全源最短路径 All－Pairs Shortest Path

钮銍涛
Nanjing University
2023 Fall

The slides are mainly adapted fiom the original ones shared by Chaodong Zheng and Kevin Wayne．Thanks for their supports！

SSSP and APSP

- Single-Source Shortest Paths (SSSP) Problem:
- Given a graph $G=(V, E)$ and a weight function w, given a source node s, find a shortest path from s to every $u \in V$.
- All-Pairs Shortest Paths (APSP) Problem:
- Given a graph $G=(V, E)$ and a weight function w, for every pair $(u, v) \in V \times V$, find a shortest path from u to v.

APSP from multiple SSSP

－Straightforward solution for APSP：For each $v \in V$ ，execute SSSP algorithm once！

	SSSP	APSP
BFS （Unit－weight graphs） Dijkstra （Positive－weight graphs）	$O(n+m)=O\left(n^{2}\right)$	$O\left(n^{3}\right)$
$O((n+m) \lg n)=O\left(n^{2} \lg n\right)$ （Using binary heap for priority queue）	$O\left(n^{3} \lg n\right)$	
Bellman－Ford （Arbitary－weight Directed）	$O(n m)=O\left(n^{3}\right)$	$O\left(n^{4}\right)$
Topological Sort Variant （Arbitrary－weight DAG）	$O(n+m)=O\left(n^{2}\right)$	$O\left(n^{3}\right)$

APSP from multiple SSSP

－Positive－weight Graphs：Repeating Dijkstra gives $O\left(n^{3} \lg n\right)$ ．
－Arbitrary－weight Graphs：Repeating Bellman－Ford gives $O\left(n^{4}\right)$ ．
－Faster algorithms for arbitrary－weight graphs？
－Intuition：modify edge weights without changing shortest path，so that Dijkstra＇s algorithm can work．

APSP from multiple SSSP

－Intuition：modify edge weights without changing shortest path，so that Dijkstra＇s algorithm can work．
－Add $\max \{-1 \cdot w(u, v)\}$ to each edge？
－NO！Shortest paths may change！
－Given (u, v) ，different paths may change by different amount！

APSP from multiple SSSP

- Faster algorithms for arbitrary-weight graphs?
- Intuition: modify edge weights without changing shortest path, so that Dijkstra's algorithm can work.
- Requirement: $\hat{w}\left(u \xrightarrow{p_{1}} v\right)>\hat{w}\left(u \stackrel{p_{2}}{\sim} v\right) \Longleftrightarrow w\left(u \leadsto{ }^{p_{1}} v\right)>w\left(u^{p_{2}} v\right)$ new weight of path
- Or alternatively, for every path from u to v, \hat{w} changes it by the same amount:
- Let the $\hat{w}(u, v)=h(u)+w(u, v)-h(v)$
new weight of edge
- Imagine $h(u)$ is entry gift and $h(v)$ is exit tax for traveling through (u, v).

APSP from multiple SSSP

－$\hat{w}\left(u \xrightarrow{p_{1}} v\right)=\hat{w}\left(u \rightarrow x_{1} \rightarrow \ldots \rightarrow x_{k} \rightarrow v\right)=\hat{w}\left(u \rightarrow x_{1}\right)+\ldots+\hat{w}\left(x_{k} \rightarrow v\right)$

$$
\begin{aligned}
& =\left(h(u)+w\left(u \rightarrow x_{1}\right)-h\left(x_{1}\right)\right)+\left(h\left(x_{1}\right)+w\left(x_{1} \rightarrow x_{2}\right)-h\left(x_{2}\right)\right)+\ldots+ \\
& \left(h\left(x_{k-1}\right)+w\left(x_{k-1} \rightarrow x_{k}\right)-h\left(x_{k}\right)\right)+\left(h\left(x_{k}\right)+w\left(x_{k} \rightarrow v\right)-h(v)\right) \\
& =h(u)+w\left(u \rightarrow x_{1}\right)+\ldots+w\left(x_{k} \rightarrow v\right)-h(v) \\
& =h(u)+w\left(u \rightarrow x_{1} \rightarrow \ldots \rightarrow x_{k} \rightarrow v\right)-h(v)=h(u)+w(u \leadsto v)-h(v)
\end{aligned}
$$

APSP from multiple SSSP

－Since we need $\hat{w}(u, v)=h(u)+w(u, v)-h(v) \geq 0$（for Dijkstra algorithm）
－Just let $h(u)=\operatorname{dist}(z, u)$ for some fixed $z \in V$ ，then $\hat{w}(u, v)=\operatorname{dist}(u)+w(u, v)-\operatorname{dist}(v) \geq 0$

The shortest path from z to v must be ＂smaller than＂the shortest path from z to u add the edge from u to v ．
－But it is possible that we cannot find such z that reaches every node．

APSP from multiple SSSP

- Add node z that goes to every node in G with a weight 0 edge.
- $H=(V \cup\{z\}, E \cup\{(z, x) \mid x \in V\})$ with $w(z, x)=0$

APSP from multiple SSSP

－Re－weight edges：

JohnsonAPSP（G，s）：

$\hat{w}(u, v)=\operatorname{dist}(u)+w(u, v)-\operatorname{dist}(v) \geq 0$ Create $H:=(V+\{z\}, E+\{(z, v) \mid v \in V\})$ with $w(z, v)=0$
Bellman－FordSSSP（H，z）to obtain dist H_{H}
－For node pairs in G ，addition of z does not create new shortest path．
for each edge (u, v) in $H . E$

$$
w^{\prime}(u, v):=\operatorname{dist}_{H}(z, u)+w(u, v)-\operatorname{dist}_{H}(z, v)
$$

for each node u in $G . V$
DijkstraSSSP (G, u) with w＇to obtain $\operatorname{dist}_{G, w^{\prime}}$ for each node v in $G . V$

$$
\operatorname{dist}_{G}(u, v):=\operatorname{dist}_{G, w^{\prime}}(u, v)+\operatorname{dist}_{H}(z, v)-\operatorname{dist}_{H}(z, u)
$$

Proposed by Donald Bruce Johnson

APSP from multiple SSSP

－Johnson＇s algorithm combines Dijkstra and Bellman－Ford，resulting a runtime of $O\left(n^{3} \lg n\right)$ ，for arbitrary weight graphs．

JohnsonAPSP（G，s）：

Create $H:=(V+\{z\}, E+\{(z, v) \mid v \in V\})$ with $w(z, v)=0$
Bellman－FordSSSP（H，z）to obtain dist H_{H}
for each edge (u, v) in $H . E$

$$
w^{\prime}(u, v):=\operatorname{dist}_{H}(z, u)+w(u, v)-\operatorname{dist}_{H}(z, v)
$$

for each node u in $G . V$
$\operatorname{DijkstraSSSP}(G, u)$ with w＇to obtain $\operatorname{dist}_{G, w^{\prime}}$
for each node v in $G . V$

$$
\operatorname{dist}_{G}(u, v):=\operatorname{dist}_{G, w^{\prime}}(u, v)+\operatorname{dist}_{H}(z, v)-\operatorname{dist}_{H}(z, u)
$$

Floyd-Warshall Algorithm

APSP via Recursion

. $\operatorname{dist}(u, v)=\left\{\begin{array}{lc}0 & \text { if } u=v \\ \min _{(x, v) \in E}\{\operatorname{dist}(u, x)+w(x, v)\} & \text { otherwise }\end{array}\right.$

- This recurrence is correct, but it does not lead to a recursive algorithm directly!
- Cycle in the graph can make the recursion never ends!

APSP via Recursion

- Introduce an additional parameter in the recurrence:
- $\operatorname{dist}(u, v, l)$: shortest path from u to v that uses at most l edges.

$$
\operatorname{dist}(u, v)= \begin{cases}0 & \begin{array}{l}
\text { if } l=0 \text { an } \\
\infty \\
\text { if } l=0 \text { an } \\
\min \left\{\begin{array}{l}
\operatorname{dist}(u, v, l-1) \\
\min _{(x, v) \in E}\{\operatorname{dist}(u, x, l-1)+w(x, v)\}
\end{array}\right\} \\
\text { otherwise }
\end{array}\end{cases}
$$

APSP via Recursion

$\operatorname{dist}(u, v)= \begin{cases}0 & \text { if } l=0 \text { and } u=v \\ \infty & \text { if } l=0 \text { and } u \neq v \\ \min \left\{\begin{array}{l}\operatorname{dist}(u, v, l-1) \\ \min _{(x, v) \in E}\{\operatorname{dist}(u, x, l-1)+w(x, v)\}\end{array}\right\} & \text { otherwise }\end{cases}$
－Evaluate this recurrence easily in a＂bottom－up＂fashion！
－ $\operatorname{dist}(\cdot, \cdot, 0)$ are easy to compute，given input graph．
－ $\operatorname{dist}(\cdot, \cdot, 1)$ are easy to compute，if $\operatorname{dist}(\cdot, \cdot, 0)$ are known．
－ $\operatorname{dist}(\cdot, \cdot, l+1)$ are easy to compute，if $\operatorname{dist}(\cdot, \cdot, l)$ are known．
－ $\operatorname{dist}(\cdot, \cdot, n-1)$ are what we want！

Don＇t always need a recursive algorithm to evaluate recurrence，often an iterative alternative exists．

APSP via Recursion

```
RecursiveAPSP(G):
for each pair \((u, v)\) in \(V^{*} V\)
    if \(u=v\) then \(\operatorname{dist}[u, v, 0]:=0\)
    else \(\operatorname{dist}[u, v, 0]:=I N F\)
for \(l:=1\) to \(n-1\)
    for each node \(u\)
        for each node \(v\)
            \(\operatorname{dist}[u, v, l]:=\operatorname{dist}[u, v, l-1]\)
            for each edge \((x, v)\) going to \(v\)
            if \(\operatorname{dist}[u, v, l]>\operatorname{dist}[u, x, l-1]+w(x, v)\)
                \(\operatorname{dist}[u, v, l]:=\operatorname{dist}[u, x, l-1]+w(x, v)\)
```

Can we do better？

APSP via Recursion

$\operatorname{dist}(u, v)= \begin{cases}0 & \begin{array}{l}\text { if } l=0 \text { and } u=v \\ \infty \\ \text { if } l=0 \text { and } u \neq v\end{array} \\ \min \left\{\begin{array}{l}\operatorname{dist}(u, v, l-1) \\ \min _{(x, v) \in E}\{\operatorname{dist}(u, x, l-1)+w(x, v)\}\end{array}\right\} \\ \text { otherwise }\end{cases}$

- This recursion is like " 1 and $l-1$ split" in divide-and-conquer. How about " $l / 2$ and $l / 2$ split"?
- $\operatorname{dist}(u, v, l)= \begin{cases}w(u, v) & \text { if } l=1 \text { and }(u, v) \in E \\ \infty & \text { if } l=1 \text { and }(u, v) \notin E \\ \min _{x \in V}\{\operatorname{dist}(u, x, l / 2)+\operatorname{dist}(x, v, l / 2)\} & \text { otherwise }\end{cases}$
- Start with $\operatorname{dist}(\cdot,, 1)$, then double l each time, until $2^{\lceil\lg n\rceil}$.

APSP via Recursion

FasterRecursiveAPSP（G）：

for each pair (u, v) in $V^{*} V$
if (u, v) in E then $\operatorname{dist}[u, v, 1]:=w(u, v)$
else $\operatorname{dist}[u, v, 1]:=I N F$
for $i:=1$ to $\lceil\lg n\rceil$
for each node u
for each node v
$\operatorname{dist}\left[u, v, 2^{i}\right]:=I N F$
for each node x

$$
\begin{aligned}
& \text { if } \operatorname{dist}\left[u, v, 2^{i}\right]>\operatorname{dist}\left[u, x, 2^{i-1}\right]+\operatorname{dist}\left[x, v, 2^{i-1}\right] \\
& \quad \operatorname{dist}\left[u, v, 2^{i}\right]:=\operatorname{dist}\left[u, x, 2^{i-1}\right]+\operatorname{dist}\left[x, v, 2^{i-1}\right]
\end{aligned}
$$

Time complexity：
$O\left(n^{3} \lg n\right)$

Can this approach be better？

APSP via Recursion

－Strategy：recuse on the set of node the shortest paths use．（Previous algorithms recuse on number of edges the shortest paths use．）
－Number the vertices arbitrarily：$x_{1}, x_{2}, \ldots, x_{n}$ ；Define $V_{r}=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ to be the set of vertices numbered at most r ．
－Define $\operatorname{dist}(u, v, r)$ be length of shortest path from u to v ，s．t．only nodes in V_{r} can be intermediate nodes in paths．Let $\pi(u, v, r)$ be such a shortest path．

APSP via Recursion

- Observation: either $\pi(u, v, r)$ goes through x_{r} or not.
- Latter case: $\pi(u, v, r)=\pi(u, v, r-1)$
- Former case: $\pi(u, v, r)=\pi\left(u, x_{r}, r\right)+\pi\left(x_{r}, v, r\right)=\pi\left(u, x_{r}, r-1\right)+\pi\left(x_{r}, v, r-1\right)$

$$
\pi\left(u, x_{r}, r-1\right)
$$

The Floyd－Warshall Algorithm

Bernard Roy

Robert W．Floyd

Stephen Warshall

$$
\begin{aligned}
& \text { if } r=0 \text { and }(u, v) \in E \\
& \text { if } r=0 \text { and }(u, v) \notin E
\end{aligned}
$$

FloydWarshallAPSP（G）：
for each pair (u, v) in $V^{*} V$
if (u, v) in E then $\operatorname{dist}[u, v, 0]:=w(u, v)$
else $\operatorname{dist}[u, v, 0]:=I N F$
for $r:=1$ to n
for each node u for each node v

$$
\begin{aligned}
& \operatorname{dist}[u, v, r]:=\operatorname{dist}[u, v, r-1] \\
& \text { if } \operatorname{dist}[u, v, r]>\operatorname{dist}\left[u, x_{r}, r-1\right]+\operatorname{dist}\left[x_{r}, v, r-1\right] \\
& \quad \operatorname{dist}[u, v, r]:=\operatorname{dist}\left[u, x_{r}, r-1\right]+\operatorname{dist}\left[x_{r}, v, r-1\right]
\end{aligned}
$$

\section*{

 Transitive Closure of a directed graph

－Given directed graph $G=(V, E)$ with vertex set $V=\{1,2, \ldots, n\}$ ，define the transitive closure of G as the graph $G^{*}=\left(V, E^{*}\right)$ ，where
－$E^{*}=\{(i, j):$ there is a path from vertex i to j in $G\}$.
－Just assign weight 1 to each edge，and run Floyd－Warshall．Then if there is a path between u and v ， $\operatorname{dist}(u, v)<n$ ，otherwise $\operatorname{dist}(u, v)=\infty$
－Or alternatively（and more efficiently），use \vee（logical Or）and \wedge（logical And）for the arithmetic operations min and + ，and Define $t_{u, v}^{(k)}$ to indicate if there is a path from u to v with all intermediate vertices in $\{1,2, \ldots, k\}$ ：
－$t_{u v}^{(0)}= \begin{cases}0, & \text { if } u \neq v \text { and }(u, v) \notin E \\ 1, & \text { if } u=v \text { or }(u, v) \in E\end{cases}$
－For $k \geq 1, t_{u, v}^{(k)}=t_{u, v}^{(k-1)} \vee\left(t_{u, x_{k}}^{(k-1)} \wedge t_{x_{k}, v}^{(k-1)}\right)$

Application of APSP：Compute Transitive Closure

FloydWarshallAPSP（G）：
for each pair (u, v) in $V^{*} V$
if (u, v) in E then $\operatorname{dist}[u, v, 0]:=w(u, v)$
else $\operatorname{dist}[u, v, 0]:=I N F$
for $r:=1$ to n
for each node u
for each node v
$\operatorname{dist}[u, v, r]:=\operatorname{dist}[u, v, r-1]$
if $\operatorname{dist}[u, v, r]>\operatorname{dist}\left[u, x_{r}, r-1\right]+\operatorname{dist}\left[x_{r}, v, r-1\right]$
$\operatorname{dist}[u, v, r]:=\operatorname{dist}\left[u, x_{r}, r-1\right]+\operatorname{dist}\left[x_{r}, v, r-1\right]$

FloydWarshallTransitiveClosure（G）：
for each pair (u, v) in $V^{*} V$
if (u, v) in E then $t[u, v, 0]:=$ TRUE
else $t[u, v, 0]:=$ FALSE
for $r:=1$ to n
for each node u
for each node v
$t[u, v, r]:=t[u, v, r-1]$
if $t\left[u, x_{r}, r-1\right]$ AND $t\left[x_{r}, v, r-1\right]$ $t[u, v, r]:=$ TRUE

Further reading

- [CLRS] Ch. 25
- [Erickson] Ch. 9

