单源最短路径

Single－Source Shortest Path

钮銍涛
Nanjing University
2023 Fall

The slides are mainly adapted fiom the original ones shared by Chaodong Zheng and Kevin Wayne．Thanks for their supports！

The Shortest Path Problem

- Given a map, what's the shortest path from s to t?
- Consider a graph $G=(V, E)$ and a weight function w that associates a real-valued weight $w(u, v)$ to each edge (u, v). Given s and t in V, what's the min weight path from s to t ?

The Shortest Path Problem

－Weights are not always lengths．
－E．g．，time，cost，．．．to walk the edge．
－The graph can be directed．
－Thus $w(u, v) \neq w(v, u)$ possible．
－Negative edge weight allowed．
－Negative cycle not allowed．
－Problem not well－defined then．

Single-Source Shortest Path (SSSP)

- The SSSP Problem: Given a graph $G=(V, E)$ and a weight function w, given a source node s, find a shortest path from s to every node $u \in V$.
- Consider directed graphs without negative cycle.
- Case 1: Unit weight.
- Case 2: Arbitrary positive weight.
- Case 3: Arbitrary weight without cycle.
- Case 4: Arbitrary weight.

SSSP in unit weight graphs

－How to solve SSSP in an unit weight graph？
－That is，a graph in which each edge is of weight 1.
－＂Traverse by layer＂in an unweighted graph！
－Visit all distance d nods before visiting any distance $d+1$ node．
－Simple，just use BFS！

SSSP in positive weight graphs

－Solve SSSP in a graph with arbitrary positive weights？
－Extension of unit graph SSSP algorithm：
－Add dummy nodes on edges so graph becomes unit weight graph．
－Run BFS on the resulting graph．

The problem is that it is too slow when edge weights are large！

Extension of the BFS algorithm

－To save time，bypass the events that process dummy nodes！
－Imagine we have an alarm clock T_{u} for each node u ．
－Alarm for source node s goes off at time 0.
－If T_{u} goes off，for each edge (u, v) ，update $T_{v}=\min \left\{T_{v}, T_{u}+w(u, v)\right\}$

－At any time，value of T_{u} is an estimate of $\operatorname{dist}(s, u)$ ．
－At any time，$T_{u} \geq \operatorname{dist}(s, u)$ ，with equality holds when T_{u} goes off．

Dijkstra's algorithm

- How to implement the "alarm clock"?
- Use priority queue (such as binary heap).

Edsger W. Dijkstra

DijkstraSSSP(G, s):

for each u in V

$$
\text { u.dist }:=I N F, \text { u.parent }:=N I L
$$

s.dist := 0

Build priority queue Q based on dist while !Q.empty()
$u:=$ Q.ExtractMin()
for each edge (u, v) in E

$$
\text { if } v . \text { dist }>u . d i s t+w(u, v)
$$

$$
\text { cat cactag }(a, v) \text { in } D
$$

$$
v . d i s t:=u . d i s t+w(u, v)
$$

$$
\text { v.parent }:=u
$$

Q.UpdateKey(v)

Shortest-path Tree - (Similar to BFS tree.)

Dijkstra＇s algorithm

－Correctness of Dijkstra＇s algorithm？
－Similar to the correctness proof of BFS．
－Efficiency of Dijkstra＇s algorithm？
－$O((n+m) \cdot \log n)$ when using a binary heap．while ！Q．empty（）

$$
u:=Q \cdot \operatorname{ExtractMin}()
$$

for each edge (u, v) in E
if v. dist $>u$ ．dist $+w(u, v)$ $v . d i s t:=u . d i s t+w(u, v)$

DijkstraSSSP（G，s）：

for each u in V

$$
\begin{equation*}
\text { u.dist }:=I N F, \text { u.parent }:=\text { NIL } \tag{n}
\end{equation*}
$$

s．dist ：＝ 0
Build priority queue Q based on dist $\quad O(n)$ v．parent $:=u$
Q．UpdateKey（v）

Alternative derivation of Dijkstra＇s algorithm

－What＇s BFS doing：expand outward from s ，growing the region to which distances and shortest paths are known．
－Growth should be orderly：closest nodes first．
－Given＂known region R＂，
－how to identify the node to expand to？

Alternative derivation of Dijkstra＇s algorithm

－Given＂known region R＂，assume v is such node to expand to（that is，the next closet node to s ），let the shortest path from s to v is $s \leadsto v$ ．
－It must be $\operatorname{dist}(s, v) \geq \operatorname{dist}\left(s, v^{\prime}\right)$ ，for any $v^{\prime} \in R$ ．（Otherwise it is already $v \in R$ ）
－Let the last node of the path $s \rightsquigarrow v$ before v be u ，then it must be $u \in R$ ． （Otherwise v is not the next closet node to s ）

Alternative derivation of Dijkstra＇s algorithm

－Given＂known region R＂，
－Find $\min _{u^{\prime} \in R, v^{\prime} \in V-R}\left\{\operatorname{dist}\left(s, u^{\prime}\right)+w\left(u^{\prime}, v^{\prime}\right)\right\}$ ，
－Any satisfied node v is the next node to expand to（the next closet node to s ）

Alternative derivation of Dijkstra＇s algorithm

－BFS expands outward from s ，growing the region to which distances and shortest paths are known．
－Given＂known region $\mathrm{R}^{\prime \prime}$ ，expend to the node with $\min _{u^{\prime} \in R, v^{\prime} \in V-R}\left\{\operatorname{dist}\left(s, u^{\prime}\right)+w\left(u^{\prime}, v^{\prime}\right)\right\}$ ．

```
DijkstraSSSPAbs(G, s):
for each }u\mathrm{ in }
    u.dist := INF
s.dist := 0
R:= \varnothing
while }R!=
    Find node v in V-R with min v.dist
    Addv to R
    for each edge (v,z) in E
        if z.dist > v.dist + w(v,z)
        z.dist := v.dist + w(v,z)
```

Alternative derivation of Dijkstra＇s algorithm

智能软件与工程学院

㲘

DFS，BFS，Prim，Dijkstra，and others．．．

DFSIterSkeleton（ G, s ）：
Stack Q
Q．push（s）
while ！Q．empty（）

$$
\begin{aligned}
& u:=Q . \text {.pop }() \\
& \text { if !u.visited } \\
& \quad \text { u.visited }:=\text { True } \\
& \quad \text { for each edge }(u, v) \text { in } E \\
& \quad Q . p u s h(v)
\end{aligned}
$$

DijkstraSSSPSkeleton（G，x）：

PriorityQueue Q
Q．add (x)
while ！Q．empty（）
$u:=Q$ ．remove（）
if ！u．visited u．visited ：＝True for each edge (u, v) in E if ！v. visited and \ldots Q．update（v，．．．）

BFSSkeletonAlt（G，s）：

FIFOQueue Q
Q．enque（s）
while ！Q．empty（）

$$
\begin{aligned}
& u:=\text { Q.dequeue }() \\
& \text { if ! } u \text {.visited } \\
& \quad \text { u.visited }:=\text { True } \\
& \quad \text { for each edge }(u, v) \text { in } E \\
& \text { Q.enque }(v)
\end{aligned}
$$

GraphExploreSkeleton（ G, s ）：

GenericQueue Q

Q．add（s）

while ！Q．empty（）

$$
u:=Q . \text { remove() }
$$

if ！u．visited
u．visited $:=$ True
for each edge (u, v) in E $Q . a d d(v)$

PrimMSTSkeleton（ G, x ）：

PriorityQueue Q
Q．add（x）
while ！Q．empty（）
$u:=Q$ ．remove（）
if ！u．visited u．visited ：＝True for each edge (u, v) in E if ！. ．visited and ．．．

Q．update（ v, \ldots ．

SSSP in graphs with negative weights

－Dijkstra＇s algorithm no longer works！
－Why would this happen？
－Dijkstra＇s algorithm for finding next closest node to expend to：
－Given＂known region R^{\prime}＂，find $\min _{u^{\prime} \in R, v^{\prime} \in V-R}\left\{\operatorname{dist}\left(s, u^{\prime}\right)+w\left(u^{\prime}, v^{\prime}\right)\right\}$ ．
－This is because：Let the last node of the path $s \rightarrow v$ before v be u ，then it must be $u \in R$ ．（Otherwise v is not the next closet node to s ）

SSSP in graphs with negative weights

Shortest distance from S to node A is 3 ？No！！！

$$
\operatorname{Try} S \rightarrow C \rightarrow B \rightarrow A
$$

－＂Shortest path from s to any node v must pass through nodes that are closer than v＂no longer holds！

SSSP in graphs with negative weights

－But how dist values are maintained in Dijkstra is helpful：
－Initially set s ．dist $=0$ ，and for each node $u \neq s$ ，set u ．dist $=\infty$ ．
－When processing edge (u, v) ，execute procedure Update（u，v）： $v . d i s t=\min \{v . d i s t, u \cdot d i s t+w(u, v)\}$
－This way two properties are maintained：
－For any v ，at any time，v ．dist is either an overestimate，or correct．
－Assume u is the last node on a shortest path from s to v ．If u ．dist is correct and we run Update（u，v），then v ．dist becomes correct．

SSSP in graphs with negative weights

－Update（ u, v ）is safe and helpful！
－［Safe］Regardless of the sequence of Update operations we execute， for any node v ，value v ．dist is either an overestimate or correct．
－［Helpful］With correct sequence of Update，we get correct v ．dist．

SSSP in graphs with negative weights

－Consider a shortest path from s to v ．
－Observation 1：if Update（ s, u_{1} ），Update（ $\mathrm{u}_{1}, \mathrm{u}_{2}$ ），．．．，Update（ $\mathrm{u}_{\mathrm{k}-1}, \mathrm{u}_{\mathrm{k}}$ ）， Update（ u_{k}, v ）are executed，then we correctly obtain the shortest path．
－Observation 2：in above sequence，before and after each Update，we can add arbitrary Update sequence，and still get shortest path from s to v ．
－Algorithm：simply Update all edges，for $k+1$ times！

SSSP in graphs with negative weights

Update all edges
－But how large is $k+1$ ？
－Observation 3：any shortest path cannot contain a cycle．（WHY？）
－Algorithm：simply Update all edges，for $n-1$ times！
－The Bellman－Ford Algorithm！

The Bellman－Ford Algorithm

－Bellman－Ford Algorithm：
－Update all edges；
－Repeat above step for $n-1$ times．
－The complexity is ：$\Theta(n(m+n))$

BellmanFordSSSP（G，s）：

for each u in V

$$
\text { u.dist }:=I N F, \text { u.parent }:=\text { NIL }
$$

s．dist $:=0$
repeat $n-1$ times
for each edge (u, v) in E

$$
\text { if } v . d i s t>u . d i s t+w(u, v)
$$

$v . d i s t:=u . d i s t+w(u, v)$
v．parent $:=u$

The Bellman－Ford Algorithm

－Edge order：$(t, x),(t, y),(t, z),(x, t),(y, x),(y, z),(z, x),(z, s),(s, t),(s, y)$

The Bellman－Ford Algorithm

－What if the graph contains a negative cycle？
－Then the Observation 3 （any shortest path cannot contain a cycle．）does not hold！
－It means that after $n-1$ repetitions of ＂Update all edges＂，some node v still has v. dist $>u$ ．dist $+w(u, v)$ ．

BellmanFordSSSP（G，s）：

for each u in V

$$
\text { u.dist }:=I N F, u . p a r e n t:=\text { NIL }
$$

s．dist ：＝ 0
repeat $n-1$ times
for each edge (u, v) in E
if $v . d i s t>u . d i s t+w(u, v)$
$v . d i s t:=u . d i s t+w(u, v)$
v．parent $:=u$
for each edge（ u, v ）in E
If $v . d i s t>u . d i s t+w(u, v)$
return＂negative circles＂

SSSP in DAG（with negative weights）

－Bellman－Ford still works，but we can be more efficient！
－Core idea of Bellman－Ford：perform a sequence of Update that includes every shortest path as a subsequence．
－Observation：in DAG，every path，thus every shortest path，is a subsequence in the topological order．

DAGSSSP（G，s）：

for each u in V

$$
\text { u.dist }:=I N F, \text { u.parent }:=\text { NIL }
$$

s．dist $:=0$
Run DFS to obtain topological order for each node u in topological order for each edge (u, v) in E

$$
\begin{aligned}
& \text { if } v . \operatorname{dist}>u . \operatorname{dist}+w(u, v) \\
& \quad v . d i s t:=u . \operatorname{dist}+w(u, v) \\
& \quad v . \text { parent }:=u
\end{aligned}
$$

Application of SSSP in DAG：Computing Critical Path

－Assume you want to finish a task that involves multiple steps．Each step takes some time． For some step（s），it can only begin after certain steps are done．
－These dependency can be modeled as a DAG．（PERT Chart）
－How fast can you finish this task？
－Equivalently，longest path，a．k．a．critical path，in the DAG？
－Negate edge weights and compute a shortest path．

Summary

－The SSSP Problem：Given a graph $G=(V, E)$ and a weight function w ，given a source node s ，find a shortest path from s to every node $v \in V$ ．
－Case 1：Unit weight graphs（directed or undirected）：Simply use BFS．$O(n+m)$ runtime．
－Case 2：Arbitrary positive weight graphs（directed or undirected）：Dijkstra＇s algorithm．A greedy algorithm．$O((n+m) \log n)$ runtime．
－Case 3：Arbitrary weight without cycle in directed graphs：Update in topological order．$O(n+m)$ runtime．
－Case 4：Arbitrary weight without negative cycle in directed graphs：Bellman－Ford algorithm． $\Theta(n(m+n))$ runtime，can detect negative cycle．

The shortest path problem has optimal substructure property．

Pathfinding＊

$-$

（Shortest）Pathfinding＊

－Given a graph $G=(V, E)$ ，how to find a（shortest）path from a source s to a destination t ，preferably efficiently．

We could use BFS or Dijkstra．
（3）

\square

| | |
| :--- | :--- | :--- |
| | |
| | |

－
．
路
 $\begin{array}{cc}\square \square \square \square \\ \square & \square \\ \square \square \square \square\end{array}$

 －

I

\square A

But we could be MUCH faster!

Dijkstra's Algorithm

ijkstra's Algorithm

Greedy Best-First Search
\times

Dijkstra's Algorithm
N

Greedy Best-First Search

3

K

Greedy Best-First Search

GreedyBFS(G, s, t):

s.est_to_goal $:=$ heuristic (s, t)

Build priority queue Q based on est_to_goal
while !Q.empty()

```
u:= Q.ExtractMin()
for each edge (u,v) in E
    if}v\not\in
    v.est_to_goal := heuristic(v,t)
    v.parent :=u
    Q.Add(v)
```

- A (not necessarily accurate) estimate on the distance from v to t.
- On 2D grid, we can set heuristic $(v, t)=\operatorname{ManhattanDist}(v, t)=|v \cdot x-t \cdot x|+|v \cdot y-t \cdot y|$.

Greedy BFS does not always generate correct answer

PathfindingFramework（G，s，t）：

for each node u in V
u．metric ：＝INFINITY

GreedyBFS：est＿to＿goal（ (s, t) Dijlkstra：est＿to＿source（ s, s ）：＝ 0
s．metric $:=$ CalcMetric (s, s, t)
Build priority queue Q based on metric
while ！Q．empty（）

$$
u:=Q \cdot \operatorname{ExtractMin}()
$$

$$
\text { for each edge }(u, v) \text { in } E
$$ new＿metric $:=\operatorname{UpdateMetric}(v, u, s, t)$ if $v \notin Q$ or $n e w _m e t r i c<v . m e t r i c$

v．metric $:=$ new＿metric
v．parent $:=u$
Q．AddorUpdate（v）

GreedyBFS：est＿to＿goal（ $v, t)$ Dijlkstra：
update＿est＿to＿source（v，u，s）
$\min \{v . m e t r i c, u$. metric $+\operatorname{dist}(u, v)\}$
a．k．a， $\min \{v . m e t r i c, \operatorname{dist}(s, u)+\operatorname{dist}(u, v)\}$

The A^{*} algorithm

－For each node u ：
－u．est＿to＿s maintains an（over or accurate）estimate of $\operatorname{dist}(u, s)$ ，and this value changes during execution；
－u．est＿to＿t maintains an（under or accurate）estimate of $\operatorname{dist}(u, t)$ ，and this value does not change during execution．
－Use u．est＿to＿s＋u．est＿to＿t as the metric to guide the search！
－Usually set to the straight－line distance between u and t ．

AStarPathfinding（ G, s, t ）：

for each node u in V

$$
\begin{gathered}
\text { u.est_to_s }:=\text { INFINITY } \\
\text { u.est_to_ } t:=\text { heuristic }(u, t) \\
\text { u.metric }:=u . e s t _t o _s+u . e s t _t o _t \\
\text { s.est_to_s }:=0, s . m e t r i c:=s . e s t _t o _s+s . e s t _t o _t
\end{gathered}
$$

Build priority queue Q based on metric
while ！Q．empty（）

$$
u:=Q \cdot E x t r a c t M i n()
$$

for each edge (u, v) in E if $v \notin Q$ or v．est＿to＿s $>$ u．est＿to＿s $+\operatorname{dist}(u, v)$

$$
\begin{aligned}
& \text { v.est_to_s }:=u . e s t _t o _s+\operatorname{dist}(u, v) \\
& v . m e t r i c:=v . e s t _t o _s+v . e s t _t o _t \\
& \text { v.parent }:=u \\
& Q . A d d(v)
\end{aligned}
$$

The A^{*} algorithm

Dijkstra's Algorithm

12	13	14	15	16	17	18	19	20	21	22	23			
11	12	13	14	15	16	17	18	19	20	21				
10	11	12	13	14										
9	10	11	12	13	14	15	16	17	18	19	20			
8	9	10	11	12	13	14	15	16	17	18	19			
7	8	9	10	11	12	13	14	15	16	17	18	22		
6	7	8	9	10	11	12	13	14	15	16	17	21	22	
5	6	7	8	9	10	11	12	13	14	15	16	20	21	
4	5	6	7	8	9	10	11	12	13	14	15	19	20	
3	4	5	6	7	8	9	10	11	12	13	14	18	19	
2	3	4	5	6	7	8	9	10	11	12	13	17	18	
1	2	3	4	5	6	7	8	9	10	11	12	16	17	
-	1											15	16	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

Greedy Best-First

A* Search

$f:$ metric，h ：estimate to goal

2

$$
h(d)=4.5
$$

$h(c)=2$

$$
f(e)=5+2
$$

$$
f(b)=3+2
$$

$h(c)=2$
$f(e)=5+2$
$f(c)=6+4$

$$
f(e)=5+2
$$

The A^{*} algorithm

－Correctness of the A^{*} algorithm？
－It is correct as long as $u . e s t _t o _t \leq \operatorname{dist}(u, t)$ always hold．
－Time complexity of the A^{*} algorithm？
－More complicated as a node may be added to the queue multiple times．
－In AI community，it is normally considered to be $O\left(b^{d}\right)$ ，where b is the branching factor（the average number of successors per state），and d is the depth of the solution（the shortest path）．
－The heuristic function has a major effect on the practical performance of A^{*} search，since a good heuristic allows A^{*} to prune away many of the b^{d} nodes．

Further reading

－［CLRS］Ch． 24 （excluding 24．4）
－［DPV］Ch． 4
－［Erickson］Ch． 8
－Refer to https：／／www．redblobgames．com／pathfinding／a－star／introduction．html if you want to know more about A^{*} algorithm

Algorithms

