 24 | 24 | 24 | 24 | 24 |
|    | 22 | 22 | 22 | 22 |    |    |    |    |    |    |    |
| 22 | 22 | 22 | 22 |    |    |    |    |    |    |    |    |
| 22 | 22 | 22 |    |    |    |    |    |    |    |    |    |
| Ŷ  | 22 |    |    |    |    |    |    |    |    |    |    |
| 24 |    |    |    |    |    |    |    |    |    |    |    |
|    |    |    |    |    |    |    |    |    |    |    |    |

























### The A\* algorithm

- Correctness of the A<sup>\*</sup> algorithm?
  - It is correct as long as  $u.est\_to\_t \leq dist(u,t)$  always hold.
- Time complexity of the A<sup>\*</sup> algorithm?

  - depth of the solution (the shortest path).

More complicated as a node may be added to the queue multiple times.

• In AI community, it is normally considered to be  $O(b^d)$ , where b is the branching factor (the average number of successors per state), and d is the

The heuristic function has a major effect on the practical performance of A\* search, since a good heuristic allows A<sup>\*</sup> to prune away many of the  $b^d$  nodes.



### Further reading

- [CLRS] Ch.24 (excluding 24.4)
- [DPV] Ch.4
- [Erickson] Ch.8
- ulletabout A\* algorithm





#### Refer to https://www.redblobgames.com/pathfinding/a-star/introduction.html if you want to know more

