
智能软件与⼯程学院
School of Intelligent Software and Engineering

算法分析基础
Basics of Algorithm Analysis

The slides are mainly adapted from the original ones shared by Chaodong Zheng, Kevin Wayne and Hengfeng Wei.Thanks for their supports!

钮鑫涛
Nanjing University

2023 Fall

智能软件与⼯程学院
School of Intelligent Software and Engineering

A strikingly modern thought
“ As soon as an Analytic Engine exists, it will necessarily guide the future course
of the science. Whenever any result is sought by its aid, the question will arise—
By what course of calculation can these results be arrived at by the machine in
the shortest time? ”

 — Charles Babbage (1864)

Analytic Engine

how many times do you have to turn the crank?

智能软件与⼯程学院
School of Intelligent Software and Engineering

A strikingly modern thought
“ As soon as an Analytic Engine exists, it will necessarily guide the future course
of the science. Whenever any result is sought by its aid, the question will arise—
By what course of calculation can these results be arrived at by the machine in
the shortest time? ”

 — Charles Babbage (1864)

Ada Lovelace’s algorithm to compute Bernoulli numbers on Analytic
Engine (1843) Analytic Engine

智能软件与⼯程学院
School of Intelligent Software and Engineering

Algorithm evaluation
• There are many algorithms to solve one specific problem

‣ Which are better?

• Experimental studies?

‣ The implementation matters! (Language, Complier, experienced programmer)

‣ Even the same implementation, different architecture of the computer makes
difference (CPU, memory, operating systems)

• We need an ideal computation model

‣ Which is independent of previous factors

智能软件与⼯程学院
School of Intelligent Software and Engineering

Models of computation: Turing machines

• （Deterministic）Turing machine — Simple and idealistic model.

We can evaluate:

‣ Running time: Number of steps.

‣ Memory: Number of tape cells utilized.

• Disadvantage: No random access of memory.

‣ More steps when solving problems than a normal computer

智能软件与⼯程学院
School of Intelligent Software and Engineering

Random-Access-Machine (RAM)
• Random-Access-Machine (RAM, 随机存取机): relatively simple, yet generic and representative.

‣ One processor which executes instructions one by one.

‣ Memory cells supporting random access, each of limited size.

‣ RAM model supports common instructions. Arithmetic, logic, data movement, control, …

‣ RAM model supports common data types. Integers, floating point numbers, …

‣ RAM model does not support complex instructions or data types (directly). Vector operations, graphs, …
…input

output …

a[i]

.

.

.

memory

program

We can evaluate:

‣ Running time: Number of primitive operations.

‣ Memory: Number of memory cells utilized.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Correctness of
Algorithms

智能软件与⼯程学院
School of Intelligent Software and Engineering

Correctness of algorithms

• When we talk about the correctness of an algorithm, we actually mean the
correctness with respect to its specification.

• Specification expresses the task to be done by the algorithm, which consists of:

‣ (optional) name of algorithm and list of its arguments

‣ Precondition (or initial condition) — it species what is correct input data to the
problem

‣ Postcondition (or final condition) — it species what is the desired result of
the algorithm)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Correctness of algorithms
• Specification Example:

‣ name: Sort(A)

‣ input: (pre-condition)

- An array A of n integers

‣ output: (post-condition)

- A permutation of that array A that is sorted (monotonic).

A reordering, yet retaining all of the original elements

智能软件与⼯程学院
School of Intelligent Software and Engineering

Correctness of algorithms

‣ Correct input data is the data which satisfies the initial condition of the
specification.

‣ Correct output data is the data which satisfies the final condition of the
specification.

Definition (Total correctness, 完全正确性) An algorithm Is called totally correct
for the given specification if and only if for any correct input data it:

1) terminates

2) returns correct output

智能软件与⼯程学院
School of Intelligent Software and Engineering

Correctness of algorithms
• Usually, while checking the correctness of an algorithm it is easier to separately:

‣ Check whether the algorithm stops

‣ Then checking the remaining part — This remaining part of correctness is
called Partial Correctness of algorithm

Definition (Partial correctness, 部分正确性) An algorithm is partially correct if
satisfies the following condition:

If the algorithm receiving correct input data stops then its result is correct

Note: Partial correctness does not make the algorithm stop.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Examples

precondition: x = 1
algorithm: y := x
postcondition: y = 1

precondition: x = 1
algorithm: y := x
postcondition: y = 2

precondition: x = 1
algorithm:

while (true)
 x := 0

postcondition: y = 1

Total correctness Neither partial nor total correctness Partial correctness

Actually, they are Hoare triples!

More details of hoare logic: https://en.wikipedia.org/wiki/Hoare_logic

智能软件与⼯程学院
School of Intelligent Software and Engineering

Robert W. Floyd
Tony Hoare

Invented mathematical proof systems (a.k.a. hoare logic) to formally prove that programs satisfy their specification

Correctness of algorithms

智能软件与⼯程学院
School of Intelligent Software and Engineering

The proof of total correctness
• A proof of total correctness of an algorithm usually assumes 2 separate

steps

‣ 1. (to prove that) the algorithm always terminate for correct input data

‣ 2. (to prove that) the algorithm is partially correct.

• Different proof methods for them, typically

• Variants （变式） for “termination”

• Invariants（不变式） for “partial correctness”

“Termination” is often much easier to prove

智能软件与⼯程学院
School of Intelligent Software and Engineering

Example: Insertion Sort

Algorithm design strategy 0: wisdom from daily life

Procedure Insertion-Sort(A)
In: An array A of n integers.
Out: A permutation of that array A that is sorted (monotonic).

for i := 2 to A.length
 key := A[i]
 // Insert A[i] into the sorted subarray A[1 : i - 1]
 j := i - 1
 while (j > 0 and A[j] > key)
 A[j + 1] := A[j]
 j := j - 1
 A[j + 1] := key
return A

we omit the
“end” keyword
here to make it

simpler

智能软件与⼯程学院
School of Intelligent Software and Engineering

Example: Insertion Sort

• Applies algorithm Insertion-Sort to [5, 2, 4, 6, 1, 3]

5 2 4 6 1 3 2 5 4 6 1 3 2 4 5 6 1 3

2 4 5 6 1 3

1st iteration
2nd iteration 3rd iteration

1 2 4 5 6 3 1 2 3 4 5 6

4th iteration 5th iteration
sorted

智能软件与⼯程学院
School of Intelligent Software and Engineering

Example: Insertion Sort

• Proof the correctness of Insertion-Sort

‣ Step1: The algorithm outputs correct result on every instance
(partially correct).

‣ Step2: The algorithm terminates within finite steps on every instance
(termination).

智能软件与⼯程学院
School of Intelligent Software and Engineering

Step1: Using loop invariant for partial correctness

Initialization: It is true prior to the first iteration of the loop.

Maintenance: If it is true before an iteration of the loop, it remains true before
the next iteration.

Termination: When the loop terminates, the invariant gives us a useful
property that helps show that the algorithm is correct

General rules for loop invariant proofs

智能软件与⼯程学院
School of Intelligent Software and Engineering

Partial correctness of Insertion Sort
• Loop invariant: By the end of ith iteration of outer for loop,

the elements in subarray A[1,⋯,i] are in sorted order.

• [Initialization] prior the first iteration(i = 2): A[1] is in
sorted order.

• [Maintenance] Assume by the end of the ith iteration, the
elements in subarray A[1,⋯, i] are in sorted order; then by
the end of the (i+1)th iteration, the elements in subarray
A[1,⋯,i+1] are in sorted order.

• [Termination] After the iteration i = n, the loop invariant
states that A is sorted

Procedure Insertion-Sort(A)
In: An array A of n integers.
Out: A permutation of that array A that is sorted (monotonic).

for i := 2 to A.length
 key := A[i]
 // Insert A[i] into the sorted subarray A[1 : i - 1]
 j := i - 1
 while (j > 0 and A[j] > key)
 A[j + 1] := A[j]
 j := j - 1
 A[j + 1] := key
return A

Requires another loop invariant for the inner
while loop

智能软件与⼯程学院
School of Intelligent Software and Engineering

How to find the loop invariant?
• Is there only one loop invariant?

‣ Another loop invariant: By the end of the ith iteration of outer for loop, subarray
A[1,⋯,i] retains all of the original elements in A[1,⋯,i] in previous iteration.

• Let this invariant be IV2, and the previous invariant be IV1. What is their relationship?

‣ IV2 is weaker than IV1, since there are more possible A[1,⋯,i] that satisfy IV2, but
not satisfy IV1.

• A good (strong) loop invariant must satisfy these three properties [Initialization],
[Maintenance] and [Termination]. Note that IV2 does not satisfy [Termination]
property.

智能软件与⼯程学院
School of Intelligent Software and Engineering

How to find the loop invariant?
• How to find a good loop invariant?

• Generally, the answer is:

‣ We don’t know

- For simple ones, e.g., integer ranges, like 0<= x <1024, there exists
effective techniques — e.g., abstract interpretation

- However, for sophisticated invariants, there is no general method, and
sometimes we need to provide them manually!

- Very hot research topic!

More details of abstract interpretation: https://en.wikipedia.org/wiki/Abstract_interpretation

智能软件与⼯程学院
School of Intelligent Software and Engineering

Step2: Using loop variant for termination
• Wait!!! Program termination is formally undecidable!!

‣ It just means that there is no general algorithm exists that solves the
halting problem for all possible programs.

‣ In fact, the partial correctness of all possible programs is also
undecidable. — can you prove it?

• Using loop variant to prove the termination

‣ show that some quantity strictly decreases.

‣ it cannot decrease indefinitely (Bounded!)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Well-ordered set

• An ordered set is well-ordered if each and every nonempty subset has a
smallest or least element.

‣ E.g., every nonempty subset of the non-negative integers has a least
element

‣ Set of integers and the positive real number are not well-ordered sets

• A well-ordered set has no infinite descending sequences, which can be used
to ensure the termination of algorithm

智能软件与⼯程学院
School of Intelligent Software and Engineering

Termination of Insertion Sort

• Loop Variant: for the outer loop: A.length - i

‣ For each iteration, A.length - i strictly
decreases.

‣ A.length - i is bounded to be larger or equal to 0

Procedure Insertion-Sort(A)
In: An array A of n integers.
Out: A permutation of that array A that is sorted (monotonic).

for i := 2 to A.length
 key := A[i]
 // Insert A[i] into the sorted subarray A[1 : i - 1]
 j := i - 1
 while (j > 0 and A[j] > key)
 A[j + 1] := A[j]
 j := j - 1
 A[j + 1] := key
return A

• Loop Variant: for the inner loop: j

‣ For each iteration, j strictly decreases.

‣ j is bounded to be larger than 0

智能软件与⼯程学院
School of Intelligent Software and Engineering

How to find the loop variant

• Again, generally, the answer is:

‣ We don’t know

‣ But generally speaking, it is very easy to identify!

智能软件与⼯程学院
School of Intelligent Software and Engineering

Other strategies of correctness proof

• Some methods and strategies: proof by cases, proof by contraposition,
proof by contradiction, etc.

• When loops and/or recursions are involved: often (if not always) use
mathematical induction.

• Review your discrete math book if you feel unfamiliar with above terms…

‣ [Rosen] Ch.1 (1.7, 1.8) and Ch.5 (5.1, 5.2)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Efficiency of
Algorithms

智能软件与⼯程学院
School of Intelligent Software and Engineering

Complexity

• Time complexity: how much time is needed before halting

• Space complexity: how much memory (usually excluding input) is
required for successful executed

• Other performance measures, e.g., communication bandwidth, or energy
consumption…

• Time complexity is typically more important than others in analysis.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Complexity
• Observation: larger inputs often demands more time.

‣ Cost of an algorithm should be a function of input size, say, T(n).

• Given an algorithm and an input, when counting the cost with respect to the RAM
model:

‣ Each memory access takes constant time.

‣ Each “primitive” operation takes constant time.

‣ Compound operations should be decomposed.

‣ At last, Counting up the number of time units.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Time complexity of Insertion Sort
Procedure Insertion-Sort(A)
In: An array A of n integers.
Out: A permutation of that array A that is sorted (monotonic).

for i := 2 to A.length
 key := A[i]
 // Insert A[i] into the sorted subarray A[1 : i - 1]
 j := i - 1
 while (j > 0 and A[j] > key)
 A[j + 1] := A[j]
 j := j - 1
 A[j + 1] := key
return A

Cost Times

c1 n
c2 n − 1

c4 n − 1
c5 Σn

i=2ti
c6 Σn

i=2(ti − 1)
c7 Σn

i=2(ti − 1)
c8 n − 1

Check one more
time until false

Add them up: T(n) = c1n + c2(n − 1) + c4(n − 1) + c5

n

∑
i=2

ti + c6

n

∑
i=2

(ti − 1) + c7

n

∑
i=2

(ti − 1) + c8(n − 1)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Time complexity of Insertion Sort
• The time cost of insert sort is:

T(n) = c1n + c2(n − 1) + c4(n − 1) + c5

n

∑
i=2

ti + c6

n

∑
i=2

(ti − 1) + c7

n

∑
i=2

(ti − 1) + c8(n − 1)

Depends on which input of size n

• The time cost of insert sort varies among inputs

‣ How to fairly evaluate a algorithm — enumerate the cost of all the possible
inputs? Not possible, since the input space is infinite!

‣ We can check the representative inputs, but, what are they?

智能软件与⼯程学院
School of Intelligent Software and Engineering

Worst, best, and average
Given one problem and an algorithm, let be the set of all the possible inputs of size , and

 be the time cost of the algorithm under one input with size .

• Worst

‣ W(n) = maximum time of algorithm on any input of size n, i.e.,

• Best

‣ B(n) = minimum time of algorithm on any input of size n, i.e.,

• Average

‣ A(n) = expected time of algorithm over all inputs of size n, i.e.,

‣ Note: need assumption of statistics distribution of inputs.

𝒳n n
T(n) n

W(n) = max
x∈𝒳n

T(x)

B(n) = min
x∈𝒳n

T(x)

A(n) = ∑
x∈𝒳n

T(x) ⋅ Pr(x)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Mainly focus on worst-case analysis
• Worst case — Running time guarantee for any input of size n.

‣ Generally captures efficiency in practice.

‣ Draconian view, but hard to find effective alternative.

• Exceptions. Some exponential-time algorithms are used widely in practice
because the worst-case instances don’t arise.

simplex algorithm k-means algorithm

智能软件与⼯程学院
School of Intelligent Software and Engineering

Time complexity of Insertion Sort

What is the best case?
Each time is 1, which means that each time the while loop condition is false at the beginning! —> A[j] > key is
false every time —> the array is already sorted at the beginning!

ti

Procedure Insertion-Sort(A)
In: An array A of n integers.
Out: A permutation of that array A that is sorted (monotonic).

for i := 2 to A.length
 key := A[i]
 // Insert A[i] into the sorted subarray A[1 : i - 1]
 j := i - 1
 while (j > 0 and A[j] > key)
 A[j + 1] := A[j]
 j := j - 1
 A[j + 1] := key
return A

Cost Times

c1 n
c2 n − 1

c4 n − 1
c5 Σn

i=2ti
c6 Σn

i=2(ti − 1)
c7 Σn

i=2(ti − 1)
c8 n − 1

智能软件与⼯程学院
School of Intelligent Software and Engineering

Time complexity of Insertion Sort

B(n) = c1n + c2(n − 1) + c4(n − 1) + c5

n

∑
i=2

1 + c6

n

∑
i=2

(1 − 1) + c7

n

∑
i=2

(1 − 1) + c8(n − 1) = (c1 + c2 + c4 + c5 + c8)n − (c2 + c4 + c5 + c8)

Procedure Insertion-Sort(A)
In: An array A of n integers.
Out: A permutation of that array A that is sorted (monotonic).

for i := 2 to A.length
 key := A[i]
 // Insert A[i] into the sorted subarray A[1 : i - 1]
 j := i - 1
 while (j > 0 and A[j] > key)
 A[j + 1] := A[j]
 j := j - 1
 A[j + 1] := key
return A

Cost Times

c1 n
c2 n − 1

c4 n − 1
c5 Σn

i=2ti
c6 Σn

i=2(ti − 1)
c7 Σn

i=2(ti − 1)
c8 n − 1

智能软件与⼯程学院
School of Intelligent Software and Engineering

Time complexity of Insertion Sort

What is the worst case?
Each time is the largest it can be, which means that each time the while loop condition is true until j is equal
to 0 —> A[j] > key is true every time —> the array is reversely sorted at the beginning! —>

ti
ti = i

Procedure Insertion-Sort(A)
In: An array A of n integers.
Out: A permutation of that array A that is sorted (monotonic).

for i := 2 to A.length
 key := A[i]
 // Insert A[i] into the sorted subarray A[1 : i - 1]
 j := i - 1
 while (j > 0 and A[j] > key)
 A[j + 1] := A[j]
 j := j - 1
 A[j + 1] := key
return A

Cost Times

c1 n
c2 n − 1

c4 n − 1
c5 Σn

i=2ti
c6 Σn

i=2(ti − 1)
c7 Σn

i=2(ti − 1)
c8 n − 1

智能软件与⼯程学院
School of Intelligent Software and Engineering

Time complexity of Insertion Sort
Procedure Insertion-Sort(A)
In: An array A of n integers.
Out: A permutation of that array A that is sorted (monotonic).

for i := 2 to A.length
 key := A[i]
 // Insert A[i] into the sorted subarray A[1 : i - 1]
 j := i - 1
 while (j > 0 and A[j] > key)
 A[j + 1] := A[j]
 j := j - 1
 A[j + 1] := key
return A

Cost Times

c1 n
c2 n − 1

c4 n − 1
c5 Σn

i=2ti
c6 Σn

i=2(ti − 1)
c7 Σn

i=2(ti − 1)
c8 n − 1

W(n) = c1n + c2(n − 1) + c4(n − 1) + c5

n

∑
i=2

i + c6

n

∑
i=2

(i − 1) + c7

n

∑
i=2

(i − 1) + c8(n − 1)

 = c1n + c2(n − 1) + c4(n − 1) + c5(n + 2)(n − 1)/2 + c6n(n − 1)/2 + c7n(n − 1)/2 + c8(n − 1)

 = ((c5 + c6 + c7)/2) n2 + (c1 + c2 + c4 + c8 − (c5 + c6 + c7)/2) n − (c2 + c4 + c5 + c8)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Time complexity of Insertion Sort

What about the average case? —> the elements in the input array are randomly ordered

Hint: the number of swaps equals the number of inversions!

Procedure Insertion-Sort(A)
In: An array A of n integers.
Out: A permutation of that array A that is sorted (monotonic).

for i := 2 to A.length
 key := A[i]
 // Insert A[i] into the sorted subarray A[1 : i - 1]
 j := i - 1
 while (j > 0 and A[j] > key)
 A[j + 1] := A[j]
 j := j - 1
 A[j + 1] := key
return A

Cost Times

c1 n
c2 n − 1

c4 n − 1
c5 Σn

i=2ti
c6 Σn

i=2(ti − 1)
c7 Σn

i=2(ti − 1)
c8 n − 1

https://stackoverflow.com/questions/17055341/why-is-insertion-sort-%CE%98n2-in-the-average-case/17055342#17055342

智能软件与⼯程学院
School of Intelligent Software and Engineering

One more thing
• What the space complexity of insertion sort?

Procedure Insertion-Sort(A)
In: An array A of n integers.
Out: A permutation of that array A that is sorted (monotonic).

for i := 2 to A.length
 key := A[i]
 // Insert A[i] into the sorted subarray A[1 : i - 1]
 j := i - 1
 while (j > 0 and A[j] > key)
 A[j + 1] := A[j]
 j := j - 1
 A[j + 1] := key
return A

We only need three additional
memory cells to store the

variable key, i, and j.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Asymptotic order
of growth

智能软件与⼯程学院
School of Intelligent Software and Engineering

Asymptotic order of growth

Donald E. Knuth

智能软件与⼯程学院
School of Intelligent Software and Engineering

A higher-level abstraction
• In practice, we usually don’t care about the unimportant details in the

counted operations.

• We need one more simplifying abstraction, which can give us an intuitive
feeling of the cost of an algorithm.

‣ The abstractions is: the rate of growth, or order of growth, of the
running time that really interests us, therefore, two factors are ignored:

- Constant coefficients are not that important (when n is large)

- Lower-order terms are not that important (when n is large).

智能软件与⼯程学院
School of Intelligent Software and Engineering

Big O notation

• Asymptotic upper bounds — when we say f(n) is
O(g(n)), we mean that f(n) grows no faster than a certain
rate —> is asymptotically at most g(n).

• Ex. f(n) = 32n2 + 17n + 1.

‣ f(n) is O(n2).

‣ f(n) is neither O(n) nor O(n log n) —> why?

c · g(n)

nn0

f(n)

choose c = 50, n0 = 1

Definition () Given a function , we denote by the following set of
functions:

O g(n) O(g(n))
O(g(n)) = {f(n) ∣ ∃c > 0,∃n0 > 0,∀n ≥ n0 : 0 ≤ f(n) ≤ c ⋅ g(n)}

智能软件与⼯程学院
School of Intelligent Software and Engineering

Big O notation abuses
• O(g(n)) is actually a set of functions, but computer scientists often write f(n) =

O(g(n)) instead of f(n) ∈ O(g(n)).

• Ex. Consider g1(n) = 5n3 and g2(n) = 3n2.

‣ We have g1(n) = O(n3) and g2(n) = O(n3).

‣ But, do not conclude g1(n) = g2(n).

• Since the worst time complexity of insertion sort is

➡ Therefore, —> is asymptotically at most .

W(n) = ((c5 + c6 + c7)/2) n2 + (c1 + c2 + c4 + c8 − (c5 + c6 + c7)/2) n − (c2 + c4 + c5 + c8)

W(n) = O(n2) n2

智能软件与⼯程学院
School of Intelligent Software and Engineering

Big O notation with multiple variables

• f(m, n) is O(g(m, n)) if there exist constants c > 0, m0 ≥ 0, 
and n0 ≥ 0 such that 0 ≤ f(m, n) ≤ c · g (m, n) for all n ≥ n0 and m ≥ m0.

• Ex. f(m, n) = 32mn2 + 17mn + 32n3.

‣ f(m, n) is both O(mn2 + n3) and O(mn3).

‣ f(m, n) is neither O(n3) nor O(mn2).

智能软件与⼯程学院
School of Intelligent Software and Engineering

Big notation Ω

• Asymptotic lower bounds — when we say f(n)
is Ω(g(n)), we mean that f(n) grows at least as fast
as a certain rate —> is asymptotically at least
g(n).

• Ex. f(n) = 32n2 + 17n + 1.

‣ f(n) is both Ω(n2) and Ω(n).

‣ f(n) is not Ω(n3).

f(n)

nn0

c · g(n)

choose c = 32, n0 = 1

Definition () Given a function , we denote by the following set of
functions:

Ω g(n) Ω(g(n))
Ω(g(n)) = {f(n) ∣ ∃c > 0,∃n0 > 0,∀n ≥ n0 : f(n) ≥ c ⋅ g(n)}

智能软件与⼯程学院
School of Intelligent Software and Engineering

Big notationΘ

• Asymptotic tight bounds When we say f(n) is
Θ(g(n)), we mean that f(n) grows precisely at a
certain rate —> it is asymptotically equal to
g(n)

• Ex. f(n) = 32n2 + 17n + 1.

‣ f(n) is Θ(n2).

‣ f(n) is neither Θ(n) nor Θ(n3).

choose c1 = 32, c2 = 50, n0 = 1

f(n)

nn0

c1 · g(n)

c2 · g(n)

Definition () Given a function , we denote by the following set of functions: Θ g(n) Θ(g(n))
Θ(g(n)) = {f(n) ∣ ∃c1 > 0,∃c2 > 0,∃n0 > 0,∀n ≥ n0 : c1 ⋅ g(n) ≤ f(n) ≤ c2 ⋅ g(n)}

Q: The worst time complexity of Insertion Sort is Θ(n2)?

智能软件与⼯程学院
School of Intelligent Software and Engineering

Small o and notationω

Definition () Given a function , we denote by the following set of
functions:

o g(n) o(g(n))
o(g(n)) = {f(n) ∣ ∀c > 0,∃n0 > 0,∀n ≥ n0 : 0 ≤ f(n) < c ⋅ g(n)}

• is asymptotically (strictly) smaller than : f(n) g(n)

Definition () Given a function , we denote by the following set of
functions:

ω g(n) ω(g(n))
ω(g(n)) = {f(n) ∣ ∀c > 0,∃n0 > 0,∀n ≥ n0 : f(n) > c ⋅ g(n)}

• is asymptotically (strictly) larger than : f(n) g(n)

Q: Now that we have O, Ω, Θ and o,ω, do we have small θ?

智能软件与⼯程学院
School of Intelligent Software and Engineering

Some properties of asymptotic notations

• Reflexivity

‣ E.g., ; but .

• Transitivity

‣ E.g., if and , then .

• Symmetry

‣ iff .

• Transpose symmetry:

‣ E.g., iff .

f(n) ∈ O(f(n)) f(n) ∉ o(f(n))

f(n) ∈ O(g(n)) g(n) ∈ O(h(n)) f(n) ∈ O(h(n))

f(n) ∈ Θ(g(n)) g(n) ∈ Θ(f(n))

f(n) ∈ O(g(n)) g(n) ∈ Ω(f(n))

智能软件与⼯程学院
School of Intelligent Software and Engineering

Asymptotic bounds and limits

• If cost functions are complex, it is hard to apply the definitions to get its
asymptotic bounds.

• In this case, it usually easier to apply limit method.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Asymptotic bounds and limits
• Proposition. If for some constant 0 < c < ∞ then f(n) is Θ(g(n)).

• Pf.

‣ By definition of the limit, for any ε > 0, there exists n0 such that

‣ for all n ≥ n0.

‣ Choose ε = ½ c > 0.

‣ Multiplying by g(n) yields 1/2 c · g(n) ≤ f(n) ≤ 3/2 c · g(n) for all n ≥ n0.

‣ Thus, f(n) is Θ(g(n)) by definition, with c1 = 1/2 c and c2 = 3/2 c. ▪

lim
n→∞

f(n)
g(n)

= c

c − ϵ ≤
f(n)
g(n)

≤ c + ϵ

智能软件与⼯程学院
School of Intelligent Software and Engineering

Asymptotic bounds for some common functions

• Proposition. If , then f(n) is O(g(n)) but not

Ω(g(n)).

• Proposition. If , then f(n) is Ω(g(n)) but not

O(g(n)).

lim
n→∞

f(n)
g(n)

= 0

lim
n→∞

f(n)
g(n)

= ∞

智能软件与⼯程学院
School of Intelligent Software and Engineering

Asymptotic bounds for some common functions
• Polynomials. Let f(n) = a0 + a1 n + … + ad nd with ad > 0. Then, f(n) is Θ(nd).

‣ Pf.

• Logarithms. loga n is Θ(logb n) for every a > 1 and every b > 1.

‣ Pf.

• Logarithms and polynomials. loga n is O(nd) for every a > 1 and every d > 0.

‣ Pf.

lim
n→∞

a0 + a1n + . . . + adnd

nd
= ad > 0

loga n
logb n

=
1

logb a

lim
n→∞

loga n
nd

= 0

智能软件与⼯程学院
School of Intelligent Software and Engineering

Asymptotic bounds for some common functions

• Exponentials and polynomials. is for every and every .

‣ Pf.

• Factorials. is

‣ Pf. Stirling’s formula:

nd O(rn) r > 1 d > 0

lim
n→∞

nd

rn
= 0

n! O(nn)

n! ∼ 2πn ⋅ (
n
e

)n

智能软件与⼯程学院
School of Intelligent Software and Engineering

Comparing some common functions

, constantΘ(1)

, logarithmΘ(log n)

, linearΘ(n)

, linearithmicΘ(n log n)

, polynomialΘ(nc)

, exponentialΘ(2n)

, factorialsΘ(n!)
intractable

tractable

智能软件与⼯程学院
School of Intelligent Software and Engineering

Polynomial running time

• When considering brute force algorithm to solve one problem, it is usually
asymptotically equal to exponential functions.

• When an algorithm has a polynomial running time, we say it is efficient,
and the corresponding problem is so-called easy or tractable.

‣ The algorithm has typically exposes some crucial structure of the
problem.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Although, there are exceptions
• Some poly-time algorithms in the wild have galactic constants and/or huge

exponents.

• Q. Which would you prefer: 20 n120 or n1 + 0.02 ln n ?

Map graphs in polynomial time

Mikkel Thorup
Department of Computer Science, University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen East, Denmark

mthorup@diku.dk

Abstract

Chen,Grigni, andPapadimitriou (WADS’97 andSTOC’98)
have introduced a modified notion of planarity, where two
faces are considered adjacent if they share at least one point.
The corresponding abstract graphs are called map graphs.
Chen et.al. raised the question of whether map graphs can be
recognized in polynomial time. They showed that the decision
problem is in NP and presented a polynomial time algorithm
for the special case where we allow at most 4 faces to intersect
in any point — if only 3 are allowed to intersect in a point, we
get the usual planar graphs.

Chen et.al. conjectured that map graphs can be recognized
in polynomial time, and in this paper, their conjecture is settled
affirmatively.

1. Introduction

Recently Chen, Grigni, and Papadimitriou [4, 5] suggested
the study of a modified notion of planarity. The basic frame-
work is the same as that of planar graphs. We are given a set of
non-overlapping faces in the plane, each being a disc homeo-
morphism. By non-overlapping, we mean that two faces may
only intersect in their boundaries. The plane may or may not
be completely covered by the faces. A traditional planar graph
is obtained as follows. The vertices are the faces, and two
faces are neighbors if their intersection contains a non-trivial
curve. Chen et.al. [4, 5] suggested simplifying the definition,
by saying that two faces are neighbors if and only if they in-
tersect in at least one point. They called the resulting graphs
“planar map graphs”. Here we will just call themmap graphs.
Note that there are non-planar map graphs, for as illustrated
in Figure 1, map graphs can contain arbitrarily large cliques.
We shall refer to the first type of clique as a flower with the
petals intersecting in a center. The second is a hamantash
based on three distinct corner points. Each of the three pairs
of corner points is connected by a side of parallel faces. In

Most of this work was done while the author visited MIT.
Chen et.al. called flowers for pizzas, but “flower” seems more natural.

Figure 1. Large cliques in maps

addition, the hamantach may have at most two triangle faces
touching all three corners. In [5] there is a classification of
all the different types of large cliques in maps. Chen et.al. [5]
showed that recognizing map graphs is in NP, hence that the
recognition can be done in singly exponential time. However,
they conjectured that, in fact, map graphs can be recognized in
polynomial time. They supported their conjecture by showing
that if we allow at most 4 faces to meet in any single point, the
resultingmap graphs can be recognized in polynomial time. In
this paper, we settle the general conjecture, showing that given
a graph, we can decide in polynomial time if it is a map graph.
The algorithm can easily be modified to draw a corresponding
map if it exists.

Map coloring It should be noted that coloring of map graphs
dates back to Ore and Plummer in 1969 [8], that is, theywanted
to color the faces so that any two intersecting facesgot different
colors. For an account of colorful history, the reader is referred
to [7, 2.5]. In particular, the history provides an answer to a
problem of Chen et.al. [5]: if at most 4 facesmeet in any single
point, canwe color themapwith 6 colors? It is straightforward
to see that the resulting graphs are 1-planar, meaning that they
can be drawn in the plane such that each edge is crossed by at
most one other edge. Already in 1965, Ringel [9] conjectured
that all 1-planar graphs can be colored with 6 colors, and this
conjecture was settled in 1984 by Borodin [2], so the answer
to Chen et.al.’s problem is: yes.

Map metrics The shortest path metrics of map graphs are
commonly used in prizing systems, where you pay for cross-

Map graphs in polynomial time

Mikkel Thorup
Department of Computer Science, University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen East, Denmark

mthorup@diku.dk

Abstract

Chen,Grigni, andPapadimitriou (WADS’97 andSTOC’98)
have introduced a modified notion of planarity, where two
faces are considered adjacent if they share at least one point.
The corresponding abstract graphs are called map graphs.
Chen et.al. raised the question of whether map graphs can be
recognized in polynomial time. They showed that the decision
problem is in NP and presented a polynomial time algorithm
for the special case where we allow at most 4 faces to intersect
in any point — if only 3 are allowed to intersect in a point, we
get the usual planar graphs.

Chen et.al. conjectured that map graphs can be recognized
in polynomial time, and in this paper, their conjecture is settled
affirmatively.

1. Introduction

Recently Chen, Grigni, and Papadimitriou [4, 5] suggested
the study of a modified notion of planarity. The basic frame-
work is the same as that of planar graphs. We are given a set of
non-overlapping faces in the plane, each being a disc homeo-
morphism. By non-overlapping, we mean that two faces may
only intersect in their boundaries. The plane may or may not
be completely covered by the faces. A traditional planar graph
is obtained as follows. The vertices are the faces, and two
faces are neighbors if their intersection contains a non-trivial
curve. Chen et.al. [4, 5] suggested simplifying the definition,
by saying that two faces are neighbors if and only if they in-
tersect in at least one point. They called the resulting graphs
“planar map graphs”. Here we will just call themmap graphs.
Note that there are non-planar map graphs, for as illustrated
in Figure 1, map graphs can contain arbitrarily large cliques.
We shall refer to the first type of clique as a flower with the
petals intersecting in a center. The second is a hamantash
based on three distinct corner points. Each of the three pairs
of corner points is connected by a side of parallel faces. In

Most of this work was done while the author visited MIT.
Chen et.al. called flowers for pizzas, but “flower” seems more natural.

Figure 1. Large cliques in maps

addition, the hamantach may have at most two triangle faces
touching all three corners. In [5] there is a classification of
all the different types of large cliques in maps. Chen et.al. [5]
showed that recognizing map graphs is in NP, hence that the
recognition can be done in singly exponential time. However,
they conjectured that, in fact, map graphs can be recognized in
polynomial time. They supported their conjecture by showing
that if we allow at most 4 faces to meet in any single point, the
resultingmap graphs can be recognized in polynomial time. In
this paper, we settle the general conjecture, showing that given
a graph, we can decide in polynomial time if it is a map graph.
The algorithm can easily be modified to draw a corresponding
map if it exists.

Map coloring It should be noted that coloring of map graphs
dates back to Ore and Plummer in 1969 [8], that is, theywanted
to color the faces so that any two intersecting facesgot different
colors. For an account of colorful history, the reader is referred
to [7, 2.5]. In particular, the history provides an answer to a
problem of Chen et.al. [5]: if at most 4 facesmeet in any single
point, canwe color themapwith 6 colors? It is straightforward
to see that the resulting graphs are 1-planar, meaning that they
can be drawn in the plane such that each edge is crossed by at
most one other edge. Already in 1965, Ringel [9] conjectured
that all 1-planar graphs can be colored with 6 colors, and this
conjecture was settled in 1984 by Borodin [2], so the answer
to Chen et.al.’s problem is: yes.

Map metrics The shortest path metrics of map graphs are
commonly used in prizing systems, where you pay for cross-

n120

智能软件与⼯程学院
School of Intelligent Software and Engineering

Further reading
• [CLRS] Ch.2 (2.1, 2.2), Ch.3

• [Rosen] Ch.1 (1.7, 1.8) and Ch.5 (5.1, 5.2)

