
智能软件与⼯程学院
School of Intelligent Software and Engineering

动态规划
Dynamic Programming

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne.Thanks for their supports!

钮鑫涛
Nanjing University

2023 Fall

智能软件与⼯程学院
School of Intelligent Software and Engineering

Problem Solving Strategies
• Divide and Conquer

‣ Divide (reduce) the problem into one or
more subproblems;

‣ Recursively solve subproblems;

‣ Combine partial solutions to obtain
complete solution.

‣ Example: merge-sort, quick-sort,
binary-search, …

• Greedy

‣ Gradually generate a solution for the
problem;

‣ At each step: make an greedy choice,
then compute optimal solution of the
subproblem induced by the choice
made.

‣ Example: MST, Dijkstra, Huffman
codes, …

What if a problem does not exhibit greedy choice property?

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Rod-Cutting Problem
• Assume we are given a rod of length . We sell length rod for a price of , where and

.

• How to cut the rod to gain maximum revenue?

• Enumerate all possibilities?

‣ There are ways to cut up a length rod…

n i pi i ∈ ℕ+

1 ≤ i ≤ n

2n−1 n

i 1 2 3 4 5 6 7 8 9 10

pi 1 5 8 9 10 17 17 20 24 30

9 1 8 5 5 18

1 51 1 5 1 15 1 11 11

8 possible ways of cutting up a rod of length 4 and their prices

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Rod-Cutting Problem
• Greedy algorithm?

• Let denote max profit for a length rod.

• Optimal substructure property:

‣

• Greedy choice property?

‣ Always cut at the most profitable position? ()

- Unfortunately, it does NOT yield optimal solution! ()

rk k

rn = max
1≤i≤n

(pi + rn−i)

max(
pi

i
)

n = 3,p1 = 1,p2 = 7,p3 = 9

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Rod-Cutting Problem
• Let denote max profit for a length rod.

• Optimal substructure property holds.
()

• Optimal substructure property already implies an
algorithm! (even though without greedy choice property)

‣ At each step, enumerate all possible cut.

‣ For each cut, (recursively) find optimal solution. (Find all
)

‣ Find optimal solution for original problem. (Find

rk k

rn = max
1≤i≤n

(pi + rn−i)

rn−i

max
1≤i≤n

(pi + rn−i)

CutRodRec(prices,n):
if n = 0

return 0
r := -INF
for i := 1 to n

r := Max(r, prices[i] + CutRodRec(prices,n-i))
return r

Performance of this algorithm?

A simple recursive algorithm

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Rod-Cutting Problem

4

1 + 3 2 + 2 3 + 1 4 + 0

1 + 0

1 + 1 2 + 0 1 + 01 + 2 2 + 1 3 + 0

1 + 1 2 + 0 1 + 0

1 + 0

• Each path from root to a leaf denotes a way to cut the rod.

• This algorithm enumerates all possibilities!2n−1

Can we do better?

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Rod-Cutting Problem

4

1 + 3 2 + 2 3 + 1 4 + 0

1 + 0

1 + 1 2 + 0 1 + 01 + 2 2 + 1 3 + 0

1 + 1 2 + 0 1 + 0

1 + 0

• For each subproblem, only need to solve it once!

• Each node denotes a subproblem of certain size

• Some subproblems appear multiple times.

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Rod-Cutting Problem
• Solve each subproblem once and remember solution!

CutRodRecMemAux(prices,r,n):
if r[n] > 0

return r[n]
if n = 0

q := 0
else

q := -INF
for i := 1 to n

q := Max(q, prices[i] + CutRodRecMemAux (prices, r, n-i))
r[n] := q
return q

CutRodRecMem(prices,n):
for i := 0 to n

r[i] := -INF
return CutRodRecMemAux(prices, r, n)

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Rod-Cutting Problem

• Runtime of this algorithm:

‣ Each subproblem (optimal revenue for length rod) is solved once.

‣ When actually solving the size problem, optimal solutions of subproblems
are known. (Otherwise we would recurse first.)

- Thus solving size problem itself (without subproblems) needs time.

‣ Total run*me is .

i

i

i Θ(i)

Θ(1 + 2 + . . . + n) = Θ(n2)

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Rod-Cutting Problem
4

1 + 3 2 + 2 3 + 1 4 + 0

1 + 0

1 + 1 2 + 0 1 + 01 + 2 2 + 1 3 + 0

1 + 1 2 + 0 1 + 0

1 + 0

4

3

2

1

0

Overlapping
subproblems

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Top-Down Approach
• Solving the problem using recursion is like

DFS.

• Convert recursion to iteration?

‣ A problem cannot be solved until all
subproblems it depends upon are solved.

‣ The subproblem graph is a DAG! (WHY?)

‣ Consider subproblems in reverse
topological order!

4

3

2

1

0

CutRodIter(prices,n):
r[0] := 0
for i := 1 to n

q := -INF
for j := 1 to i

q := Max(q, prices[j] + r[i - j])
r[i] := q

return r[n]

Runtime is Θ(n2)

谢润烁
It seems that DAG is not important
What is important is that LINEAR structure to turn it into iteration (TOPO)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Reconstructing optimal solution

• Algorithm gives optimal revenue, but how to cut?

4

3

2

1

0

CutRodIter(prices,n):
r[0] := 0
for i := 1 to n

q := -INF
for j := 1 to i
if q < prices[j] + r[i - j]

q := prices[j] + r[i - j]
cuts[i] = j

r[i] := q
return r[n]

PrintOpt(cuts,n):
while n > 0
Print cuts[n]
n := n – cuts[n]

智能软件与⼯程学院
School of Intelligent Software and Engineering

Dynamic Programming

智能软件与⼯程学院
School of Intelligent Software and Engineering

Dynamic Programming (DP)
• Consider an (optimization) problem:

‣ Build optimal solution step by step.

‣ Problem has optimal substructure property.

- We can design a recursive algorithm.

‣ Problem has lots of overlapping subproblems.

- Recursion and memorize solutions. (Top-Down)

- Or, consider subproblems in the right order. (Bottom-Up)

• We have seen such algorithms previously!

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Floyd-Warshall Algorithm

• Strategy: recuse on the set of node the shortest paths use.

• Define be length of shortest path from to , s.t. only nodes
in can be intermediate nodes in paths.

•

dist(u, v, r) u v
Vr = {x1, x2, . . . , xr}

dist(u, v, r) =

w(u, v) if r = 0 and (u, v) ∈ E
∞ if r = 0 and (u, v) ∉ E

min {dist(u, v, r − 1)
dist(u, xr, r − 1) + dist(xr, v, r − 1)} otherwise

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Floyd-Warshall Algorithm
FloydWarshallAPSP(G):
for each pair (u,v) in V*V
if (u, v) in E then dist[u,v, 0] := w(u, v)
else dist[u,v,0] := INF

for r := 1 to
for each node u
for each node v

dist[u,v,r] := dist[u,v,r - 1]
if dist[u,v,r] > dist[u,xr, r - 1] + dist[xr,v, r - 1]

 dist[u,v,r] := dist[u,xr, r - 1] + dist[xr,v, r - 1]

n

Bottom-up Approach

智能软件与⼯程学院
School of Intelligent Software and Engineering

Developing a DP algorithm
• Characterize the structure of solution.

‣ E.g. [rod-cutting]: (one cut of length) + (solution for length)

• Recursively define the value of an optimal solution.

‣ E.g. [rod-cutting]:

• Compute the value of an optimal solution.

‣ Top-down or Bottom-up. (Usually use bottom-up)

• [∗] Construct an optimal solution.

‣ Remember optimal choices (beside optimal solution values).

i n − i

rn = max
1≤i≤n

(pi + rn−i)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Matrix-chain Multiplication
• Input: Matrices , with of size .

• Output: .

• Problem: Compute output with minimum work?

• Matrix multiplication is associative, and order does matter!

‣ Example:

‣ costs

‣ costs

A1, A2, . . . , An Ai pi−1 × pi

A1A2 . . . An

|A1 | = 10 × 100, |A2 | = 100 × 5, |A3 | = 5 × 50

(A1A2)A3 10 × 100 × 5 + 10 × 5 × 50 = 7500

A1(A2A3) 100 × 5 × 50 + 10 × 100 × 50 = 75000
Optimal order for minimum cost?

智能软件与⼯程学院
School of Intelligent Software and Engineering

Developing a DP algorithm for Matrix-chain Multiplication
• Characterize the structure of solution.

‣ What’s the last step in computing ?

‣ For every order, last step is .

‣ In general,

A1A2 . . . An

(A1A2 . . . Ak) ⋅ (Ak+1Ak+2 . . . An)

AiAi+1 . . . Aj = (AiAi+1 . . . Ak) ⋅ (Ak+1Ak+2 . . . Aj)

• Recursively define the value of an optimal solution.

‣ Let be the minimal cost for computing

‣

- Optimal Substructure Property!

m[i, j] AiAi+1 . . . Aj

m[i, j] = min
i≤k<j

(m[i, k] + m[k + 1,j] + pi−1pk pj)

智能软件与⼯程学院
School of Intelligent Software and Engineering

• Let be the minimal cost for computing

•

m[i, j]
AiAi+1 . . . Aj

m[i, j] = min
i≤k<j

(m[i, k] + m[k + 1,j] + pi−1pk pj)

Developing a DP algorithm for Matrix-chain Multiplication
MatrixChainDP(A1, A2,…,An):
for i := 1 to n

m[i, i] := 0
for l := 2 to n
for i := 1 to n - l +1

j := i + l -1
m[i, j] = INF
for k := i to j - 1

cost := m[i,k] + m[k+1,j] + pi-1*pk*pj

if cost < m[i, j]
m[i, j] := cost

return m

• Compute the value of an optimal solution.

‣ Top-down (recursion with memorization) is
easy, but bottom-up?

‣ What does depend upon?

- depend upon , where
.

‣ Compute in length increasing order!

m[i, j]

m[i, j] m[i′ , j′]
j′ − i′ < j − i

m[i, j]

智能软件与⼯程学院
School of Intelligent Software and Engineering

• Construct an optimal solution.

‣ For each (i, j) pair, remember the position of the optimal “split”.

Developing a DP algorithm for Matrix-chain Multiplication

MatrixChainDP(A1, A2,…,An):
for i := 1 to n

m[i, i] := 0
for l :=2 to n
for i := 1 to n - l +1

j := i + l -1
m[i, j] = INF
for k := i to j - 1

cost := m[i,k] + m[k+1,j] + pi-1*pk*pj

if cost < m[i, j]
m[i, j] := cost
s[i, j] := k

return <m, s>

MatrixChainPrintOpt(s,i,j):
if i = j

Print “Ai”

else
Print “(”
MatrixChainPrintOpt(s, i, s[i,j])
MatrixChainPrintOpt(s, s[i,j]+1, j)
Print “)”

智能软件与⼯程学院
School of Intelligent Software and Engineering

Edit Distance
• Given two strings, how similar are they?

‣ Application: when a spell checker encounters a possible misspelling, it
needs to search dictionary to find nearby words.

• Consider following three type of operations for a string:

‣ Insertion: insert a character at a position.

‣ Deletion: remove a character at a position.

‣ Substitution: change a character to another character.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Edit Distance
• Edit Distance of A and B: minimal number of ops to transform A into B.

• Example: transform “SNOWY” to “SUNNY”

‣ Insertion: SNOWY -> SUNOWY

‣ Deletion: SUNOWY -> SUNOY

‣ Substitution: SUNOY -> SUNNY

‣ Edit distance is at most 3 (and it indeed is 3).

智能软件与⼯程学院
School of Intelligent Software and Engineering

Edit Distance
• Edit Distance of and : minimal number of ops to

transform into .

‣ Operations: Insertion, Deletion, and Substitution.

• One way to visualize the editing process:

‣ Align string above string ;

‣ A gap in first line indicates an insertion (to);

‣ A gap in second line indicates a deletion (from);

‣ A column with different characters indicates a substitution.

A B
A B

A B

A

A
S N O W Y

S N N YU

insertion substitution deletion

智能软件与⼯程学院
School of Intelligent Software and Engineering

Edit Distance
• Problem: Given and , what is the edit distance?

• Step 1: Characterize the structure of solution.

‣ Consider transform A[1 … m] to B[1 … n].

‣ Each solution can be visualized in the way described earlier.

‣ Last column must be one of three cases: or or

‣ Each case reduces the problem to a subproblem:

- : edit distance of A[1 … m] and B[1 … (n - 1)]

- : edit distance of A[1 … (m - 1)] and B[1 … (n - 1)]

- : edit distance of A[1 … (m - 1)] and B[1 … n]

A B

−
B[n]

A[m]
B[n]

A[m]
−

(− , B[n])

(A[m], B[n])

(A[m], −)

S N O W Y

S N N YU

智能软件与⼯程学院
School of Intelligent Software and Engineering

Edit Distance

• Step 2: Recursively define the value of an optimal solution

‣
dist(i, j) =

i if j = 0
j if i = 0

min
dist(i, j − 1) + 1
dist(i − 1,j) + 1
dist(i − 1,j − 1) + I[A[i] = B[j]]

otherwise

智能软件与⼯程学院
School of Intelligent Software and Engineering

Edit Distance
• Step 3: Compute the value of an optimal

solution (Bottom-Up).

‣ What does depend upon?dist(i, j)

EditDistDP(A[1…m],B[1…n]):
for i := 0 to m

dist[i, 0] := i
for j := 0 to n

dist[0, j] := j
for i := 1 to m
for j := 1 to n

delDist := dist[i - 1, j] + 1
insDist := dist[i, j - 1] + 1
subDist := dist[i - 1, j - 1] + Diff(A[i], B[j])
dist[i, j] := Min(delDist, insDist, subDist)

return dist

‣ Outer-loop:

- increasing ;

‣ Inner-loop:

- increasing

i

j

Step 4: Construct an optimal solution.

智能软件与⼯程学院
School of Intelligent Software and Engineering

• DAG Transform “EXPONENTIAL” to “POLYNOMIAL”

‣ Insertion (costs 1)

‣ Deletion (costs 1)

‣ Substitution [diff] (costs 1)

‣ Substitution (costs 0)

• Edit distance:

‣ Shortest path from top-left to right-bottom.

→

↓

↘

P
P

O
O

N
N

I
I

A
A

L
L

⤏

E
—

1

X
—

1

N
L

1

E
Y

1

—
O

1

T
M

1

Subproblem graph

智能软件与⼯程学院
School of Intelligent Software and Engineering

Maximum Independent Set
• Given an undirected graph , an independent set is a subset

of , such that no vertices in are adjacent. Put another way, for all
, we have .

• A maximum independent set (MaxIS) is an independent set of maximum
size.

G = (V, E) I
V I

(u, v) ∈ I × I (u, v) ∉ E

A B C

D E

A B C

D E

A B C

D E

A B C

D E

 is Not IS{B, D, E} is IS,

but is Not MaxIS

{B, D} is IS,

and is also MaxIS
{A, E, C}

智能软件与⼯程学院
School of Intelligent Software and Engineering

Maximum Independent Set

• Computing MaxIS in an arbitrary graph is very hard. Even getting an
approximate MaxIS is very hard!

• But if we only consider trees, MaxIS is very easy!

A B C

D E

A B C

D E

A B C

D E

A B C

D E

 is Not IS{B, D, E} is IS,

but is Not MaxIS

{B, D} is IS,

and is also MaxIS
{A, E, C}

NP-hard!

智能软件与⼯程学院
School of Intelligent Software and Engineering

MaxIS of Trees
• Problem: Given a tree with root , compute a MaxIS of it.

• Step 1: Characterize the structure of solution.

‣ Given an IS of , for each child of , set is an IS of .

T r

I T u r I ∩ V(Tu) Tu

?

? ? ? ? ? ?

?? ??

OR

• Step 2: Recursively define the value of an optimal solution.

‣ Let be size of MaxIS of (sub)tree rooted at node .

‣

‣ NO! The recurrence depends on whether in the MaxIS of .

mis(Tu) u

mis(Tu) = 1 + ∑
v is a child of u

mis(Tv)

u Tu

智能软件与⼯程学院
School of Intelligent Software and Engineering

MaxIS of Trees
• Step 2: Recursively define the value of an optimal solution

‣ Let be size of MaxIS of (sub)tree rooted at node .

‣ The recurrence depends on whether in the MaxIS of .

‣ Let be size of MaxIS of , s.t. in the MaxIS.

‣ Let be size of MaxIS of , s.t. NOT in the MaxIS.

‣

‣

‣

mis(Tu) u

u Tu

mis(Tu,1) Tu u

mis(Tu,0) Tu u

mis(Tu,1) = 1 + ∑
v is a child of u

mis(Tv,0)

mis(Tu,0) = ∑
v is a child of u

mis(Tv)

mis(Tu) = max{mis(Tu,0), mis(Tu,1)}

?

? ? ? ? ? ?

?? ??

OR

智能软件与⼯程学院
School of Intelligent Software and Engineering

MaxIS of Trees
• Step 3: Compute the value of an optimal solution.

MaxIsDP(u):
mis1 := 1
mis0 := 0
for each child v of u

mis1 := mis1 + MaxISDP(v).mis0
mis0 := mis0 + MaxISDP(v).mis

mis := Max(mis0, mis1)
return <mis,mis0,mis1>

Runtime is O(V + E) = O(V)

?

? ? ? ? ? ?

?? ??

OR

智能软件与⼯程学院
School of Intelligent Software and Engineering

Discussions of
Dynamic Programming

智能软件与⼯程学院
School of Intelligent Software and Engineering

Dynamic Programming (DP)
• Consider an (optimization) problem:

‣ Build optimal solution step by step.

‣ Problem has optimal substructure property.

- We can design a recursive algorithm.

‣ Problem has lots of overlapping subproblems.

- Recursion and memorize solutions. (Top-Down)

- Or, consider subproblems in the right order. (Bottom-Up)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Optimal substructure not always true
• Shortest path in unit-weight graph:

‣ Assume

‣

-

-

w ∈ OPT(u ⇝ v)

OPT(u ⇝ v) = u
p1⇝ w

p2⇝ v

p1 = OPT(u ⇝ w)

p2 = OPT(w ⇝ v)
u x

vw

1

1

1

1

• Longest simple path in unit-weight graph:

‣ Assume

‣

‣ ?

w ∈ OPT(u ⇝ v)

OPT(u ⇝ v) = u
p1⇝ w

p2⇝ v

p1 = OPT(u ⇝ w)

Optimal substructure property! NO optimal substructure property!

Subproblems are independent! Subproblems are NOT independent!

- Actually,

- Similarly,

OPT(u ⇝ w) = u ⇝ x ⇝ v ⇝ w ≠ p1

OPT(w ⇝ v) = w ⇝ u ⇝ x ⇝ v ≠ p2

智能软件与⼯程学院
School of Intelligent Software and Engineering

Dynamic Programming (DP)
• Consider an (optimization) problem:

‣ Build optimal solution step by step.

‣ Problem has optimal substructure property.

- We can design a recursive algorithm.

‣ Problem has lots of overlapping subproblems.

- Recursion and memorize solutions. (Top-Down)

- Or, consider subproblems in the right order. (Bottom-Up)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Top-Down vs Bottom-Up

• [Top-Down] Recursion with memorization.

‣ Very straightforward, easy to write down
the code.

‣ Use array or hash-table to memorize
solutions.

‣ Array may cost more space, but hash-
table may cost more time.

• [Bottom-Up] Solve subproblems in the right
order.

‣ Finding the right order might be non-trivial.
(Subproblem graph?)

‣ Usually use array to memorize solutions.

‣ Might be able to reduce the size of array to
save even more space.

Dynamic programming trades space for time Save solutions for subproblems to avoid repeat computation.→

Top-down often costs more time in practice. (Recursion is costly!)
But not always! (Top-down only considers necessary subproblems.)

智能软件与⼯程学院
School of Intelligent Software and Engineering

APSP via Dynamic Programming

dist(u, v, r) =

w(u, v) if r = 0 and (u, v) ∈ E
∞ if r = 0 and (u, v) ∉ E

min {dist(u, v, r − 1)
dist(u, xr, r − 1) + dist(xr, v, r − 1)} otherwise

FloydWarshallAPSP(G):
for each pair (u,v) in V*V

if (u, v) in E then dist[u,v, 0] := w(u, v)
else dist[u,v,0] := INF

for r := 1 to
for each node u

for each node v
dist[u,v,r] := dist[u,v,r - 1]
if dist[u,v,r] > dist[u,xr, r - 1] + dist[xr,v, r - 1]

 dist[u,v,r] := dist[u,xr, r - 1] + dist[xr,v, r - 1]

n

FloydWarshallAPSP(G):
for each pair (u,v) in V*V

if (u, v) in E then dist[u,v] := w(u, v)
else dist[u,v] := INF

for r := 1 to
for each node u

for each node v
if dist[u,v] > dist[u,xr] + dist[xr,v]

 dist[u,v] := dist[u,xr] + dist[xr,v]

n

Space cost
O(n3)

Space cost
O(n2)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Edit Distance
dist(i, j) =

i if j = 0
j if i = 0

min
dist(i, j − 1) + 1
dist(i − 1,j) + 1
dist(i − 1,j − 1) + I[A[i] = B[j]]

otherwise

EditDistDP(A[1…m],B[1…n]):
for i := 0 to m

dist[i, 0] := i
for j := 0 to n

dist[0, j] := j
for i := 1 to m
for j := 1 to n

delDist := dist[i - 1, j] + 1
insDist := dist[i, j - 1] + 1
subDist := dist[i - 1, j - 1] + Diff(A[i], B[j])
dist[i, j] := Min(delDist, insDist, subDist)

return dist

EditDistDP(A[1…m],B[1…n]):
for j := 0 to n

distLast[j] := j //distLast[j] = dist[i - 1, j]
for i := 0 to m

distCur[0] := i //distCur[j] = dist[i, j]
for j := 1 to n

delDist := distLast[j] + 1
insDist := distCur[j - 1] + 1
subDist := distLast[j - 1] + Diff(A[i], B[j])
distCur[j] := Min(delDist, insDist, subDist)

distLast := distCur
return distCur[n]

Space cost
O(n2)

Space cost
O(n)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Analysis of DP Algorithms
• Correctness:

‣ Optimal substructure property.

‣ Bottom-up approach: subproblems are already solved.

• Complexity:

‣ Space complexity: usually obvious.

‣ Time complexity [bottom-up]: usually obvious.

‣ Time complexity [top-down]:

- How many subproblems in total?(number of nodes in the subproblem DAG.)

- Time to solve a problem, given subproblem solutions?(number of edges in the subproblem DAG.)

4

3

2

1

0

智能软件与⼯程学院
School of Intelligent Software and Engineering

Subset Sum

• Problem: Given an array of positive integers, can we find a
subset in that sums to given integer ?

• Simple solution: recursively enumerates all subsets, leading to an
algorithm costing time.

• Can we do better with dynamic programming?(Notice this is not an
optimization problem.)

X[1⋯n] n
X T

2n

O(2n)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Subset Sum
• Problem: Given an array of positive integers, can we find a

subset in that sums to given integer ?

• Step 1: Characterize the structure of solution.

‣ If there is a solution , either is in it or not.

‣ If , then there is a solution to instance “ ”;

‣ If , then there is a solution to instance “ ”.

X[1⋯n] n
X T

S X[1]

X[1] ∈ S X[2...n], T − X[1]

X[1] ∉ S X[2...n], T

智能软件与⼯程学院
School of Intelligent Software and Engineering

Subset Sum

• Step 2: Recursively define the value of an optimal solution.

‣ Let = true iff instance “ ” has a solution.

‣

ss(i, t) X[i . . . n], t

ss(i, t) =

true if t = 0
ss(i + 1,t) if t < X[i]
false if i > n
ss(i + 1,t) ∨ ss(i + 1,t − X[i]) otherwise

智能软件与⼯程学院
School of Intelligent Software and Engineering

Subset Sum

•

• Step 3: Compute the value of an optimal
solution (Bottom-Up).

‣ Build an 2D array

‣ Evaluation order: bottom row to top row;
left to right within each row.

ss(i, t) =

true if t = 0
ss(i + 1,t) if t < X[i]
false if i > n
ss(i + 1,t) ∨ ss(i + 1,t − X[i]) otherwise

ss[1...n,0...T]

SubsetSumDP(X,T):
ss[n, 0] := True
for t := 1 to T

ss[n, t] := (X[n] = t) ? True : False
for i := n - 1 downto 1

ss[i, 0] := True
for t :=1 to X[i] - 1

ss[i, t] := ss[i + 1, t]
for t := X[i] to T

ss[i, t] := Or(ss[i + 1, t], ss[i + 1, t - X[i]])
return ss[1,T]

Runtime is
O(nT)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Subset Sum

• Problem: Given an array of positive integers, can we find a
subset in that sums to given integer ?

• Simple solution: recursively enumerates all subsets, leading to an
algorithm costing time.

• Dynamic programming: costing time.

‣ Dynamic programming isn’t always an improvement! (Depends on)

X[1⋯n] n
X T

2n

O(2n)

O(nT)

T

智能软件与⼯程学院
School of Intelligent Software and Engineering

Dynamic Programming vs Greedy

• Dynamic Programming

‣ At each step: multiple potential
choices, each reducing the problem to a
subproblem, compute optimal solutions
of all subproblems and then find optimal
solution of original problem.

‣ Optimal substructure + Overlapping
subproblems.

• Greedy

‣ At each step: make an optimal
choice, then compute optimal
solution of the subproblem induced
by the choice made.

‣ Optimal substructure + Greedy
choice

Try DP first, then check if greedy works! (If does, prove it!)
(Come up with a working algorithm first, then develop a faster one.)

Common strategies for solving optimization problems Gradually generates a solution for the problem→

智能软件与⼯程学院
School of Intelligent Software and Engineering

Further reading
• [CLRS] Ch.1

• [DPV] Ch.6

• [Erickson] Ch.3

