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The Shortest Path Problem

 Given a map, what’s the shortest path from s to t?

» Consider a graph G = (V, E) and a weight function wthat associates a

real-valued weight w(u, v) to each edge (u, v). Given s and ¢ in V, what’s
the min weight path from s to 77
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- The Shortest Path Problem

 Weights are not always lengths.

> E.g., time, cost, ... to walk the edge.

 The graph can be directed.
» Thus w(u, v) # w(v, u) possible.
* Negative edge weight allowed.

 Negative cycle not allowed.

> Problem not well-defined then.
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Slngle-Source Shortest Path (SSSP)

e The SSSP Problem: Given a graph G = (V, E) and a weight function w,
given a source node s, find a shortest path from s to every node u € V.

 Consider directed graphs without negative cycle.

> Case 1: Unit weight.

> Case 2: Arbitrary positive weight.

> Case 3: Arbitrary weight without cycle. 3 A

> Case 4: Arbitrary weight. 0
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SSSP in unit weight graphs

« How to solve SSSP in an unit weight graph??

> That is, a graph in which each edge is of weight 1.

e “Traverse by layer” in an unweighted graph!

> Visit all distance d nods before visiting any distance d + 1 node.

> Simple, just use BFS!

1 \® 1 @ Q/
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SSSP in positive weight graphs

e Solve SSSP in a graph with arbitrary positive weights?

* Extension of unit graph SSSP algorithm:

> Add dummy nodes on edges so graph becomes unit weight graph.
> Run BFS on the resulting graph.

(A L(A,
50 1 1 (1) 1
S 50 G 1 1@‘1

The problem is that it is too slow when edge weights are large!
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Extension of the BFS algorithm

* Jo save time, bypass the events that process dummy nodes!

> Imagine we have an alarm clock 1, for each node u.

> Alarm for source node s goes off at time O.

~ If T, goes off, for each edge (u, v), update I, =min{T,T, +wu,v)}

We just need to set the alarm clock of

Not interesting!

each node, and update it when some
alarm clock goes off (snooze through

. El\ these boring nodes )!

Interesting!

. _ _ , “Not interesting!
e At any time, value of T, is an estimate of dist(s, u).

 Atanytime, T, > dist(s, u), with equality holds when T, goes off.



Dijkstra's algorithm

e How to implement the “alarm clock”? DijkstraSSSP(G, s): é.?é’.?i‘?i%aégﬁii
for each u in V
> Use priority queue (such as binary heap). u dist = INF u.parém — NITL
s.dist :==0
Build priority queue Q based on dist

while /Q.empty()
u = Q.ExtractMin()

for each edge (u,v) in E
it v.dist > u.dist + w(u, v)
vdist ;= u.dist + w(u, v)
v.parent .= u
Q.UpdateKey(v)

Edsger W. Dijkstra



Dijkstra's algorithm

» Correctness of Dijkstra’s algorithm? D11kstraSSSP(G, s):
foreach uin V
u.dist .= INF, u.parent .= NIL
 Efficiency of Dijkstra’s algorithm? s.dist == 0
Build priority queue Q based on dist  On)
> O((n + m) - log n)when using a binary heap. while /Q.empty()
u = Q.ExtractMin() O(nlog n)
for each edge (u,v) in E
it v.dist > u.dist + w(u, v)
vdist ;= u.dist + w(u, v)
v.parent ;= u
O.UpdateKey(v)

> Similar to the correctness proof of BFS. O(n)

O(mlogn
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Alternative derivation of Dijkstra’s algorithm

 What’s BFS doing: expand outward from s, growing the region to which distances
and shortest paths are known.

> Growth should be orderly: closest nodes first.

* Given “known region R”,

> how to identify the node to expand to?
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» Given “known region R”, assume Vv is such node to expand to (that is, the next
closet node to ), let the shortest path from stovis s « v.

> |t must be dist(s,v) > dist(s, V'), forany v' € R.

> Let the last node of the path s ~ v before v be u, then it must be u € R.
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Alternative derivation of Dijkstra’s algorithm

Known region R

« Given “known region R”,

o Find min  {dist(s,u’) + w(u',v’)},
u'eRv'eV—R

> Any satisfied node v is the next node to expand to (the next closet node to )
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Alternative derivation of Dijkstra’s algorithm

 BFS expands outward from s, growing the region to which distances and shortest paths are known.

_ Given “known region R”, expend to the node with min  {dist(s,u’) + w(u',v’)} .

u'e€R,v'eV-R
iy DijkstraSSSP(G, s):
DijkstraSSSPAbs(G, s): IkstrasSSPG. s)
. foreachuin V
foreach uin V e INE -
u dist = INF | u.dist ;= , u.parent .=
. s.dist :=0
s.dist :=0 | o |
R = Build priority queue Q based on dist
B hile 1Q.
while R 1=V while !Q.empty() |
. . . . . u .= Q.ExtractMin()
Find node vin V- R with min v.dist :
for each edge (u,v) in E
Addvto R

it v.dist > u.dist + w(u, v)
v.dist .= u.dist + w(u, v)
v.parent ;= u
Q.UpdateKey(v)

for each edge (v, 2) in E
if z.dist > v.dist + w(v, 7)
z.dist == vdist + w(v, 7)
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Alternative derivation of Dijkstra’s algorithm
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DFS BFS,

DESIterSkeleton(G. s):
Stack QO

Q.push(s)

while !Q.empty()

u = Q.pop()
if lu.visited

u.visited = True
for each edge (u, v) in E

O .push(v)

DijkstraSSSPSkeleton(G, x):

PriorityQueue Q
0.add(x)

while 'Q.empty()
u = Q.remove()

if lu.visited
u.visited .= True
for each edge (1, v) in E
if lv.visited and ...
O .update(v, ..

)

Prim, Dijkstra, and others...

BESSkeletonAlt(G, s):
FIFOQueue Q
0 .enque(s)

while 10 .empty()
u .= Q.dequeue()

if lu.visited
u.visited = True
for each edge (u, v) in E

0 .enque(v)

GraphExploreSkeleton(G, s):

GenericQueue QO
Q.add(s)
while !Q.empity()
u .= Q.remove()
if lu.visited
u.visited := True
for each edge (1, v) in E
Q.add(v)

PrimMSTSkeleton(G, x):

PriorityQueue Q
Q.add(x)

while 'Q.empty()
u .= Q.remove()

if lu.visited
u.visited := True
for each edge (u, v) in E
if lv.visited and ...
O .update(v, ..

)
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SSSP in graphs with negative weights

* Dijkstra’s algorithm no longer works!
 \Why would this happen?
* Dijkstra’s algorithm for finding next closest node to expend to:

Given “known region R”, find min  {dist(s,u’) + w(u',v’)} .
u'eR,y'eV—-R

> This is because: Let the last node of the path s w» v before v be u, then
it must be u € R. (Otherwise v is not the next closet node to )

However, negative edge makes this does not hold!
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SSSP in graphs with negative weights

Known region

Shortest distance from S to node A is 3? No!!!
TryS—-—C—>B-—-> A

e “Shortest path from s to any node v must pass through nodes that are
closer than v” no longer holds!
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SSSP in graphs with negative weights

« But how dist values are maintained in Dijkstra is helpful:

> |nitially set s . dist = 0, and for each node u # s, set u . dist = 0.

» When processing edge (u, v), execute procedure Update (u, v):
v.dist = min{v.dist,u .dist + w(u,v)}

* This way two properties are maintained:
> For any v, at any time, v . dist is either an overestimate, or correct.

» Assume u is the last node on a shortest path from s to v. If u . dist is correct and
we run Update (u, v),thenv.dist becomes correct.
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SSSP in graphs with negative weights

e Update (u,v) Is safe and helpful!

» [Safe] Regardless of the sequence of Update operations we execute,
for any node v, value v . dist is either an overestimate or correct.

> [Helpful] With correct sequence of Update, we get correct v . dist.
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SSSP in graphs with negative weights

Update(s, uj) Update(uy,uz) Update(u-1,ux) Update(ug,v)

&—8—0

e Consider a shortest path from s to v.

’0

> Observation 1: if Update (s, ui), Update (ui,uz), ..., Update (ux-1,ux),
Update (ux, v) are executed, then we correctly obtain the shortest path.

> Observation 2: in above sequence, before and after each , we can add
arbitrary sequence, and still get shortest path from s to v.

 Algorithm: simply Update all edges, for k + 1 times!

Update all edges Update all edges

Update all edges Update all edges Update all edges

- O
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 SSSPin graphs with negative weights

Update all edges Update all edges

Update all edges Update all edges Update all edges

e But how large is k + 17

> Observation 3: any shortest path cannot contain a cycle. (WHY?)
o Algorithm: simply Update all edges, for n — 1 times!

> The Bellman-Ford Algorithm!
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The Bellman-Ford Algorithm

* Bellman-Ford Algorithm: BellmanFordSSSP(G. s):
» Update all edges; for eachuin V
u.dist .= INF, u.parent := NIL
> Repeat above step for n — 1 times. < dist =0

repeat n - 1 times
for each edge (u,v)in E
it v.dist > u.dist + w(u, v)
vdist .= u.dist + w(u, v)
v.parent .= u

« The complexity is : ® (n(m + n))

Richard E. Bellman Lester Randolph Ford Jr.
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The Bellman-Ford Algorithm

+ Edge order: (7, %), (1, ), (1, 2), (%, 1), (3, %), (¥, 2), (2, %), (2, 5), (5, 1), (5, )

t S X

X
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The Bellman-Ford Algorithm

 What if the graph contains a negative cycle? BellmanFordSSSP(G, s):

for eachuinV

> Then the Observation 3 (any shortest u.dist := INF, uparent := NIL

path cannot contain a cycle.) does not

Hold! s.dist =0
repeat n - 1 times
> |t means that after n — 1 repetitions of for each edge (14, v) in E
“Update all edges”, some node v still it v.dist > u.dist + w(u, v)
hasv.dist > u.dist + w(u,v). v.dist = u.dist + w(u, v)

v.parent := u
for each edge (u, v) in E
Bellman-Ford can also detect negative cycle! It v.dist > u.dist + w(u, v)
‘ ' return “negative circles”
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- SSSP in DAG (with negative weights)

 Bellman-Ford still works, but we can be
more efficient!

 Core idea of Bellman-Ford: perform a
seguence of Update that includes every

shortest path as a subsequence.

 Observation: in DAG, every path, thus
every shortest path, is a subsequence In
the topological order.

O(m + n) time complexity

DAGSSSP(G.S):
for each uin V
u.dist .= INF', u.parent .= NIL
s.dist :=0
Run DFS to obtain topological order
for each node u in topological order
for each edge (u, v) in E
it v.dist > u.dist + w(u, v)
vdist .= u.dist + w(u, v)
v.parent ;= u
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 Assume you want to finish a task that involves multiple steps. Each step takes some time.
For some step(s), it can only begin after certain steps are done.

 These dependency can be modeled as a DAG. (PERT Chart)
 How fast can you finish this task?
 Equivalently, longest path, a.k.a. critical path, in the DAG?

* Negate edge weights and compute a shortest path.

Install roof
3 days

Dig ground Lay foundations Frame house

a 6 days e 11 days e 21 days

Install sheetrock Paint walls Install flooring

4 days ° 3 days e 3 days
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Summary

» The SSSP Problem: Given a graph G = (V, E) and a weight function w, given a source node s, find a
shortest path from s to every node v € V.

« Case 1: Unit weight graphs (directed or undirected): Simply use BFS. O(n + m) runtime.

 Case 2: Arbitrary positive weight graphs (directed or undirected) : Dijkstra’s algorithm. A greedy
algorithm. O((n + m)log n)runtime.

o Case 3: Arbitrary weight without cycle in directed graphs: Update in topological order. O(n + m)
runtime.

 Case 4: Arbitrary weight without negative cycle in directed graphs: Bellman-Ford algorithm.
®(n(m + n)) runtime, can detect negative cycle.

The shortest path problem has optimal substructure property.

Update Is a safe and helpful operation.
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Pathfinding )
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(Shortest) Pathfinding’

e Givenagraph G = (V, E), how to find a (shortest) path from a source s to
a destination 7, preterably efficiently.

LW R -
Al i K
Yo ln

2
"



We could use BFS or Dijkstra.
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Dijkstra’s Algorithm Greedy Best-First Search Dijkstra’s Algorithm Greedy Best-First Search Dijkstra’s Algorithm Greedy Best-First Search
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Greedy Best-First Search

GreedyBES(G, s, t):
s.est_to_goal := heuristic(s,t)
Build priority queue Q based on est_to_goal
while !Q.empty()
u = Q.ExtractMin()
for each edge (u,v) in E

Does greedy BFS always

if
V % Q generate correct answer?
v.est_to_goal := heuristic(v,t)

v.parent .= u

O .Add(v)

e A (not necessarily accurate) estimate on the distance from v to f.

>~ On 2D grid, we can set heuristic(v,t) = ManhattanDist(vit) = |v.x —t. x|+ |v.y—1t.Vy].
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Dijkstra’s Algorithm Greedy Best-First Search ; Dijkstra’s Algorithm Greedy Best-First Search E Dijkstra’s Algorithm Greedy Best-First Search

Dijkstra’s Algorithm Greedy Best-First Search E Dijkstra’s Algorithm Greedy Best-First Search E Dijkstra’s Algorithm Greedy Best-First Search

ssp B m

Dijkstra’s Algorithm Greedy Best-First Search E Dijkstra’s Algorithm Greedy Best-First Search ] Dijkstra’s Algorithm Greedy Best-First Search
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PathﬁndmgFramework( G.,s, t):
for each node uin V

u.metric ;= INFINITY _
s.metric = Cachetric(s,S;t)

. GrecdyBFS: o o

Dljkstra est_to_ S0urce(s S) —O 1'

Build priority queue Q based on metric I _
while 1Q.empty() GreedyBFS: est_to_goal(v, 1)
u = Q.ExtractMin() | {Dijkstra:
for each edge (u,v) in E update est_to Saurce( V,U,S )

new_metric .= UpdateMetric(v, u, s, t) P

min{v.metric, u.metric + dist(u,v)}

ifv & Q or new_metric < v.metric ak.a, min{v.metric, dist(s, u) + dist(u,v)}
v.metric = new_metric

v.parent ;.= u GreedyBFS is fast, but may be incorrect;
Dijkstra’s algorithm is slower, but always correct;
Q.AddorUpdate(v) Can we have an algorithm that is both fast and correct?
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The A" algorithm

e For each node u:

> u.est_to_s maintains an (over or

accurate) estimate of dist(u,s), and this
value changes during execution;

> u.est_to_t maintains an (under or
accurate) estimate of dist(u,t), and this

value does not change during execution.

> Useu.est to s + u.est to t as the
metric to guide the search!

o Usually set to the straight-line distance
between 1 and .

AStarPathfinding(G, s, t):

for each node uin V
u.est to s .= INFINITY
u.est_to_t .= heuristic(u,t)
u.metric .= u.est_to_s + u.est_to_t
s.est_ to_s =0, s.metric ;= s.est_to_s + s.est_to_t
Build priority queue Q based on metric
while !Q.empty()
u = Q.ExtractMin()
for each edge (u,v) in E

ifv& Qorvest to_s> u.est_to_s + dist(u, v)
vest_to_s = u.est_to_s + dist(u, v)

v.metric :=v.est to s+ v.est to t

v.parent .= u

O .Add(v)
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The A" algorithm

Dijkstra’s Algorithm Greedy Best-First A* Search

12 13 14 15 16 17 18 19 20 21 22 23 8 7 6 5 4 3 2

N

24 24 24 24 24 24

11 12 13 14 15 16

17 18

19

21

8 7 6 5 4 3 2 1

10 11 12 13 14
9 10 11 12 13

8 9 10 M1 12 13 14 15 16 17 18 19

R R R R R R R R R

7 8 1 22
6 7 21 22
5 6 20 21
4 5 19 20
3 4 18 19 18 22
2 3 17 18 20 19
1 2 16 17
1 15 16

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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h(d) = 4.5 o h(d) = 4.5 o hd) = 4.5

f(b)=3.5+2 fc) = 6.5+4

fla)=1.5+4 We)=2  fld)=2+45 He)=2  fld)=2+45

h(c) =2 fd)=2+45

2 . h(d) =4.5 o hd) = 4.5 2 hid) =4.5

nay=4h  @hle) =2 ' o) = | Di(e) =2

Wby =12 |2

h(c) =2 fle)=5+2 he) = 2 fle)=5+2 h(c) =2 fle)=5+2
f(b)y=3+2 flc)=6+4



The A" algorithm

e Correctness of the A" algorithm?

> |t is correct as long as u.est_to_t < dist(u,t) always hold.

 Time complexity of the A" algorithm?

> More complicated as a node may be added to the queue multiple times.

» In Al community, it is normally considered to be O(b%), where b is the

branching factor (the average number of successors per state), and d is the
depth of the solution (the shortest path).

> The heuristic function has a major effect on the practical performance of A*
search, since a good heuristic allows A* to prune away many of the b< nodes.
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Further reading

 [CLRS] Ch.24 (excluding 24.4)
 [DPV] Ch.4
* [Erickson] Ch.8

* Refer to https:// www.redblobgames.com/pathfinding/a-star/introduction.html if you want to know more

about A* algorithm
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https://www.redblobgames.com/pathfinding/a-star/introduction.html

