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Problem Solving Strategies
• Divide and Conquer

‣ Divide (reduce) the problem into one or 
more subproblems;


‣ Recursively solve subproblems;


‣ Combine partial solutions to obtain 
complete solution.


‣ Example: merge-sort, quick-sort, 
binary-search, …

• Greedy


‣ Gradually generate a solution for the 
problem;


‣ At each step: make an greedy choice, 
then compute optimal solution of the 
subproblem induced by the choice 
made.


‣ Example: MST, Dijkstra, Huffman 
codes, …

What if a problem does not exhibit greedy choice property?
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The Rod-Cutting Problem
• Assume we are given a rod of length . We sell length  rod for a price of , where  and 

.


• How to cut the rod to gain maximum revenue?


• Enumerate all possibilities?


‣ There are  ways to cut up a length  rod…

n i pi i ∈ ℕ+

1 ≤ i ≤ n

2n−1 n

i 1 2 3 4 5 6 7 8 9 10

pi 1 5 8 9 10 17 17 20 24 30

9 1 8 5 5 18

1 51 1 5 1 15 1 11 11

8 possible ways of cutting up a rod of length 4 and their prices
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The Rod-Cutting Problem
• Greedy algorithm?


• Let  denote max profit for a length  rod.


• Optimal substructure property:


‣ 


• Greedy choice property?


‣ Always cut at the most profitable position? ( )


- Unfortunately, it does NOT yield optimal solution! ( )

rk k

rn = max
1≤i≤n

(pi + rn−i)

max(
pi

i
)

n = 3,p1 = 1,p2 = 7,p3 = 9
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The Rod-Cutting Problem
• Let  denote max profit for a length  rod.


• Optimal substructure property holds. 
( )


• Optimal substructure property already implies an 
algorithm! (even though without greedy choice property)


‣ At each step, enumerate all possible cut.


‣ For each cut, (recursively) find optimal solution. (Find all 
)


‣ Find optimal solution for original problem. (Find 

rk k

rn = max
1≤i≤n

(pi + rn−i)

rn−i

max
1≤i≤n

(pi + rn−i)

CutRodRec(prices,n): 
if n = 0

return 0
r := -INF
for i := 1 to n

r := Max(r, prices[i] + CutRodRec(prices,n-i) )
return r

Performance of this algorithm?

A simple recursive algorithm
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The Rod-Cutting Problem

4

1 + 3 2 + 2 3 + 1 4 + 0

1 + 0

1 + 1 2 + 0 1 + 01 + 2 2 + 1 3 + 0

1 + 1 2 + 0 1 + 0

1 + 0

• Each path from root to a leaf denotes a way to cut the rod.


• This algorithm enumerates all  possibilities!2n−1

Can we do better?
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The Rod-Cutting Problem

4

1 + 3 2 + 2 3 + 1 4 + 0

1 + 0

1 + 1 2 + 0 1 + 01 + 2 2 + 1 3 + 0

1 + 1 2 + 0 1 + 0

1 + 0

• For each subproblem, only need to solve it once!


• Each node denotes a subproblem of certain size


• Some subproblems appear multiple times.
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The Rod-Cutting Problem
• Solve each subproblem once and remember solution!

CutRodRecMemAux(prices,r,n):
if r[n] > 0

return r[n] 
if n = 0

q := 0
else 

q := -INF
for i := 1 to n

q := Max(q, prices[i] + CutRodRecMemAux (prices, r, n-i) )
r[n] := q
return q

CutRodRecMem(prices,n): 
for i := 0 to n

r[i] := -INF
return CutRodRecMemAux(prices, r, n)
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The Rod-Cutting Problem

• Runtime of this algorithm:


‣ Each subproblem (optimal revenue for length  rod) is solved once.


‣ When actually solving the size  problem, optimal solutions of subproblems 
are known. (Otherwise we would recurse first.)


- Thus solving size  problem itself (without subproblems) needs  time.


‣ Total run*me is .

i

i

i Θ(i)

Θ(1 + 2 + . . . + n) = Θ(n2)
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The Rod-Cutting Problem
4

1 + 3 2 + 2 3 + 1 4 + 0

1 + 0

1 + 1 2 + 0 1 + 01 + 2 2 + 1 3 + 0

1 + 1 2 + 0 1 + 0

1 + 0

4

3

2

1

0

Overlapping  
subproblems
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The Top-Down Approach
• Solving the problem using recursion is like 

DFS.


• Convert recursion to iteration?


‣ A problem cannot be solved until all 
subproblems it depends upon are solved.


‣ The subproblem graph is a DAG! (WHY?)


‣ Consider subproblems in reverse 
topological order!

4

3

2

1

0

CutRodIter(prices,n): 
r[0] := 0
for i := 1 to n

q := -INF
for j := 1 to i

q := Max(q, prices[j] + r[i - j])
r[i] := q

return r[n]

Runtime is Θ(n2)

谢润烁
It seems that DAG is not important
What is important is that LINEAR structure to turn it into iteration (TOPO)
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Reconstructing optimal solution

• Algorithm gives optimal revenue, but how to cut?

4

3

2

1

0

CutRodIter(prices,n): 
r[0] := 0
for i := 1 to n

q := -INF
for j := 1 to i
if q < prices[j] + r[i - j]

q := prices[j] + r[i - j]
cuts[i] = j

r[i] := q
return r[n]

PrintOpt(cuts,n):
while n > 0
Print cuts[n]
n := n – cuts[n]



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Dynamic Programming
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Dynamic Programming (DP)
• Consider an (optimization) problem:


‣ Build optimal solution step by step.


‣ Problem has optimal substructure property.


- We can design a recursive algorithm.


‣ Problem has lots of overlapping subproblems.


- Recursion and memorize solutions. (Top-Down)


- Or, consider subproblems in the right order. (Bottom-Up)


• We have seen such algorithms previously!



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

The Floyd-Warshall Algorithm

• Strategy: recuse on the set of node the shortest paths use.


• Define  be length of shortest path from  to , s.t. only nodes 
in  can be intermediate nodes in paths. 


•

dist(u, v, r) u v
Vr = {x1, x2, . . . , xr}

dist(u, v, r) =

w(u, v) if r = 0 and (u, v) ∈ E
∞ if r = 0 and (u, v) ∉ E

min {dist(u, v, r − 1)
dist(u, xr, r − 1) + dist(xr, v, r − 1)} otherwise
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The Floyd-Warshall Algorithm
FloydWarshallAPSP(G): 
for each pair (u,v) in V*V
if (u, v) in E  then dist[u,v, 0] := w(u, v)
else dist[u,v,0] := INF

for r := 1 to 
for each node u
for each node v

dist[u,v,r] := dist[u,v,r - 1]
if dist[u,v,r] > dist[u,xr, r - 1] + dist[xr,v, r - 1]

      dist[u,v,r] := dist[u,xr, r - 1] + dist[xr,v, r - 1]

n

Bottom-up Approach
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Developing a DP algorithm
• Characterize the structure of solution.


‣ E.g. [rod-cutting]: (one cut of length ) + (solution for length )


• Recursively define the value of an optimal solution.


‣ E.g. [rod-cutting]: 


• Compute the value of an optimal solution.


‣ Top-down or Bottom-up. (Usually use bottom-up)


• [∗] Construct an optimal solution.


‣ Remember optimal choices (beside optimal solution values).

i n − i

rn = max
1≤i≤n

(pi + rn−i)
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Matrix-chain Multiplication
• Input: Matrices , with  of size .


• Output: . 

• Problem: Compute output with minimum work?


• Matrix multiplication is associative, and order does matter!


‣ Example: 


‣  costs 


‣  costs 

A1, A2, . . . , An Ai pi−1 × pi

A1A2 . . . An

|A1 | = 10 × 100, |A2 | = 100 × 5, |A3 | = 5 × 50

(A1A2)A3 10 × 100 × 5 + 10 × 5 × 50 = 7500

A1(A2A3) 100 × 5 × 50 + 10 × 100 × 50 = 75000
Optimal order for minimum cost?
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Developing a DP algorithm for Matrix-chain Multiplication 
• Characterize the structure of solution.


‣ What’s the last step in computing ?


‣ For every order, last step is . 

‣ In general, 

A1A2 . . . An

(A1A2 . . . Ak) ⋅ (Ak+1Ak+2 . . . An)

AiAi+1 . . . Aj = (AiAi+1 . . . Ak) ⋅ (Ak+1Ak+2 . . . Aj)

• Recursively define the value of an optimal solution.


‣ Let  be the minimal cost for computing 

‣

- Optimal Substructure Property!

m[i, j] AiAi+1 . . . Aj

m[i, j] = min
i≤k<j

(m[i, k] + m[k + 1,j] + pi−1pk pj)
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• Let  be the minimal cost for computing 

•

m[i, j]
AiAi+1 . . . Aj

m[i, j] = min
i≤k<j

(m[i, k] + m[k + 1,j] + pi−1pk pj)

Developing a DP algorithm for Matrix-chain Multiplication 
MatrixChainDP(A1, A2,…,An): 
for i := 1 to n

m[i, i] := 0
for l := 2 to n
for i := 1 to n - l +1

j := i + l -1
m[i, j] = INF
for k := i to j - 1

cost := m[i,k] + m[k+1,j] + pi-1*pk*pj

if  cost < m[i, j]
m[i, j] := cost

return m

• Compute the value of an optimal solution.


‣ Top-down (recursion with memorization) is 
easy, but bottom-up?


‣ What does  depend upon?


-  depend upon , where 
. 


‣ Compute  in length increasing order!

m[i, j]

m[i, j] m[i′ , j′ ]
j′ − i′ < j − i

m[i, j]
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• Construct an optimal solution.

‣ For each (i, j) pair, remember the position of the optimal “split”.

Developing a DP algorithm for Matrix-chain Multiplication 

MatrixChainDP(A1, A2,…,An): 
for i := 1 to n

m[i, i] := 0
for l :=2 to n
for i := 1 to n - l +1

j := i + l -1
m[i, j] = INF
for k := i to j - 1

cost := m[i,k] + m[k+1,j] + pi-1*pk*pj

if  cost < m[i, j]
m[i, j] := cost
s[i, j] := k

return <m, s>

MatrixChainPrintOpt(s,i,j):
if i = j

Print “Ai” 

else 
Print “(”
MatrixChainPrintOpt(s, i, s[i,j])
MatrixChainPrintOpt(s, s[i,j]+1, j)
Print “)”
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Edit Distance
• Given two strings, how similar are they?


‣ Application: when a spell checker encounters a possible misspelling, it 
needs to search dictionary to find nearby words.


• Consider following three type of operations for a string:


‣ Insertion: insert a character at a position.


‣ Deletion: remove a character at a position.


‣ Substitution: change a character to another character.
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Edit Distance
• Edit Distance of A and B: minimal number of ops to transform A into B.


• Example: transform “SNOWY” to “SUNNY”


‣ Insertion: SNOWY -> SUNOWY 

‣ Deletion: SUNOWY -> SUNOY 

‣ Substitution: SUNOY -> SUNNY 

‣ Edit distance is at most 3 (and it indeed is 3).
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Edit Distance
• Edit Distance of  and : minimal number of ops to 

transform  into .


‣ Operations: Insertion, Deletion, and Substitution.


• One way to visualize the editing process:


‣ Align string  above string ;


‣ A gap in first line indicates an insertion (to );


‣ A gap in second line indicates a deletion (from );


‣ A column with different characters indicates a substitution.

A B
A B

A B

A

A
S N O W Y

S N N YU

insertion substitution deletion
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Edit Distance
• Problem: Given  and , what is the edit distance?


• Step 1: Characterize the structure of solution.


‣ Consider transform A[1 … m] to B[1 … n].


‣ Each solution can be visualized in the way described earlier.


‣ Last column must be one of three cases:  or  or 


‣ Each case reduces the problem to a subproblem:


- : edit distance of A[1 … m] and B[1 … (n - 1)]


- : edit distance of A[1 … (m - 1)] and B[1 … (n - 1)]


- : edit distance of A[1 … (m - 1)] and B[1 … n]

A B

−
B[n]

A[m]
B[n]

A[m]
−

( − , B[n])

(A[m], B[n])

(A[m], − )

S N O W Y

S N N YU
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Edit Distance

• Step 2: Recursively define the value of an optimal solution


‣
dist(i, j) =

i if j = 0
j if i = 0

min
dist(i, j − 1) + 1
dist(i − 1,j) + 1
dist(i − 1,j − 1) + I[A[i] = B[ j]]

otherwise
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Edit Distance
• Step 3: Compute the value of an optimal 

solution (Bottom-Up).


‣ What does  depend upon?dist(i, j)

EditDistDP(A[1…m],B[1…n]): 
for i := 0 to m

dist[i, 0] := i
for j := 0 to n

dist[0, j] := j
for i := 1 to m
for j := 1 to n

delDist := dist[i - 1, j] + 1
insDist := dist[i, j - 1] + 1
subDist := dist[i - 1, j - 1] + Diff(A[i], B[j])
dist[i, j] := Min(delDist, insDist, subDist)

return dist

‣ Outer-loop: 


- increasing ; 


‣ Inner-loop: 


- increasing 

i

j

Step 4: Construct an optimal solution.
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• DAG Transform “EXPONENTIAL” to “POLYNOMIAL”


‣    Insertion (costs 1)


‣      Deletion (costs 1)


‣    Substitution [diff] (costs 1)


‣         Substitution (costs 0)


• Edit distance: 


‣ Shortest path from top-left to right-bottom.

→

↓

↘

P
P

O
O

N
N

I
I

A
A

L
L

⤏

E
—

1

X
—

1

N
L

1

E
Y

1

—
O

1

T
M

1

Subproblem graph
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Maximum Independent Set
• Given an undirected graph , an independent set  is a subset 

of , such that no vertices in  are adjacent. Put another way, for all 
,  we have .


• A maximum independent set (MaxIS) is an independent set of maximum 
size.

G = (V, E) I
V I

(u, v) ∈ I × I (u, v) ∉ E

A B C

D E

A B C

D E

A B C

D E

A B C

D E

 is Not IS{B, D, E}  is IS,

but is Not MaxIS

{B, D}  is IS,

and is also MaxIS
{A, E, C}
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Maximum Independent Set

• Computing MaxIS in an arbitrary graph is very hard. Even getting an 
approximate MaxIS is very hard! 


• But if we only consider trees, MaxIS is very easy!

A B C

D E

A B C

D E

A B C

D E

A B C

D E

 is Not IS{B, D, E}  is IS,

but is Not MaxIS

{B, D}  is IS,

and is also MaxIS
{A, E, C}

NP-hard!
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MaxIS of Trees
• Problem: Given a tree  with root , compute a MaxIS of it.


• Step 1: Characterize the structure of solution.


‣ Given an IS  of , for each child  of , set  is an IS of .

T r

I T u r I ∩ V(Tu) Tu

?

? ? ? ? ? ?

?? ??

OR

• Step 2: Recursively define the value of an optimal solution.


‣ Let  be size of MaxIS of (sub)tree rooted at node .


‣ 


‣ NO! The recurrence depends on whether  in the MaxIS of .

mis(Tu) u

mis(Tu) = 1 + ∑
v is a child of u

mis(Tv)

u Tu
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MaxIS of Trees
• Step 2: Recursively define the value of an optimal solution


‣ Let  be size of MaxIS of (sub)tree rooted at node .


‣ The recurrence depends on whether  in the MaxIS of .


‣ Let  be size of MaxIS of , s.t.  in the MaxIS.


‣ Let  be size of MaxIS of , s.t.  NOT in the MaxIS.


‣ 


‣ 


‣

mis(Tu) u

u Tu

mis(Tu,1) Tu u

mis(Tu,0) Tu u

mis(Tu,1) = 1 + ∑
v is a child of u

mis(Tv,0)

mis(Tu,0) = ∑
v is a child of u

mis(Tv)

mis(Tu) = max{mis(Tu,0), mis(Tu,1)}

?

? ? ? ? ? ?

?? ??

OR
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MaxIS of Trees
• Step 3: Compute the value of an optimal solution.

MaxIsDP(u): 
mis1 := 1
mis0 := 0
for each child v of u

mis1 := mis1 + MaxISDP(v).mis0
mis0 := mis0 + MaxISDP(v).mis

mis := Max(mis0, mis1)
return <mis,mis0,mis1>

Runtime is O(V + E) = O(V)

?

? ? ? ? ? ?

?? ??

OR
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Discussions of 
Dynamic Programming
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Dynamic Programming (DP)
• Consider an (optimization) problem:


‣ Build optimal solution step by step.


‣ Problem has optimal substructure property.


- We can design a recursive algorithm.


‣ Problem has lots of overlapping subproblems.


- Recursion and memorize solutions. (Top-Down)


- Or, consider subproblems in the right order. (Bottom-Up)
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Optimal substructure not always true
• Shortest path in unit-weight graph:


‣ Assume 


‣ 


- 


-

w ∈ OPT(u ⇝ v)

OPT(u ⇝ v) = u
p1⇝ w

p2⇝ v

p1 = OPT(u ⇝ w)

p2 = OPT(w ⇝ v)
u x

vw

1

1

1

1

• Longest simple path in unit-weight graph:


‣ Assume 


‣ 


‣ ?

w ∈ OPT(u ⇝ v)

OPT(u ⇝ v) = u
p1⇝ w

p2⇝ v

p1 = OPT(u ⇝ w)

Optimal substructure property! NO optimal substructure property!

Subproblems are independent! Subproblems are NOT independent!

- Actually, 


- Similarly, 

OPT(u ⇝ w) = u ⇝ x ⇝ v ⇝ w ≠ p1

OPT(w ⇝ v) = w ⇝ u ⇝ x ⇝ v ≠ p2
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Dynamic Programming (DP)
• Consider an (optimization) problem:


‣ Build optimal solution step by step.


‣ Problem has optimal substructure property.


- We can design a recursive algorithm.


‣ Problem has lots of overlapping subproblems.


- Recursion and memorize solutions. (Top-Down)


- Or, consider subproblems in the right order. (Bottom-Up)
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Top-Down vs Bottom-Up

• [Top-Down] Recursion with memorization.


‣ Very straightforward, easy to write down 
the code.


‣ Use array or hash-table to memorize 
solutions.


‣ Array may cost more space, but hash-
table may cost more time.

• [Bottom-Up] Solve subproblems in the right 
order.


‣ Finding the right order might be non-trivial. 
(Subproblem graph?)


‣ Usually use array to memorize solutions.


‣ Might be able to reduce the size of array to 
save even more space.

Dynamic programming trades space for time    Save solutions for subproblems to avoid repeat computation.→

Top-down often costs more time in practice. (Recursion is costly!) 
But not always! (Top-down only considers necessary subproblems.)
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APSP via Dynamic Programming

dist(u, v, r) =

w(u, v) if r = 0 and (u, v) ∈ E
∞ if r = 0 and (u, v) ∉ E

min {dist(u, v, r − 1)
dist(u, xr, r − 1) + dist(xr, v, r − 1)} otherwise

FloydWarshallAPSP(G): 
for each pair (u,v) in V*V

if (u, v) in E  then dist[u,v, 0] := w(u, v)
else dist[u,v,0] := INF

for r := 1 to 
for each node u

for each node v
dist[u,v,r] := dist[u,v,r - 1]
if dist[u,v,r] > dist[u,xr, r - 1] + dist[xr,v, r - 1]

      dist[u,v,r] := dist[u,xr, r - 1] + dist[xr,v, r - 1]

n

FloydWarshallAPSP(G): 
for each pair (u,v) in V*V

if (u, v) in E  then dist[u,v] := w(u, v)
else dist[u,v] := INF

for r := 1 to 
for each node u

for each node v
if dist[u,v] > dist[u,xr] + dist[xr,v]

      dist[u,v] := dist[u,xr] + dist[xr,v]

n

Space cost 
O(n3)

Space cost 
O(n2)
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Edit Distance
dist(i, j) =

i if j = 0
j if i = 0

min
dist(i, j − 1) + 1
dist(i − 1,j) + 1
dist(i − 1,j − 1) + I[A[i] = B[ j]]

otherwise

EditDistDP(A[1…m],B[1…n]): 
for i := 0 to m

dist[i, 0] := i
for j := 0 to n

dist[0, j] := j
for i := 1 to m
for j := 1 to n

delDist := dist[i - 1, j] + 1
insDist := dist[i, j - 1] + 1
subDist := dist[i - 1, j - 1] + Diff(A[i], B[j])
dist[i, j] := Min(delDist, insDist, subDist)

return dist

EditDistDP(A[1…m],B[1…n]): 
for j := 0 to n

distLast[j] := j     //distLast[j] = dist[i - 1, j]  
for i := 0 to m

distCur[0] := i    //distCur[j] = dist[i, j]  
for j := 1 to n

delDist := distLast[j] + 1
insDist := distCur[j - 1] + 1
subDist := distLast[j - 1] + Diff(A[i], B[j])
distCur[j] := Min(delDist, insDist, subDist)

distLast := distCur
return distCur[n]

Space cost 
O(n2)

Space cost 
O(n)
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Analysis of DP Algorithms
• Correctness:


‣ Optimal substructure property.


‣ Bottom-up approach: subproblems are already solved.


• Complexity:


‣ Space complexity: usually obvious.


‣ Time complexity [bottom-up]: usually obvious.


‣ Time complexity [top-down]:


- How many subproblems in total?(number of nodes in the subproblem DAG.)


- Time to solve a problem, given subproblem solutions?(number of edges in the subproblem DAG.)

4

3

2

1

0
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Subset Sum

• Problem: Given an array  of  positive integers, can we find a 
subset in  that sums to given integer ?


• Simple solution: recursively enumerates all  subsets, leading to an 
algorithm costing  time.


• Can we do better with dynamic programming?(Notice this is not an 
optimization problem.)

X[1⋯n] n
X T

2n

O(2n)
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Subset Sum
• Problem: Given an array  of  positive integers, can we find a 

subset in  that sums to given integer ?


• Step 1: Characterize the structure of solution.


‣ If there is a solution , either  is in it or not.


‣ If , then there is a solution to instance “ ”;


‣ If , then there is a solution to instance “ ”.

X[1⋯n] n
X T

S X[1]

X[1] ∈ S X[2...n], T − X[1]

X[1] ∉ S X[2...n], T
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Subset Sum

• Step 2: Recursively define the value of an optimal solution.


‣ Let  = true iff instance “ ” has a solution.


‣

ss(i, t) X[i . . . n], t

ss(i, t) =

true if t = 0
ss(i + 1,t) if t < X[i]
false if i > n
ss(i + 1,t) ∨ ss(i + 1,t − X[i]) otherwise
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Subset Sum

•



• Step 3: Compute the value of an optimal 
solution (Bottom-Up).


‣ Build an 2D array 


‣ Evaluation order: bottom row to top row; 
left to right within each row.

ss(i, t) =

true if t = 0
ss(i + 1,t) if t < X[i]
false if i > n
ss(i + 1,t) ∨ ss(i + 1,t − X[i]) otherwise

ss[1...n,0...T]

SubsetSumDP(X,T):
ss[n, 0] := True
for t := 1 to T

ss[n, t] := (X[n] = t) ? True : False
for i := n - 1 downto 1

ss[i, 0] := True
for t :=1 to X[i] - 1

ss[i, t] := ss[i + 1, t]
for t := X[i] to T

ss[i, t] := Or(ss[i + 1, t], ss[i + 1, t - X[i]])
return ss[1,T]

Runtime is 
O(nT)
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Subset Sum

• Problem: Given an array  of  positive integers, can we find a 
subset in  that sums to given integer ?


• Simple solution: recursively enumerates all  subsets, leading to an 
algorithm costing  time.


• Dynamic programming: costing  time.


‣ Dynamic programming isn’t always an improvement! (Depends on )

X[1⋯n] n
X T

2n

O(2n)

O(nT)

T
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Dynamic Programming vs Greedy

• Dynamic Programming 

‣ At each step: multiple potential 
choices, each reducing the problem to a 
subproblem, compute optimal solutions 
of all subproblems and then find optimal 
solution of original problem.


‣ Optimal substructure + Overlapping 
subproblems.

• Greedy 

‣ At each step: make an optimal 
choice, then compute optimal 
solution of the subproblem induced 
by the choice made.


‣ Optimal substructure + Greedy 
choice

Try DP first, then check if greedy works! (If does, prove it!)  
(Come up with a working algorithm first, then develop a faster one.)

Common strategies for solving optimization problems   Gradually generates a solution for the problem→
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Further reading
• [CLRS] Ch.1


• [DPV] Ch.6


• [Erickson] Ch.3


