动态规划

 Dynamic Programming钮鋥涛
Nanjing University
2023 Fall

The slides are mainly adapted fiom the original ones shared by Chaodong Zheng and Kevin Wayne．Thanks for their supports！

Problem Solving Strategies

－Divide and Conquer
－Divide（reduce）the problem into one or more subproblems；
－Recursively solve subproblems；
－Combine partial solutions to obtain complete solution．
－Example：merge－sort，quick－sort， binary－search，．．．
－Greedy
－Gradually generate a solution for the problem；
－At each step：make an greedy choice， then compute optimal solution of the subproblem induced by the choice made．
－Example：MST，Dijkstra，Huffman codes，．．．

The Rod－Cutting Problem

－Assume we are given a rod of length n ．We sell length i rod for a price of p_{i} ，where $i \in \mathbb{N}^{+}$and $1 \leq i \leq n$ ．

\boldsymbol{i}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
p_{i}	1	5	8	9	10	17	17	20	24	30

－How to cut the rod to gain maximum revenue？
－Enumerate all possibilities？
－There are 2^{n-1} ways to cut up a length n rod．．．

8 possible ways of cutting up a rod of length 4 and their prices

The Rod－Cutting Problem

－Greedy algorithm？
－Let r_{k} denote max profit for a length k rod．
－Optimal substructure property：
－$r_{n}=\max _{1 \leq i \leq n}\left(p_{i}+r_{n-i}\right)$
－Greedy choice property？
－Always cut at the most profitable position？$\left(\max \left(\frac{p_{i}}{i}\right)\right)$
－Unfortunately，it does NOT yield optimal solution！$\left(n=3, p_{1}=1, p_{2}=7, p_{3}=9\right)$

The Roo－Mutan Parn

－Let r_{k} denote max profit for a length k rod．
－Optimal substructure property holds．
$\left(r_{n}=\max _{1 \leq i \leq n}\left(p_{i}+r_{n-i}\right)\right)$
－Optimal substructure property already implies an algorithm！（even though without greedy choice property）
－At each step，enumerate all possible cut．
－For each cut，（recursively）find optimal solution．（Find all $\left.r_{n-i}\right)$
－Find optimal solution for original problem．（Find

```
max }(\mp@subsup{p}{i}{}+\mp@subsup{r}{n-i}{}
```

$1 \leq i \leq n$

```
CutRodRec(prices,n):
if }n=
    return 0
r:= -INF
for i := 1 to n
    r:= Max(r,prices[i] + CutRodRec(prices,n-i))
return r
```


The Rod－Cutting Problem

－Each path from root to a leaf denotes a way to cut the rod．
－This algorithm enumerates all 2^{n-1} possibilities！

Can we do better？

The Rod－Cutting Problem

－For each subproblem，only need to solve it once！
－Each node denotes a subproblem of certain size

The Rod－Cutting Problem

－Solve each subproblem once and remember solution！
CutRodRecMem（prices，n ）：
for $i:=0$ to n
$r[i]:=-I N F$
return CutRodRecMemAux（prices，r, n ）
CutRodRecMemAux（prices，r，n）：
if $r[n]>0$
return $r[n]$
if $n=0$
$q:=0$
else
$q:=-I N F$
for $i:=1$ to n
$q:=\operatorname{Max}(q, \operatorname{prices}[i]+$ CutRodRecMemAux（prices，$r, n-i))$
$r[n]:=q$
return q

The Rod－Cutting Problem

－Runtime of this algorithm：
－Each subproblem（optimal revenue for length i rod）is solved once．
－When actually solving the size i problem，optimal solutions of subproblems are known．（Otherwise we would recurse first．）
－Thus solving size i problem itself（without subproblems）needs $\Theta(i)$ time．
－Total runtime is $\Theta(1+2+\ldots+n)=\Theta\left(n^{2}\right)$ ．

The Rod－Cutting Problem

The Top－Down Approach

－Solving the problem using recursion is like DFS．
－Convert recursion to iteration？
－A problem cannot be solved until all subproblems it depends upon are solved．
－The subproblem graph is a DAG！（WHY？）
－Consider subproblems in reverse topological order！

```
CutRodIter(prices,n):
r[0]:= 0
for }i:=1\mathrm{ to }
    q:=-INF
    for j:= 1 to i
        q:= Max(q, prices[j]+r[i-j])
    r[i]:=q
return r[n]
    Runtime is \Theta(n')
```


Reconstructing optimal solution

－Algorithm gives optimal revenue，but how to cut？

```
CutRodIter(prices,n):
r[0]:= 0
for }i:=1\mathrm{ to }
    q:=-INF
    for j:= 1 to i
        if q< prices[j]+r[i-j]
        q:= prices[j] +r[i-j]
        cuts[i]=j
    r[i]:=q
return r[n]
```


Dynamic Programming

\square 2l|a

Dynamic Programming（DP）

－Consider an（optimization）problem：
－Build optimal solution step by step．
－Problem has optimal substructure property．
－We can design a recursive algorithm．
－Problem has lots of overlapping subproblems．
－Recursion and memorize solutions．（Top－Down）
－Or，consider subproblems in the right order．（Bottom－Up）
－We have seen such algorithms previously！

The Floyd－Warshall Algorithm

－Strategy：recuse on the set of node the shortest paths use．
－Define $\operatorname{dist}(u, v, r)$ be length of shortest path from u to v ，s．t．only nodes in $V_{r}=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ can be intermediate nodes in paths．
$\operatorname{dist(u,v,r)}= \begin{cases}w(u, v) & \begin{array}{l}\text { if } r=0 \text { and }(u, v) \in E \\ \infty \\ \text { if } r=0 \text { and }(u, v) \notin E\end{array} \\ \min \left\{\begin{array}{l}\operatorname{dist}(u, v, r-1) \\ \operatorname{dist}\left(u, x_{r}, r-1\right)+\operatorname{dist}\left(x_{r}, v, r-1\right)\end{array}\right\} & \text { otherwise }\end{cases}$

The Floyd－Warshall Algorithm

```
FloydWarshallAPSP(G):
for each pair \((u, v)\) in \(V^{*} V\)
    if \((u, v)\) in \(E\) then \(\operatorname{dist}[u, v, 0]:=w(u, v)\)
    else \(\operatorname{dist}[u, v, 0]:=I N F\)
for \(r\) := 1 to \(n\)
    for each node \(u\)
        for each node \(v\)
            \(\operatorname{dist}[u, v, r]:=\operatorname{dist}[u, v, r-1]\)
            if \(\operatorname{dist}[u, v, r]>\operatorname{dist}\left[u, x_{r}, r-1\right]+\operatorname{dist}\left[x_{r}, v, r-1\right]\)
                \(\operatorname{dist}[u, v, r]:=\operatorname{dist}\left[u, x_{r}, r-1\right]+\operatorname{dist}\left[x_{r}, v, r-1\right]\)
```


Developing a DP algorithm

- Characterize the structure of solution.
- E.g. [rod-cutting]: (one cut of length i) + (solution for length $n-i$)
- Recursively define the value of an optimal solution.
- E.g. [rod-cutting]: $r_{n}=\max _{1 \leq i \leq n}\left(p_{i}+r_{n-i}\right)$
- Compute the value of an optimal solution.
- Top-down or Bottom-up. (Usually use bottom-up)
- [*] Construct an optimal solution.
- Remember optimal choices (beside optimal solution values).

Matrix－chain Multiplication

－Input：Matrices $A_{1}, A_{2}, \ldots, A_{n}$ ，with A_{i} of size $p_{i-1} \times p_{i}$ ．
－Output：$A_{1} A_{2} \ldots A_{n}$ ．
－Problem：Compute output with minimum work？
－Matrix multiplication is associative，and order does matter！
－Example：$\left|A_{1}\right|=10 \times 100,\left|A_{2}\right|=100 \times 5,\left|A_{3}\right|=5 \times 50$
－$\left(A_{1} A_{2}\right) A_{3}$ costs $10 \times 100 \times 5+10 \times 5 \times 50=7500$
－$A_{1}\left(A_{2} A_{3}\right)$ costs $100 \times 5 \times 50+10 \times 100 \times 50=75000$

Developing a DP algorithm for Matrix-chain Multiplication

- Characterize the structure of solution.
- What's the last step in computing $A_{1} A_{2} \ldots A_{n}$?
- For every order, last step is $\left(A_{1} A_{2} \ldots A_{k}\right) \cdot\left(A_{k+1} A_{k+2} \ldots A_{n}\right)$.
- In general, $A_{i} A_{i+1} \ldots A_{j}=\left(A_{i} A_{i+1} \ldots A_{k}\right) \cdot\left(A_{k+1} A_{k+2} \ldots A_{j}\right)$
- Recursively define the value of an optimal solution.
- Let $m[i, j]$ be the minimal cost for computing $A_{i} A_{i+1} \ldots A_{j}$
- $m[i, j]=\min _{i \leq k<j}\left(m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right)$
- Optimal Substructure Property!

Developing a DP algorithm for Matrix-chain Multiplication

- Let $m[i, j]$ be the minimal cost for computing $A_{i} A_{i+1} \ldots A_{j}$
- $m[i, j]=\min _{i \leq k<j}\left(m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right)$
- Compute the value of an optimal solution.
- Top-down (recursion with memorization) is easy, but bottom-up?
- What does $m[i, j]$ depend upon?
- $m[i, j]$ depend upon $m\left[i^{\prime}, j^{\prime}\right]$, where $j^{\prime}-i^{\prime}<j-i$.
- Compute $m[i, j]$ in length increasing order!

```
MatrixChainDP( \(\left.\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)\) :
for \(i:=1\) to \(n\)
        \(m[i, i]:=0\)
for \(l:=2\) to \(n\)
    for \(i:=1\) to \(n-l+1\)
        \(j:=i+l-1\)
        \(m[i, j]=I N F\)
        for \(k:=i\) to \(j-1\)
        cost \(:=m[i, k]+m[k+1, j]+p_{i-1} * p_{k} * p_{j}\)
        if cost \(<m[i, j]\)
            \(m[i, j]:=\) cost
return \(m\)
```


Developing a DP algorithm for Matrix－chain Multiplication

－Construct an optimal solution．
－For each (i, j) pair，remember the position of the optimal＂split＂．

MatrixChainDP（ $\left.\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)$ ：

```
for i:= 1 to }
    m[i,i]:=0
for l:=2 to }
    for }i:=1\mathrm{ to }n-l+
        j:= i+l-1
        m[i,j] = INF
        for k:= i to j-1
            cost :=m[i,k]+m[k+1,j]+ \mp@subsup{p}{i-1}{**}\mp@subsup{p}{k}{*}\mp@subsup{}{}{*}\mp@subsup{p}{j}{}
            if cost<m[i,j]
                m[i,j]:= cost
            s[i,j]:=k
```

return $<m, s>$

Edit Distance

- Given two strings, how similar are they?
- Application: when a spell checker encounters a possible misspelling, it needs to search dictionary to find nearby words.
- Consider following three type of operations for a string:
- Insertion: insert a character at a position.
- Deletion: remove a character at a position.
- Substitution: change a character to another character.

Edit Distance

- Edit Distance of A and B: minimal number of ops to transform A into B.
- Example: transform "SNOWY" to "SUNNY"
- Insertion: SNOWY -> SUNOWY
- Deletion: SUNOWY -> SUNOY
- Substitution: SUNOY -> SUNNY
- Edit distance is at most 3 (and it indeed is 3).

Edit Distance

－Edit Distance of A and B ：minimal number of ops to transform A into B ．
－Operations：Insertion，Deletion，and Substitution．
－One way to visualize the editing process：
－Align string A above string B ；
－A gap in first line indicates an insertion（to A ）；
－A gap in second line indicates a deletion（from A ）；

－A column with different characters indicates a substitution．

Edit Distance

- Problem: Given A and B, what is the edit distance?
- Step 1: Characterize the structure of solution.
- Consider transform $A[1 \ldots m]$ to $B[1 \ldots n]$.
- Each solution can be visualized in the way described earlier.
- Last column must be one of three cases: $\frac{-}{B[n]}{ }^{-}{ }^{\circ}{ }_{B[n]}^{A[m]}{ }^{\text {or }}{ }_{-}^{A[m]}$
- Each case reduces the problem to a subproblem:
- $(-, B[n])$: edit distance of $A[1 \ldots m]$ and $B[1 \ldots(n-1)]$
- $(A[m], B[n])$: edit distance of $A[1 \ldots(m-1)]$ and $B[1 \ldots(n-1)]$
- $(A[m],-)$: edit distance of $A[1 \ldots(m-1)]$ and $B[1 \ldots n]$

Edit Distance

－Step 2：Recursively define the value of an optimal solution

$$
\operatorname{dist}(i, j)= \begin{cases}i & \begin{array}{l}
\text { if } j=0 \\
j \\
\text { if } i=0
\end{array} \\
\min \left\{\begin{array}{l}
\operatorname{dist}(i, j-1)+1 \\
\operatorname{dist}(i-1, j)+1 \\
\operatorname{dist}(i-1, j-1)+I[A[i]=B[j]]
\end{array}\right\} & \end{cases}
$$

Edit Distance

－Step 3：Compute the value of an optimal solution（Bottom－Up）．
－What does $\operatorname{dist}(i, j)$ depend upon？
－Outer－loop：
－increasing i ；
－Inner－loop：
－increasing j

EditDistDP（A［1．．．m］，B［1．．．n］）：

$$
\begin{aligned}
& \text { for } i:=0 \text { to } m \\
& \quad \operatorname{dist}[i, 0]:=i \\
& \text { for } j:=0 \text { to } n \\
& \quad \operatorname{dist}[0, j]:=j \\
& \text { for } i:=1 \text { to } m \\
& \quad \text { for } j:=1 \text { to } n \\
& \quad \operatorname{delDist~}:=\operatorname{dist}[i-1, j]+1 \\
& \quad \operatorname{insDist~}:=\operatorname{dist}[i, j-1]+1 \\
& \\
& \quad \operatorname{subDist}:=\operatorname{dist}[i-1, j-1]+\operatorname{Diff}(A[i], B[j]) \\
& \\
& \quad \operatorname{dist}[i, j]:=\operatorname{Min}(\operatorname{delDist}, \text { insDist, subDist) }
\end{aligned}
$$

return dist

Subproblem graph

- DAG Transform "EXPONENTIAL" to "POLYNOMIAL"
- \rightarrow Insertion (costs 1)
- \downarrow Deletion (costs 1)
- \searrow Substitution [diff] (costs 1)
- ` \searrow Substitution (costs 0)
- Edit distance:
- Shortest path from top-left to right-bottom.

	N	-	T	I	A	L
N	O	M	I	A	L	

Maximum Independent Set

- Given an undirected graph $G=(V, E)$, an independent set I is a subset of V, such that no vertices in I are adjacent. Put another way, for all $(u, v) \in I \times I$, we have $(u, v) \notin E$.
- A maximum independent set (MaxIS) is an independent set of maximum size.

$\{B, D, E\}$ is Not IS

$\{B, D\}$ is IS, but is Not MaxIS

$\{A, E, C\}$ is IS, and is also MaxIS

Maximum Independent Set

－Computing MaxIS in an arbitrary graph is very hard．Even getting an approximate MaxIS is very hard！
－But if we only consider trees，MaxIS is very easy！

$\{B, D, E\}$ is Not IS

$\{B, D\}$ is IS， but is Not MaxIS

$\{A, E, C\}$ is IS， and is also MaxIS

MaxIS of Trees

－Problem：Given a tree T with root r ，compute a MaxIS of it．
－Step 1：Characterize the structure of solution．
－Given an IS I of T ，for each child u of r ，set $I \cap V\left(T_{u}\right)$ is an IS of T_{u} ．

－Step 2：Recursively define the value of an optimal solution．
－Let $m i s\left(T_{u}\right)$ be size of MaxIS of（sub）tree rooted at node u ．
－$m i s\left(T_{u}\right)=1+\sum_{v \text { is a child of } u} \operatorname{mis}\left(T_{v}\right)$
－NO！The recurrence depends on whether u in the MaxIS of T_{u} ．

MaxIS of Trees

－Step 2：Recursively define the value of an optimal solution
－Let $m i s\left(T_{u}\right)$ be size of MaxIS of（sub）tree rooted at node u ．
－The recurrence depends on whether u in the MaxIS of T_{u} ．

－Let $m i s\left(T_{u}, 1\right)$ be size of MaxIS of T_{u} ，s．t．u in the MaxIS．
－Let $\operatorname{mis}\left(T_{u}, 0\right)$ be size of MaxIS of T_{u} ，s．t．u NOT in the MaxIS．
－mis $\left(T_{u}, 1\right)=1+\sum_{v \text { is a child of } u} \operatorname{mis}\left(T_{v}, 0\right)$
－mis $\left(T_{u}, 0\right)=\sum_{v \text { is a child of } u} \operatorname{mis}\left(T_{v}\right)$

－ $\operatorname{mis}\left(T_{u}\right)=\max \left\{\operatorname{mis}\left(T_{u}, 0\right), \operatorname{mis}\left(T_{u}, 1\right)\right\}$

MaxIS of Trees

- Step 3: Compute the value of an optimal solution.

> MaxIsDP(u):
> mis $1:=1$
> mis $:=0$
> for each child v of u \quad mis $1:=$ mis $1+\operatorname{MaxISDP(v).mis~} 0$ \quad mis $0:=$ mis $0+\operatorname{MaxISDP(v).mis~}$ mis $:=$ Max(mis 0, mis 1$)$ return <mis,mis $0, m i s l>$

Discussions of Dynamic Programming

Dynamic Programming（DP）

－Consider an（optimization）problem：
－Build optimal solution step by step．
－Problem has optimal substructure property．
－We can design a recursive algorithm．
－Problem has lots of overlapping subproblems．
－Recursion and memorize solutions．（Top－Down）
－Or，consider subproblems in the right order．（Bottom－Up）

Optimal substructure not always true

Optimal substructure property！

Shortest path in unit－weight graph：
－Assume $w \in O P T(u \leadsto v)$
－OPT $(u \leadsto v)=u \stackrel{p_{1}}{\leadsto} w^{p_{2}} v$

$$
-p_{1}=O P T(u \leadsto w)
$$

$$
-p_{2}=O P T(w \leadsto v)
$$

NO optimal substructure property！

－Longest simple path in unit－weight graph：
－Assume $w \in O P T(u \rightsquigarrow v)$
－OPT $(u \leadsto v)=u \leadsto{ }_{\sim}^{p_{1}} w \stackrel{p_{2}}{\leadsto} v$
－$p_{1}=O P T(u \leadsto w)$ ？

Dynamic Programming（DP）

－Consider an（optimization）problem：
－Build optimal solution step by step．
－Problem has optimal substructure property．
－We can design a recursive algorithm．
－Problem has lots of overlapping subproblems．
－Recursion and memorize solutions．（Top－Down）
－Or，consider subproblems in the right order．（Bottom－Up）

Top－Down vs Bottom－Up

Dynamic programming trades space for time \rightarrow Save solutions for subproblems to avoid repeat computation．
－［Top－Down］Recursion with memorization．
－Very straightforward，easy to write down the code．
－Use array or hash－table to memorize solutions．
－Array may cost more space，but hash－ table may cost more time．
－［Bottom－Up］Solve subproblems in the right order．
－Finding the right order might be non－trivial． （Subproblem graph？）
－Usually use array to memorize solutions．
－Might be able to reduce the size of array to save even more space．

APSP via Dynamic Programming

$$
\operatorname{dist}(u, v, r)= \begin{cases}w(u, v) & \text { if } r=0 \text { and }(u, v) \in E \\
\infty & \text { if } r=0 \text { and }(u, v) \notin E \\
\min \left\{\begin{array}{l}
\operatorname{dist}(u, v, r-1) \\
\operatorname{dist}\left(u, x_{r}, r-1\right)+\operatorname{dist}\left(x_{r}, v, r-1\right)
\end{array}\right\} & \text { otherwise }\end{cases}
$$

FloydWarshallAPSP（G）：

for each pair (u, v) in $V^{*} V$
if (u, v) in E then $\operatorname{dist}[u, v, 0]:=w(u, v)$
else $\operatorname{dist}[u, v, 0]:=I N F$
for $r:=1$ to n
for each node u
for each node v
$\operatorname{dist}[u, v, r]:=\operatorname{dist}[u, v, r-1]$
if $\operatorname{dist}[u, v, r]>\operatorname{dist}\left[u, x_{r}, r-1\right]+\operatorname{dist}\left[x_{r}, v, r-1\right]$

FloydWarshallAPSP（G）：
for each pair (u, v) in $V^{*} V$

Space cost $O\left(n^{2}\right)$

if (u, v) in E then $\operatorname{dist}[u, v]:=w(u, v)$
else $\operatorname{dist}[u, v]:=I N F$ for r ：＝ 1 to n
for each node u
for each node v

$$
\begin{aligned}
& \text { if } \operatorname{dist}[u, v]>\operatorname{dist}\left[u, x_{r}\right]+\operatorname{dist}\left[x_{r}, v\right] \\
& \quad \operatorname{dist}[u, v]:=\operatorname{dist}\left[u, x_{r}\right]+\operatorname{dist}\left[x_{r}, v\right]
\end{aligned}
$$

Edit Distance

$$
\operatorname{dist}(i, j)= \begin{cases}i & \begin{array}{ll}
i f j=0 \\
j & \text { if } i=0
\end{array} \\
\min \left\{\begin{array}{l}
\operatorname{dist}(i, j-1)+1 \\
\operatorname{dist}(i-1, j)+1 \\
\operatorname{dist}(i-1, j-1)+I[A[i]=B[j]]
\end{array}\right\} & \text { otherwise }\end{cases}
$$

EditDistDP（A［1．．．m］，B［1．．n］）：

for $i:=0$ to m
Space cost $O\left(n^{2}\right)$

EditDistDP（A［1．．．m］，B［1．．．n］）：

$$
\operatorname{dist}[i, 0]:=i
$$

for $j:=0$ to n
$\operatorname{dist}[0, j]:=j$
for $i:=1$ to m

$$
\begin{aligned}
\text { for } j & :=1 \text { to } n \\
& \operatorname{delDist}: \\
& :=\operatorname{dist}[i-1, j]+1 \\
\text { insDist } & =\operatorname{dist}[i, j-1]+1 \\
\operatorname{subDist} & :=\operatorname{dist}[i-1, j-1]+\operatorname{Diff}(A[i], B[j]) \\
\operatorname{dist}[i, j] & :=\operatorname{Min}(\text { delDist }, \text { insDist, subDist })
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } j:=0 \text { to } n \\
& \quad \operatorname{distLast}[j]:=j \quad / / \operatorname{distLast}[j]=\operatorname{dist}[i-1, j]
\end{aligned}
$$

$$
\text { for } i:=0 \text { to } m
$$

$$
\operatorname{distCur}[0]:=i \quad / / \operatorname{dist} \operatorname{Cur}[j]=\operatorname{dist}[i, j]
$$

$$
\text { for } j:=1 \text { to } n
$$

$$
\operatorname{delDist}:=\operatorname{dist} \operatorname{Last}[j]+1
$$

$$
\text { insDist }:=\operatorname{dist} \operatorname{Cur}[j-1]+1
$$

$$
\operatorname{subDist}:=\operatorname{distLast}[j-1]+\operatorname{Diff}(A[i], B[j])
$$

$$
\operatorname{distCur}[j]:=\operatorname{Min}(d e l D i s t, \text { insDist, subDist })
$$

$$
\text { distLast }:=\text { distCur }
$$

return distCur $[n]$

Analysis of DP Algorithms

－Correctness：
－Optimal substructure property．
－Bottom－up approach：subproblems are already solved．
－Complexity：
－Space complexity：usually obvious．
－Time complexity［bottom－up］：usually obvious．
－Time complexity［top－down］：

－How many subproblems in total？（number of nodes in the subproblem DAG．）
－Time to solve a problem，given subproblem solutions？（number of edges in the subproblem DAG．）

Subset Sum

- Problem: Given an array $X[1 \cdots n]$ of n positive integers, can we find a subset in X that sums to given integer T ?
- Simple solution: recursively enumerates all 2^{n} subsets, leading to an algorithm costing $O\left(2^{n}\right)$ time.
- Can we do better with dynamic programming?(Notice this is not an optimization problem.)

Subset Sum

－Problem：Given an array $X[1 \cdots n]$ of n positive integers，can we find a subset in X that sums to given integer T ？
－Step 1：Characterize the structure of solution．
－If there is a solution S ，either $X[1]$ is in it or not．
－If $X[1] \in S$ ，then there is a solution to instance＂$X[2 \ldots n], T-X[1]$＂；
－If $X[1] \notin S$ ，then there is a solution to instance＂$X[2 \ldots n], T$＂．

Subset Sum

- Step 2: Recursively define the value of an optimal solution.
- Let $s s(i, t)=$ true iff instance " $X[i \ldots n], t$ " has a solution.

$$
s s(i, t)= \begin{cases}\text { true } & \text { if } t=0 \\ s s(i+1, t) & \text { if } t<X[i] \\ \text { false } & \text { if } i>n \\ s s(i+1, t) \vee s s(i+1, t-X[i]) & \text { otherwise }\end{cases}
$$

Subset Sum

SubsetSumDP（X，T）：
$s s(i, t)= \begin{cases}\text { true } & \text { if } t=0 \\ s s(i+1, t) & \text { if } t<X[i] \\ \text { false } & \text { if } i>n \\ s s(i+1, t) \vee s s(i+1, t-X[i]) & \text { otherwise }\end{cases}$
$s s(i, t)= \begin{cases}\text { true } & \text { if } t=0 \\ s s(i+1, t) & \text { if } t<X[i] \\ \text { false } & \text { if } i>n \\ s s(i+1, t) \vee \operatorname{ss}(i+1, t-X[i]) & \text { otherwise }\end{cases}$
－Step 3：Compute the value of an optimal solution（Bottom－Up）．
－Build an 2D array $s s[1 . . . n, 0 \ldots T]$
－Evaluation order：bottom row to top row； left to right within each row．

$$
\begin{aligned}
& s s[n, 0]:=\text { True } \\
& \text { for } t:=1 \text { to } T \\
& \quad s s[n, t]:=(X[n]=t) \text { ? True : False } \\
& \text { for } i:=n-1 \text { downto } 1 \\
& \quad s s[i, 0]:=\text { True } \\
& \text { for } t:=1 \text { to } X[i]-1 \\
& \quad s s[i, t]:=s s[i+1, t] \\
& \text { for } t:=X[i] \text { to } T \\
& \quad s s[i, t]:=\operatorname{Or}(s s[i+1, t], s s[i+1, t-X[i]]) \\
& \text { return } s s[1, T]
\end{aligned}
$$

Subset Sum

- Problem: Given an array $X[1 \cdots n]$ of n positive integers, can we find a subset in X that sums to given integer T ?
- Simple solution: recursively enumerates all 2^{n} subsets, leading to an algorithm costing $O\left(2^{n}\right)$ time.
- Dynamic programming: costing $O(n T)$ time.
- Dynamic programming isn't always an improvement! (Depends on T)

Dynamic Programming vs Greedy

Common strategies for solving optimization problems \rightarrow Gradually generates a solution for the problem
－Dynamic Programming
－At each step：multiple potential choices，each reducing the problem to a subproblem，compute optimal solutions of all subproblems and then find optimal solution of original problem．
－Optimal substructure＋Overlapping subproblems．
－Greedy
－At each step：make an optimal choice，then compute optimal solution of the subproblem induced by the choice made．
－Optimal substructure＋Greedy choice

Try DP first，then check if greedy works！（If does，prove it！） （Come up with a working algorithm first，then develop a faster one．）

Further reading

- [CLRS] Ch. 1
- [DPV] Ch. 6
- [Erickson] Ch. 3

