5 L R R P TR
-~ > - ; .‘. . Au’ 5 -. RS by
R g - 0. ..0 . o- - 1“! . - -

» ® . " ‘o~
. - g - :

3 e o e
O R, e =R

. % ‘“k. - .‘ A ",l\\;—.\ L ...-"A.\ o .
MRt WY L .\.IV.;\& > _ e
- . N » ’L : > '... - ¢ 2 » . ! ..i
e T s
R ety

- ‘ -~y -l’ g -

- loo _ . AN - .”(. ’ "
s : > - - .w (.-n-& “ . B
. h - 8 et - !.J? . o
- - Jd..- Q -3
J‘A 'w-‘ : 'ﬂ' 1'._.) .
. (3
N Ry

- A ’ J. - 5
T8 y ﬁv . ,
1 '%O\- &0 o‘o .. -. 4

\ . -
) e .
o -
"4 Y
| oy - T3 J } . >
' B s 3 Th - d A T wharhs
.) : -&. . y .
» » b = L) 3 - ’h = '-. \.,i.
.nl.. : - = A A : . ¥ ; 9 . v
- 1 . . e L Sl . ”..r \)
u. - 1o -

-

) - .54. . 3 e ‘o
; : Lt -
TSN, L

5
Iversity

/7

Hiz=
2023 Fall

Nanjing Un

o)) s R X

The slides aze main[y ac{aptec{ f;zom the o’zigina/ ones shazed by Chaoclong ZAeng and K evin{}-"‘ '

TZFP

BEERMES

S
~
WV
WV

<

D
N

S

3
S
S
=
S
QY

V)
-
=
S

=

B
=

=

R
[

()
Q

=

()

S

Ti#EFkr

Problem Solving Strategies

* Divide and Conquer Greedy

> Divide (reduce) the problem into one or » Gradually generate a solution for the
more subproblems; problem;

> Recursively solve subproblems; > At each step: make an greedy choice,

then compute optimal solution of the

» Combine partial solutions to obtain subproblem induced by the choice
complete solution. made.

> Example: merge-sort, quick-sort, > Example: MST, Dijkstra, Huffman
binary-search, ... codes, ...

What if a problem does not exhibit greedy choice property?

=

O&abthk T FO 4=
Y. EEERGFS TiEFbx
Z"x § School (f Qnt‘e[ﬁ'genf Soﬁ'ware and Engineem’ng

The Rod-Cutting Problem

« Assume we are given a rod of length n. We sell length 1 rod for a price of p;, where 1 € N™ and
1 <i<n.

 How to cut the rod to gain maximum revenue?

 Enumerate all possibilities?

» There are 2"~ ! ways to cut up a length 7 rod...

9 1 8 5 5 8 1
MEEEAERE D NIAD UBRD OGN0 VRARED D
1 1 5 1 5 1 S 1 1 1 1 1 1
DB IE DOEMGD ORIDEDIND VDI IDID

8 possible ways of cutting up a rod of length 4 and their prices

_E%Bn
and Engineering

The Rod-Cutting Problem

* Greedy algorithm?

» Let r, denote max profit for a length & rod.

* Optimal substructure property:

, r,=max (p,+r,_,)
1<i<n

* Greedy choice property?

. Always cut at the most profitable position? (max()

- Unfortunately, it does NOT vyield optimal solution! (n = 3.p, = 1.p, = 7. p; = 9)

ERNES TP
0 an[ﬁgent Soﬁ'ware and E g

' The Rod-Cutting Problem

A simple recursive algorithm

» Let r, denote max profit for a length k rod.

« Optimal substructure property holds. CutRodRec(prices.n):
(r, = max (p; +r,_;)) ifn=0
1<i<n return O
r .= -INF

* Optimal substructure property already implies an

f . =
algorithm! (even though without greedy choice property) ori:=lton

r := Max(r, prices|i] + CutRodRec(prices n-i))

> At each step, enumerate all possible cut. return r

> For each cut, (recursively) find optimal solution. (Find all
r,_) Performance of this algorithm?
n—i

> Find optimal solution for original problem. (Find

max (p; + r,_;)
1<i<n

TEFr

 Each path from root to a leaf denotes a way to cut the rod.

. This algorithm enumerates all 2"~ ! possibilities!

1+3 | (242] (3+1] [4+0)
oV RN

(142 J (241 J(3+0) 1+1) (2+0 J(1+0)

/N |

(141 J(2+0](no] ([1+0)

A4
D

* For each subproblem, only need to solve it once!

 Each node denotes a subproblem of certain size

 Some subproblems appear multiple tim

=

0 &btk T 2 R4 e
PV, SEREGESITREF xR
7‘5 4435 School of Qnt@[ﬁ’gent Sofrware and fngineering

The Rod-Cutting Problem

* Solve each subproblem once and remember solution!

CutRodRecMem(prices.n):
fori:=0ton

rli] := -INF
return CutRodRecMemAux(prices, r, n)

CutRodRecMemAux(prices.r.n):
if r[n] >0

return r[n]
ifn=0

qg:=0

else
q :=-INF
fori:=1ton
q .= Max(q, prices|i] + CutRodRecMemAux(prices, r, n-i))

rln] :=q
return g

| BERGFSITiEFbr
f

> —
7‘5 4333 School o Qnt@[ﬁ'gent Sofrware and fngineering

The Rod-Cutting Problem

* Runtime of this algorithm:

» Each subproblem (optimal revenue for length 7 rod) is solved once.

> When actually solving the size i problem, optimal solutions of subproblems
are known. (Otherwise we would recurse first.)

- Thus solving size i problem itself (without subproblems) needs ®(i) time.

> Total runtimeis (1 +2 + ... + n) = O(n?).

N\,
\(4+0 |

- r 3+0 j - C 2+ 0 j (1+0 j Overlapping
subproblems

| BEERHEFS TEF b
of

[—
7‘5 <§3 School Qnt@[ﬁgent Sofrware and fngineering

The Top-Down Approach

* Solving the problem using recursion is like CutRodlter(prices.n):

r|0] :=0
DFS. fori:=1ton
q :=-INF
 Convert recursion to iteration? for j:= 1 to i
q .= Max(q, prices|j] + rli - J])
> A problem cannot be solved until all rli] ==q

subproblems it depends upon are solved. returnrin]

> The subproblem graph is a DAG! (WHY?)

OO OSORC

> Consider subproblems in reverse
topological order!

谢润烁
It seems that DAG is not important
What is important is that LINEAR structure to turn it into iteration (TOPO)

*z—?—lzm

e Algorithm gives optimal revenue, but how to cut?

CutRodlter(prices.n):
r(0] :=0 .
fori =1 to n PEI-TtOPt((j cuts.n):
o while n >
1:=-INF print cuts[n]
orj:=1tou n:.=n- cuts|nj

if g < prices[j] + r[i - J]
qg = prices|j| + rli - J]
erisli=
rli] :==q
return r[n]

O&abthk T FO 4=
BRI G S T
School (f Qnt‘e[ﬁ'gent Sofrware and fngineering

Dynamic Programmin

| HeERH5S TiEF
of 1

Z 2
<, &/ School

nw[ﬁgent Sofrware and fngineering

Dynamic Programming (DP)

* Consider an (optimization) problem:

> Build optimal solution step by step.
> Problem has optimal substructure property.
- We can design a recursive algorithm.
> Problem has lots of overlapping subproblems.
- Recursion and memorize solutions. (Top-Down)
- Or, consider subproblems in the right order. (Bottom-Up)

* We have seen such algorithms previously!

3
O&abthk T ¥O =24 (=

PV.| SEREHS TiEFbr

7‘5 4@5 School of Qnt@[ﬁgent Sofrware and fngineering

The Floyd-Warshall Algorithm

o Strategy: recuse on the set of node the shortest paths use.

« Define dist(u, v, r) be length of shortest path from u to v, s.t. only nodes
in V.= {x;,X%,...,X,.} can be intermediate nodes in paths.

w(u, v) if r=0and (u,v) € E
00 ifr=0and (u,v) € £
dist(u,v,r) = / (. 7)

. . | dist(u,v,r — 1) Torwi
S dist(u,x,,r — 1) +dist(x,,v,r — 1) OHIETIWESe

| meER S TR
of

> —
Z"x 5" School Qnt‘e[ﬁ'genf Soﬁ'ware and Engineem’ng

The Floyd-Warshall Algorithm

FloydWarshallAPSP(G):
for each pair (u,v) in V*V
if (u, v)in E then dist[u,v, 0] := w(u, v)
else dist[u,v 0] := INF
forr:=1ton
for each node u
for each node v
distluy,r| =distlu,y,r - 1]
it dist{uv,r] > dist{lux,, r - 1] + dist[x,,v, r - 1]
distluy,r] :=distlux,, r - 1] + dist[x,,v,r - 1]

Bottom-up Approach

3
O&abthk T ¥O =24 (=

PV.| SEREHS TiEFbr

7‘5 435 School of Qnt@[ﬁgent Sofrware and fngineering

Developing a DP algorithm

e Characterize the structure of solution.

» E.g. [rod-cutting]: (one cut of length 1) + (solution for length n — 1)

* Recursively define the value of an optimal solution.

, E.g. [rod-cutting]: r, = max (p, +r,_;)
1<i<n

 Compute the value of an optimal solution.
> Top-down or Bottom-up. (Usually use bottom-up)

 [*] Construct an optimal solution.

> Remember optimal choices (beside optimal solution values).

T#EFbr

Matrix-chain Multiplication

e Input: Matrices A, A,, ..., A, with A; of size p,_; X p..
e Output:AjA,... A, .

* Problem: Compute output with minimum work??

 Matrix multiplication is associative, and order does matter!

» Example: |[A;| = 10X 100,|A,| = 100 X 5,[A;]| =5 X 50

» (AA5)A5 costs 10 X 100 X 5+ 10 X 5 x 50 = 7500

Optimal order for minimum cost?

» A (AsA3) costs 100 X 5 X 50 + 10 x 100 x 50 = 75000

BEEEE TiE=Ffx

V) School of Intelligent Software and Engineering

%Developlng a DP algorithm for Matrix-chain Multiplication

e Characterize the structure of solution.

> What’s the last step in computing A|A, ... A ?

» For every order, last step is (A4, ... A}) - (A 1Arn - A).

» Ingeneral, A;A; ... A; = (A4 - Ap) - A 1Apgn - - A)

* Recursively define the value of an optimal solution.

» Let mli, j] be the minimal cost for computing A;/A._ ;.. A]

. mli,j] = muin (m[i, k] + mlk + 1,j] + p;,_1pp;)

1<k<j

- Optimal Substructure Property!

3 | EEEtEE Tiz=xbR

‘?ﬁffffgﬁwcfﬂg

Developlng a DP algorithm for Matrix-chain Multiplication
MatrixChainDP(A1, Az,...,Apn):

« Let m|i, j] be the minimal cost for computing

fori:=1ton
AA ... A
Sl mli, i] := 0
. . for/:=2ton
. ML, j] = glklg (mli, k] + mlk + 1,j] + p;_1pyp)) fori:=1ton-1+1
| | Ji=1+1[-1
* Compute the value of an optimal solution. mli, j] = INF
fork:=itoj-1
> Top-down (recursion with memorization) is Y . - k), %
easy, but bottom-up? _(}OSt - m[l’?] _;m[kﬂ’]] TPRTPER
IT cost <ml|i,]
> What does m]i, j] depend upon? mit,] := cost
return m

- ml]i, j] depend upon m|i’, j'|, where
J=1<j—1

> Compute m[i, j] in length increasing order!

3 | EEEtEE Tiz=xbR

4? ﬁ[f [fg frw c[g ng

%Developlng a DP algorithm for Matrix-chain Multiplication

e Construct an optimal solution.

> For each (i, j) pair, remember the position of the optimal “split”.
MatrixChainDP(A1, Az,... . Ap):

fori:=1ton MatrixChainPrintOpt(s.i.j):
WL[Z,Z] =0 ifi=j
forl:=2ton Print “A;”
fori:=1ton-1+1 else
=il Print “(”
ml[i, j] = INF MatrixChainPrintOp1(s, i, s|i,j])
fork:=itoj- | MatrixChainPrintOp1(s, s[i,j]+1, j)

cost := m[i,k] + m[k+1j] + pi1*pe*p; Print)

if cost <mli,j]
mli, j] := cost
sl =ik
return <m, s>

Edit Distance

* Given two strings, how similar are they?

> Application: when a spell checker encounters a possible misspelling, it
needs to search dictionary to find nearby words.

* Consider following three type of operations for a string:
> Insertion: insert a character at a position.
> Deletion: remove a character at a position.

> Substitution: change a character to another character.

Edit Distance

e Edit Distance of A and B: minimal number of ops to transform A into B.

o« Example: transform “SNOWY” to “SUNNY”
» |Insertion: SNOWY -> SUNOWY
» Deletion: SUNOWY -> SUNOY
» Substitution: SUNOY -> SUNNY

> Edit distance is at most 3 (and it indeed is 3).

Edit Distance

« Edit Distance of A and B: minimal number of ops to
transform A into B.

» Operations: Insertion, Deletion, and Substitution.

 One way to visualize the editing process:
> Align stringA above string B; Insertion substitution delgtion
> A gap in first line indicates an insertion (to A);

> A gap in second line indicates a deletion (from A); S U N N Y

» A column with different characters indicates a substitution.

Edit Distance

 Problem: Given A and B, what is the edit distance?

 Step 1: Characterize the structure of solution.

> Consider transform A[1 ... m] to B[1 ... n].

> Each solution can be visualized in the way described earlier.

— Alm] A[m]
. Last column must be one of three cases: B[n] or B[n) or*"

> Each case reduces the problem to a subproblem:

- (— ,B|[n]): edit distance of A[1 ... m]and B[1 ... (n - 1)] S N O W ¥

S U N N Y
- (Alm], B|n]): edit distance of A[1 ... m - 1)]and B[1 ... (n - 1)]

- (A[m], —): edit distance of A[1 ... (m - 1)] and B[1 ... A]

T FEZbr
nd Engineeri

Edit Distance

o Step 2: Recursively define the value of an optimal solution

l if =0
J ifi=0
dist(i,]) = dist(i,j— 1)+ 1
. min | dist(i — 1,7) + 1 otherwise

dist(i— 1, — 1)+ IlA[i] = Blj]]

)

D&tk T 2 24 e
PV, SEREGESITREF xR
% égg School of an(ﬁ’gent Sofrware and Engineering

Edit Distance

e Step 3: Compute the value of an optimal EditDistDP(A[l...m].B[1...n]):
solution (Bottom-Up). fori:=0tom

dist[i, 0] :=1i
forj:=0ton

» What does dist(i, j) depend upon?

> QOuter-loop: for icfftl[ot’oj]m;]
| . N o forj:=1ton
- Increasing i; delDist := dist[i - 1,] + 1
. Inner-loop: _ insDist .= dist[i,j- 1] + 1
subDist :=dist]i - 1,j - 1] + Diff(Ali], B[j])
. L. g dist|i, j] := Min(delDist, insDist, subDist)
- Increasing Jj] return dist "

|
V Step 4: Construct an optimal solution.

TEFr

Subproblem graph

P OL YNOMI AL

Q. + DAG Transform “EXPONENTIAL” to “POLYNOMIAL”

> — Insertion (costs 1)

> | Deletion (costs 1)

1

()

(0 o

(0 o
LA
LA
LA

/C
(= ()

K2

» N\, Substitution [diff] (costs 1)

> g Substitution (costs 0)

-
»
v
"

= 2P O M
(O~ >~ O~
N

2
(O
5

e Edit distance:

®$°°®°®§ > Shortest path from top-left to right-bottom.
OnOnOn0n0m00000

N — T 1 A L
N O M T A I,
1 1

O O
H =
- K

WY | SBaErs T
€ 9 ool o an(figent So [[

“Maximum Independent Set

+ Given an undirected graph G = (V, E), an independent set / is a subset
of V, such that no vertices in [are adjacent. Put another way, for all

(u,v) € I X1, we have (u,v) & E.

A maximum independent set (MaxlS) is an independent set of maximum
size.

B W0 W00 @—[—0
O O 0—© ©0—©

. {B,D} is IS, {AE,C}is S,
\B,D,E} is Not IS but is Not MaxIS and is also MaxIS

| BERGSIIiEF

7
> =
Z"f é’ School of an[ﬁgent Soﬁ'ware and QEngin

Maximum Independent Set

=

 Computing MaxIS in an arbitrary graph is very hard. Even getting an
approximate MaxlS is very hard!

* But if we only consider trees, MaxIS is very easy!

O W0 W0 @—[—0
O O 0—© ©0—©

. {B,D} is IS, {AE,C}islS,
\B,D,E} is Not IS but is Not MaxIS and is also MaxIS

3
O&2bthk T FO 4=

PV.| SEREHS TiEFbr

7‘5 4@5 School of Qnt@[ﬁgent Sofrware and fngineering

MaxIS of Trees

(7.
* Problem: Given a tree 1 with root r, compute a MaxIS of it. YO O
« Step 1: Characterize the structure of solution. (YOO OO
» Given an IS [of T, for each child u of r, set IN V(T) isan IS of T, OO O0O0OC
o Step 2: Recursively define the value of an optimal solution. *

(v OR (\
OSEGCEVENVEENONONONO
D@O@OC) @ OOOCOC
OO OO0 OO OOOC

> Let mis(7T,) be size of MaxIS of (sub)tree rooted at node u.

mis(T,)) =1+ 2 mis(T,)
v IS a child of u

>

> NO! The recurrence depends on whether u in the MaxIS of 7.

=

0 &btk T 2 R4 e
P9, BERGESIREF xR
7‘5 4435 School of Qnt@[ﬁgent Sofrware and fngineering

MaxIS of Trees

(7.
e Step 2: Recursively define the value of an optimal solution
O O O
> Let mis(T,) be size of MaxIS of (sub)tree rooted at node u.
QOO OC
> The recurrence depends on whether u in the MaxIS of 1 ,. O OO0
> Let mis(T,,1) be size of MaxIS of T, s.t. u in the MaxlS. *

> Let mis(7,,0) be size of MaxIS of T, s.t. u NOT in the MaxlS.

@ OR (N
 misT) =1+), mis(T,0 SASESASENofoNoR0
v is a child of u
OO OOOOOC
o mis(T,00=) mis(T,) %
el @0 e ee ¢ ¢ eee

» mis(T,) = maxmis(7,,0), mis(T,,1)}

MaxIS of Trees

(7.
e Step 3: Compute the value of an optimal solution. Y %Y %
QOO OC
MaxIsDP(u):
] = OO O0O0OC
misl =1
mis0 := 0 *
for each child v of u
misl ;= misl + MaxISDP(v).misO v OR N\
misO := misO + MaxISDP(v).mis AOAON T O

mis = Max(misO, misl)
return <mis,misO,mis 1>

OO OO0 OO OOOO
Runtime is O(V + E) = O(V)

X Discussions of
Dynamic Programming

o

| HeERES TiEF b
ofiln

Z 2
<, &/ School

t@[ﬁgent Sofrware and fngineering

Dynamic Programming (DP)

* Consider an (optimization) problem:
> Build optimal solution step by step.
> Problem has optimal substructure property.
- We can design a recursive algorithm.
> Problem has lots of overlapping subproblems.
- Recursion and memorize solutions. (Top-Down)

- Or, consider subproblems in the right order. (Bottom-Up)

WY S5 TR
Z"x Qg School of ﬂnt‘e[ﬁ'gent Sofrware

ptimal substructure not always true

NO optimal substructure property!

Optimal subStruc‘tur'e property!

Shortest ath in unit—eight graph: e« Longest simple path in unit-weight graph:

> Assume w € OPT(u w v) » Assume w € OPT(u ~ v)
- OPT(u V) = tt > W > v s OPT(u > V) = U~ W = v

-+ py = OPT(u + w)?

- Actually, OPT(u v w) = u v x w» v w» WI# p,

- Similarly, OPT(w w v) = w w u ~» x w V|# p,

Subproblems are NOT independent!

| BEEHS IEF b
of 1

> =
< é? School

nw[ﬁgent Sofrware and fngineering

Dynamic Programming (DP)

 Consider an (optimization) problem:
> Build optimal solution step by step.
> Problem has optimal substructure property.
- We can design a recursive algorithm.
> Problem has lots of overlapping subproblems.
- Recursion and memorize solutions. (Top-Down)

- Or, consider subproblems in the right order. (Bottom-Up)

| BEREFSIiEF xR
of

=
5" School Qnt‘e[ﬁ'gent Soﬁ'ware and Engineem’ng

Top-Down vs Bottom-Up

Dynamic programming trades space for time — Save solutions for subproblems to avoid repeat computation.

* [Bottom-Up] Solve subproblems in the right

 [Top-Down] Recursion with memorization.
order.

> \ery straightforward, easy to write down

the code. > Finding the right order might be non-trivial.

(Subproblem graph?)

» Use array or hash-table to memorize
» Usually use array to memorize solutions.

solutions.
> Array may cost more space, but hash- > Might be able to reduce the size of array to
table may cost more time. save even more space.

Top-down often costs more time in practice. (Recursion is costly!)

But not always! (Top-down only considers necessary subproblems.)

| mRERES TSR
/. ool of tmellgent Software and Engine

APSP via Dynamic Programming

w(u, v) if r=0and (u,v) € E
. 00 if r=0and (u,v) € E
ST - . (dist(u,v,r—1) |
i {dist(u, o= Ll ae aision = 1) } otherwise

FloydWarshallAPSP(G): FloydWarshallAPSP(G):
for each pair (u,v) in V*V Sie) for each pair (u,v) in V¥V On”)

if (u, v) in E then dist{u,v, 0] := w(u, v) if (u, v)in E then dist{u,v] :== w(u, v)
else dist[u,v0] := INF else dist[u,v] := INF
forr:=1ton forr:=1ton
for each node u for each node u
for each node v for each node v
distlu,y,r] :=distlu,y,r - 1] it dist{u,v] > dist[u,x,] + dist]x,,v]
if dist{u,v,r] > dist{u,x,, r - 1] + dist[x,,v,r - 1] distlu,v] ;= dist{u,x] + dist|[x:,v]

distluy,r] .= distlux,, r - 1] + dist[x,,v,r - 1]

Edit Distance

] if j=0

J ifi =0
dist(i, j) = dist(i,j— 1)+ 1

min < dist(i — 1,7) + 1 otherwise

dist(i— 1, — 1) + I[Ali] = B[J]]

EditDistDP(A[l...m|.B[1...n]): EditDistDP(A[1...m]|.B[1...n]):
for i := 0 to m O(r*) for =0 to O(n)

dist|i, 0] ;=1 distLast|j] :=j //distLast|j| = dist][i-1,]]
forj:=0ton fori:=0tom
dist[0,]] =] distCur|0] :=i //distCur|j]| = dist|i, j]
fori:=1tom forj:=1ton
forj:=1ton delDist .= distLast|j] + 1
delDist :=dist[i - 1,j] + 1 insDist .= distCur[j - 1] + 1
insDist .= dist[i,j- 1]+ 1 subDist := distLast[j - 1] + Diff(Ali], B[j])
subDist :=dist|i - 1,j - 1] + Diff(Ali], B[j]) distCur|j] := Min(delDist, insDist, subDist)
dist|i, j] := Min(delDist, insDist, subDist) distLast ;= distCur

return dist return distCur|n]

=

Dotk T FO A4 e
PV, SEREGESITREF xR
7‘5 435 School of an[ﬁgent Sofrware and fngineering

Analysis of DP Algorithms

e Correctness:

> Optimal substructure property.

 Complexity:

> Bottom-up approach: subproblems are already solved. l
> Space complexity: usually obvious. l
> Time complexity [bottom-up]: usually obvious. l
> Time complexity [top-down]: @

- How many subproblems in total?(number of nodes in the subproblem DAG.)

- Time to solve a problem, given subproblem solutions?(number of edges in the subproblem DAG.)

Subset Sum

* Problem: Given an array X|1::-n] of n positive integers, can we find a
subset in X that sums to given integer 17?

» Simple solution: recursively enumerates all 2" subsets, leading to an
algorithm costing O(2") time.

 Can we do better with dynamic programming?(Notice this is not an
optimization problem.)

Subset Sum

* Problem: Given an array X|1:--n] of n positive integers, can we find a
subset in X that sums to given integer 17?

 Step 1: Characterize the structure of solution.
> |f there is a solution S, either X]| 1] is in it or not.
- If X[1] € S, then there is a solution to instance “X|2...n], T — X[1]”;

- If X[1] & S, then there is a solution to instance “X|2...n], T”.

Subset Sum

o Step 2: Recursively define the value of an optimal solution.

> Let s5(7,) = true iff instance “X]i...n], t” has a solution.

ss(i, 1) =

true

ss(i + 1,1)

false

ss(i+ 1,0) v ss(i + 1,t — X[i])

iftr =0
if t < X|i}
ifi1 >n

otherwise

Subset Sum

true =1
| ss(i+ 1,7) i 6 < X|i
$80, 1) = false if i > n

ss(i+ 1,0) vss(i + 1, — X[i]) otherwise

o Step 3: Compute the value of an optimal
solution (Bottom-Up).

» Build an 2D array ss|1...n,0...7T]

> Evaluation order: bottom row to top row;
left to right within each row.

SubsetSumDP(X . T): O(nT)

Ssin O = lirle
forr:=1to T
Ssile 0= Odini=0)dhrue S Ralse
fori:=n-1 downto 1
ssile Ollte= lirue
for¢:=1to X[i] -1
ssli, t] :=ss]i+ 1,1}
forr:=X[i]to T
ss[i,t] :=0r(ss[i+1,1],ss[i+1,1-X[i]])
return ss|[1,7]

Subset Sum

* Problem: Given an array X|1---n| of n positive integers, can we find a
subset in X that sums to given integer 17?

» Simple solution: recursively enumerates all 2" subsets, leading to an
algorithm costing O(2") time.

» Dynamic programming: costing O(nT) time.

> Dynamic programming isn’t always an improvement! (Depends on /)

| BEERHEFS TEF b
of

> I~
7‘5 <§° School ﬂnt‘e[ﬁ'gent Sofrware and fngineering

Dynamic Programming vs Greedy

Common strategies for solving optimization problems — Gradually generates a solution for the problem

 Dynamic Programming * Greedy
> At each step: multiple potential > At each step: make an optimal
choices, each reducing the problem to a choice, then compute optimal
subproblem, compute optimal solutions solution of the subproblem induced
of all subproblems and then find optimal by the choice made.

solution of original problem.

> Optimal substructure + Greedy
choice

» Optimal substructure + Overlapping
subproblems.

Try DP first, then check if greedy works! (If does, prove it!)

(Come up with a working algorithm first, then develop a faster one.)

=
O&abthk T FO 4=
| BEERHS TEF6x
4 9 School of an[ﬁgent Soﬁ'ware and angineering

Further reading

+ [CLRS] Ch.1
. [DPV] Ch.6

e [Erickson] Ch.3

THOMAS H.CORMEN
CHARLES E. LEISERSON
RONALD L. RIVEST

\ CLIFFORD STEIN

Algorithms

Sanjoy Dasgupta
Christos Papadimitriou
Umesh Vazirani

INTRODUCTION TO

ALGCORITHMS

LY “?. \ ALk »
pSUAR | 1%

Jeff Erickson

)

