算法分析基础
 Basics of Algorithm Analysis

钮鉒涛
Nanjing University
2023 Fall

The slides are mainly adapted from the original ones shared by Chaodong Zheng，Kevin Wayne and Hengfeng Wei．Thanks for their supports！

A strikingly modern thought

＂As soon as an Analytic Engine exists，it will necessarily guide the future course of the science．Whenever any result is sought by its aid，the question will arise－ By what course of calculation can these results be arrived at by the machine in the shortest time？＂
－Charles Babbage（1864）

A strikingly modern thought

＂As soon as an Analytic Engine exists，it will necessarily guide the future course of the science．Whenever any result is sought by its aid，the question will arise－ By what course of calculation can these results be arrived at by the machine in the shortest time？＂
－Charles Babbage（1864）

Ada Lovelace＇s algorithm to compute Bernoulli numbers on Analytic Engine（1843）

Analytic Engine

Algorithm evaluation

－There are many algorithms to solve one specific problem
－Which are better？
－Experimental studies？
－The implementation matters！（Language，Complier，experienced programmer）
－Even the same implementation，different architecture of the computer makes difference（CPU，memory，operating systems）
－We need an ideal computation model
－Which is independent of previous factors

Models of computation：Turing machines

－（Deterministic）Turing machine－Simple and idealistic model．

$\#$	$\#$	$\#$	1	0	1	1	0	0	1	1	1	$\#$	$\#$	$\#$

We can evaluate：
－Running time：Number of steps．
－Memory：Number of tape cells utilized．
－Disadvantage：No random access of memory．
－More steps when solving problems than a normal computer

知
 Random－Access－Machine（RAM）

－Random－Access－Machine（RAM，随机存取机）：relatively simple，yet generic and representative．
－One processor which executes instructions one by one．
－Memory cells supporting random access，each of limited size．
－RAM model supports common instructions．Arithmetic，logic，data movement，control，．．．
－RAM model supports common data types．Integers，floating point numbers，．．．
－RAM model does not support complex instructions or data types（directly）．Vector operations，graphs，．．．

We can evaluate：
－Running time：Number of primitive operations．
－Memory：Number of memory cells utilized．

Correctness of Algorithms

Correctness of algorithms

- When we talk about the correctness of an algorithm, we actually mean the correctness with respect to its specification.
- Specification expresses the task to be done by the algorithm, which consists of:
- (optional) name of algorithm and list of its arguments
- Precondition (or initial condition) - it species what is correct input data to the problem
- Postcondition (or final condition) - it species what is the desired result of the algorithm)

Correctness of algorithms

－Specification Example：
－name： $\operatorname{Sort}(A)$
－input：（pre－condition）
－An array A of n integers
－output：（post－condition）
－A permutation of that array A that is sorted（monotonic）．

A reordering，yet retaining all of the original elements

Correctness of algorithms

Definition（Total correctness，完全正确性）An algorithm Is called totally correct for the given specification if and only if for any correct input data it：

1）terminates
2）returns correct output
－Correct input data is the data which satisfies the initial condition of the specification．
－Correct output data is the data which satisfies the final condition of the specification．

correctness of aloritnins

－Usually，while checking the correctness of an algorithm it is easier to separately：
－Check whether the algorithm stops
－Then checking the remaining part－This remaining part of correctness is called Partial Correctness of algorithm

Definition（Partial correctness，部分正确性）An algorithm is partially correct if satisfies the following condition：

If the algorithm receiving correct input data stops then its result is correct

Examples

precondition： $\mathrm{x}=1$
algorithm： $\mathrm{y}:=\mathrm{x}$ postcondition： $\mathrm{y}=1$
precondition： $\mathrm{x}=1$
algorithm： y ：＝ x
postcondition： $\mathrm{y}=2$

Neither partial nor total correctness
precondition： $\mathbf{x}=1$
algorithm：
while（true）
$\mathrm{x}:=0$
postcondition： $\mathrm{y}=1$

Actually，they are Hoare triples！

More details of hoare logic：https：／／en．wikipedia．org／wiki／Hoare＿logic

Correctness of algorithms

Robert W．Floyd

Robert W．Floyd

ASSIGNING MEANINGS TO PROGRAMS

Introduction．This paper attempts to provide an adequate basis for formal definitions of the meanings of programs in appropriately defined programming languages，in such a way that a rigorous standard is established or proofs about computer programs，including proofs of correctness， quivalence，and termination．The basis of our approach is the notion of with each connection in the flow of control through a progran proposition is asserted to hold whenever that connection is taken．To prevent an interpretation from being chosen arbitrarily，a condition is imposed on each command of the program．This condition guarantes that whenever a command is reached by way of a connection whose associated proposition is then true，it will be left（if at all）by a connection whose associated proposition will be true at that time．Then by induction on the number of commands executed，one sees that if a program is entered by a connection whose associated proposition is then true，it will be left（if at all）by a connection whose associated proposition will be true at that time．By this eans，we may prove certain properties of programs，particularly properties relation R_{4} the final values on completion will satisfy the relation R_{2} ，＂ Proofs of termination are dealt with by showing that each step of a program decreases some entity which cannot decrease indefinitely
These modes of proof of correctness and termination are not original； they are based on ideas of Perlis and Gorn，and may have made their earliest appearance in an unpublished paper by Gorn．The establishment of formal standards for proofs about programs in languages which admit assignments，transfer of control，etc．，and the proposal that the semantics f a programming language may be deined independently of all processors for that language，by establishing standards of rigor for proofs about ${ }^{1}$ This work
This work was supported by the Advanced Research Projects Agency of the Ofice of

Tony Hoare

An Axiomatic Basis for
 Computer Programming

C．A．R．Hoare
The Queen＇s University of Belfast，＊Northern Ireland

In this paper an attempt is made to explore the logical founda－ tions of computer programming by use of techniques which were first applied in the study of geometry and have later been extended to other branches of mathematics．This in－ volves the elucidation of sets of axioms and rules of inference which can be used in proofs of the properties of computer programs．Examples are given of such axioms and rules，and a formal proof of a simple theorem is displayed．Finally，it is argued that important advantages，both theoretical and prac－ ical，may follow from a pursuance of these topics．

KEY WORDS AND PHRASES：axiomatic method，theory of programming proofs of programs，formal language definition，programming language design，machine－independent programming，program documentation CR CATEGORY：4．0，4．21，4．22，5．20，5．21，5．23，5．24

Invented mathematical proof systems（a．k．a．hoare logic）to formally prove that programs satisfy their specification

The proof of total correctness

－A proof of total correctness of an algorithm usually assumes 2 separate steps
－1．（to prove that）the algorithm always terminate for correct input data
－2．（to prove that）the algorithm is partially correct．
－Different proof methods for them，typically

- Variants（变式）for＂termination＂
- Invariants（不变式）for＂partial correctness＂

Example：Insertion Sort

Algorithm design strategy 0：wisdom from daily life

Procedure Insertion－Sort（A）

In：An array A of n integers．
Out：A permutation of that array A that is sorted（monotonic）．


```
for i:= 2 to A.length
    key:= A[i]
    // Insert A[i] into the sorted subarray A[1:i-1]
    j:= i-1
    while (j>0 and A[j] > key)
        A[j+1]:= A[j]
        j:= j-1
    A[j+1]:= key
return A
```

we omit the ＂end＂keyword here to make it simpler

Example：Insertion Sort

－Applies algorithm Insertion－Sort to［5，2，4，6，1，3］

4th iteration

sorted

Example: Insertion Sort

- Proof the correctness of Insertion-Sort
- Step1: The algorithm outputs correct result on every instance (partially correct).
- Step2: The algorithm terminates within finite steps on every instance (termination).

Step1：Using loop invariant for partial correctness

General rules for loop invariant proofs

IIInitialization：It is true prior to the first iteration of the loop．

Maintenance：If it is true before an iteration of the loop，it remains true before the next iteration．

し
Termination：When the loop terminates，the invariant gives us a useful property that helps show that the algorithm is correct

Partial correctness of Insertion Sort

－Loop invariant：By the end of $i^{\text {th }}$ iteration of outer for loop， the elements in subarray $A[1, \cdots, i]$ are in sorted order．
－［Initialization］prior the first iteration $(i=2)$ ：$A[1]$ is in sorted order．
－［Maintenance］Assume by the end of the $i^{\text {th }}$ iteration，the elements in subarray $A[1, \cdots, i]$ are in sorted order；then by the end of the $(i+1)^{\text {th }}$ iteration，the elements in subarray $A[1, \cdots, i+1]$ are in sorted order．
－［Termination］After the iteration $i=n$ ，the loop invariant states that A is sorted

```
Procedure Insertion-Sort(A)
In: An array }A\mathrm{ of }n\mathrm{ integers.
Out: A permutation of that array }A\mathrm{ that is sorted (monotonic).
for }i:=2\mathrm{ to A.length
    key:= A[i]
    // Insert A[i] into the sorted subarray A[1:i-1]
    j:= i-1
    while (j>0 and A[j] > key)
        A[j+1]:= A[j]
        j:= j-1
    A[j+1]:= key
return A
Requires another loop invariant for the inner
```


How to find the loop invariant？

－Is there only one loop invariant？
－Another loop invariant：By the end of the $i^{\text {th }}$ iteration of outer for loop，subarray $A[1, \cdots, i]$ retains all of the original elements in $A[1, \cdots, i]$ in previous iteration．
－Let this invariant be $I V_{2}$ ，and the previous invariant be $I V_{1}$ ．What is their relationship？
－$I V_{2}$ is weaker than $I V_{l}$ ，since there are more possible $A[1, \cdots, i]$ that satisfy $I V_{2}$ ，but not satisfy $I V_{l}$ ．
－A good（strong）loop invariant must satisfy these three properties［Initialization］， ［Maintenance］and［Termination］．Note that $I V_{2}$ does not satisfy［Termination］ property．

How to find the loop invariant？

－How to find a good loop invariant？
－Generally，the answer is：
－We don＇t know
－For simple ones，e．g．，integer ranges，like $0<=x<1024$ ，there exists effective techniques－e．g．，abstract interpretation
－However，for sophisticated invariants，there is no general method，and sometimes we need to provide them manually！
－Very hot research topic！

Step2：Using loop variant for termination

－Wait！！！Program termination is formally undecidable！！
－It just means that there is no general algorithm exists that solves the halting problem for all possible programs．
－In fact，the partial correctness of all possible programs is also undecidable．－can you prove it？
－Using loop variant to prove the termination
－show that some quantity strictly decreases．
－it cannot decrease indefinitely（Bounded！）

Well-ordered set

- An ordered set is well-ordered if each and every nonempty subset has a smallest or least element.
- E.g., every nonempty subset of the non-negative integers has a least element
- Set of integers and the positive real number are not well-ordered sets
- A well-ordered set has no infinite descending sequences, which can be used to ensure the termination of algorithm

Termination of Insertion Sort

－Loop Variant：for the inner loop：j
－For each iteration，j strictly decreases．
－j is bounded to be larger than 0
－Loop Variant：for the outer loop：A．length－i
－For each iteration，A．length－i strictly decreases．
－A．length $-i$ is bounded to be larger or equal to 0

Procedure Insertion－Sort (A)
In：An array A of n integers．
Out：A permutation of that array A that is sorted（monotonic）．

```
for i:= 2 to A.length
    key:= A[i]
    // Insert }A[i]\mathrm{ into the sorted subarray }A[1:i-1
    j:= i-1
    while (j>0 and A[j]> key)
        A[j+1]:= A[j]
        j:= j-1
    A[j+1]:= key
return A
```


How to find the loop variant

－Again，generally，the answer is：
－We don＇t know
－But generally speaking，it is very easy to identify！

Other strategies of correctness proof

- Some methods and strategies: proof by cases, proof by contraposition, proof by contradiction, etc.
- When loops and/or recursions are involved: often (if not always) use mathematical induction.
- Review your discrete math book if you feel unfamiliar with above terms...
- [Rosen] Ch. $1(1.7,1.8)$ and Ch. $5(5.1,5.2)$

Complexity

- Time complexity: how much time is needed before halting
- Space complexity: how much memory (usually excluding input) is required for successful executed
- Other performance measures, e.g., communication bandwidth, or energy consumption...
- Time complexity is typically more important than others in analysis.

- Observation: larger inputs often demands more time.
- Cost of an algorithm should be a function of input size, say, $T(n)$.
- Given an algorithm and an input, when counting the cost with respect to the RAM model:
- Each memory access takes constant time.
- Each "primitive" operation takes constant time.
- Compound operations should be decomposed.
- At last, Counting up the number of time units.

Intrifigen Soffware and Enginerering
 Time complexity of Insertion Sort

Procedure Insertion－Sort（ A ）

In：An array A of n integers．
Out：A permutation of that array A that is sorted（monotonic）．

Cost

Times
Check one more time until false

for $i:=2$ to A．length

$k e y:=A[i]$
$/ /$ Insert $A[i]$ into the sorted subarray $A[1: i-1]$

return A
Add them up：$T(n)=c_{1} n+c_{2}(n-1)+c_{4}(n-1)+c_{5} \sum_{i=2}^{n} t_{i}+c_{6} \sum_{i=2}^{n}\left(t_{i}-1\right)+c_{7} \sum_{i=2}^{n}\left(t_{i}-1\right)+c_{8}(n-1)$

Time complexity of Insertion Sort

－The time cost of insert sort is：

$$
T(n)=c_{1} n+c_{2}(n-1)+c_{4}(n-1)+c_{5} \sum_{i=2}^{n} t_{i}+c_{6} \sum_{i=2}^{n}\left(t_{i}-1\right)+c_{7} \sum_{i=2}^{n}\left(t_{i}-1\right)+c_{8}(n-1)
$$

Depends on which input of size n

－The time cost of insert sort varies among inputs
－How to fairly evaluate a algorithm－enumerate the cost of all the possible inputs？Not possible，since the input space is infinite！
－We can check the representative inputs，but，what are they？

Given one problem and an algorithm，let X_{n} be the set of all the possible inputs of size n ，and $T(n)$ be the time cost of the algorithm under one input with size n ．
－Worst
－$W(n)=$ maximum time of algorithm on any input of size n ，i．e．，$W(n)=\max _{x \in X_{n}} T(x)$
－Best
－$B(n)=$ minimum time of algorithm on any input of size n ，i．e．，$B(n)=\min _{x \in \mathscr{X}_{n}} T(x)$
－Average
－$A(n)=$ expected time of algorithm over all inputs of size n ，i．e．，$A(n)=\sum_{x \in \mathscr{X}_{n}} T(x) \cdot \operatorname{Pr}(x)$
－Note：need assumption of statistics distribution of inputs．

Mainly focus on worst－case analysis

－Worst case－Running time guarantee for any input of size n ．
－Generally captures efficiency in practice．
－Draconian view，but hard to find effective alternative．
－Exceptions．Some exponential－time algorithms are used widely in practice because the worst－case instances don＇t arise．

Time complexity of Insertion Sort

Procedure Insertion－Sort（ A ）

Cost
In：An array A of n integers．
Out：A permutation of that array A that is sorted（monotonic）．

return A
What is the best case？
Each time t_{i} is 1 ，which means that each time the while loop condition is false at the beginning！$->A[j]>k e y$ is false every time $->$ the array is already sorted at the beginning！
 \section*{stanliget Softrare and Inginearing
 \section*{stanliget Softrare and Inginearing
 Time complexity of Insertion Sort}

Procedure Insertion－Sort (A)

Cost
In：An array A of n integers．
Out：A permutation of that array A that is sorted（monotonic）．

return A
$B(n)=c_{1} n+c_{2}(n-1)+c_{4}(n-1)+c_{5} \sum_{i=2}^{n} 1+c_{6} \sum_{i=2}^{n}(1-1)+c_{7} \sum_{i=2}^{n}(1-1)+c_{8}(n-1)=\left(c_{1}+c_{2}+c_{4}+c_{5}+c_{8}\right) n-\left(c_{2}+c_{4}+c_{5}+c_{8}\right)$

Time complexity of Insertion Sort

Procedure Insertion－Sort（ A ）

Cost
In：An array A of n integers．
Out：A permutation of that array A that is sorted（monotonic）．

return A
What is the worst case？
Each time t_{i} is the largest it can be，which means that each time the while loop condition is true until j is equal to $0 \rightarrow>A[j]>$ key is true every time $\rightarrow>$ the array is reversely sorted at the beginning！$\rightarrow t_{i}=i$
 \section*{Inteligent Sof fware and Engineerng
 \section*{Inteligent Sof fware and Engineerng
 Time complexity of Insertion Sort}

Procedure Insertion－Sort（ A ）

Cost
In：An array A of n integers．
Out：A permutation of that array A that is sorted（monotonic）．

return A
return A
$W(n)=c_{1} n+c_{2}(n-1)+c_{4}(n-1)+c_{5} \sum_{i=2}^{n} i+c_{6} \sum_{i=2}^{n}(i-1)+c_{7} \sum_{i=2}^{n}(i-1)+c_{8}(n-1)$

$$
=c_{1} n+c_{2}(n-1)+c_{4}(n-1)+c_{5}(n+2)(n-1) / 2+c_{6} n(n-1) / 2+c_{7} n(n-1) / 2+c_{8}(n-1)
$$

$$
=\left(\left(c_{5}+c_{6}+c_{7}\right) / 2\right) n^{2}+\left(c_{1}+c_{2}+c_{4}+c_{8}-\left(c_{5}+c_{6}+c_{7}\right) / 2\right) n-\left(c_{2}+c_{4}+c_{5}+c_{8}\right)
$$

\section*{

 Time complexity of Insertion Sort

Procedure Insertion－Sort（ A ）

Cost
In：An array A of n integers．
Out：A permutation of that array A that is sorted（monotonic）．

return A
What about the average case？$->$ the elements in the input array are randomly ordered

Hint：the number of swaps equals the number of inversions！

One more thing

- What the space complexity of insertion sort?

Procedure Insertion-Sort(A)
In: An array A of n integers.
Out: A permutation of that array A that is sorted (monotonic).

```
for i:= 2 to A.length
    key:= A[i]
    // Insert A[i] into the sorted subarray A[1:i-1]
    j:= i-1
    while ( }j>0\mathrm{ and }A[j]>key
        A[j+1]:= A[j]
        j:= j-1
    A[j+1]:= key
return A
```

We only need three additional memory cells to store the variable $k e y, i$, and j.

termes

Asymptotic order of growth

Donald E．Knuth

BIG OMICRON AND BIG OMEGA AND BIG THETA

Donald E．Knuth
Computer Science Department
Stanford University
Stanford，California 94305

Most of us have gotten accustomed to the idea of using the notation $O(f(n))$ to stand for any function whose magnitude is upper－bounded by a constant times $f^{\prime}(n)$ ，for all large n ．Sometimes we also need a corresponding notation for lower－bounded functions，i．e．，those functions which are at least as large as a constant times $f(n)$ for all large n ． Unfortunately，people have occasionally been using the o－notation for lower bounds，for example when they reject a particular sorting method ＂because its running time is $0\left(n^{2}\right)$ ．＂I have seen instances of this in print quite often，and finally it has prompted me to sit down and write a Letter to the Editor about the situation．

The classical literature does have a notation for functions that are bounded below，namely $\Omega(f(n))$ ．The most prominent appearance of this notation is in Titchmarsh＇s magnum opus on Riemann＇s zeta function［8］， where he defines $\Omega(f(n))$ on p． 152 and devotes his entire Chapter 8 to ＂Ω－theorems＂．See also Karl Prachar＇s Primzahlverteilung［7］，p． 245.

The Ω notation has not become very common，although I have noticed its use in a few places，most recently in some Russian publications I

A higher-level abstraction

- In practice, we usually don't care about the unimportant details in the counted operations.
- We need one more simplifying abstraction, which can give us an intuitive feeling of the cost of an algorithm.
- The abstractions is: the rate of growth, or order of growth, of the running time that really interests us, therefore, two factors are ignored:
- Constant coefficients are not that important (when n is large)
- Lower-order terms are not that important (when n is large).

Big O notation

Definition (O) Given a function $g(n)$, we denote by $O(g(n))$ the following set of functions: $O(g(n))=\left\{f(n) \mid \exists c>0, \exists n_{0}>0, \forall n \geq n_{0}: 0 \leq f(n) \leq c \cdot g(n)\right\}$

- Asymptotic upper bounds - when we say $f(n)$ is $O(g(n))$, we mean that $f(n)$ grows no faster than a certain rate $->$ is asymptotically at most $g(n)$.
- Ex. $f(n)=32 n^{2}+17 n+1$.

- $f(n)$ is $O\left(n^{2}\right) . \quad \longleftarrow$ choose $c=50, n_{0}=1$
- $f(n)$ is neither $O(n)$ nor $O(n \log n)->$ why?

Big O notation abuses

- $O(g(n))$ is actually a set of functions, but computer scientists often write $f(n)=$ $O(g(n))$ instead of $f(n) \in O(g(n))$.
- Ex. Consider $g_{1}(n)=5 n^{3}$ and $g_{2}(n)=3 n^{2}$.
- We have $g_{1}(n)=O\left(n^{3}\right)$ and $g_{2}(n)=O\left(n^{3}\right)$.
- But, do not conclude $g_{1}(n)=g_{2}(n)$.
- Since the worst time complexity of insertion sort is

$$
W(n)=\left(\left(c_{5}+c_{6}+c_{7}\right) / 2\right) n^{2}+\left(c_{1}+c_{2}+c_{4}+c_{8}-\left(c_{5}+c_{6}+c_{7}\right) / 2\right) n-\left(c_{2}+c_{4}+c_{5}+c_{8}\right)
$$

\Rightarrow Therefore, $W(n)=O\left(n^{2}\right)->$ is asymptotically at most n^{2}.

Big O notation with multiple variables

－$f(m, n)$ is $O(g(m, n))$ if there exist constants $c>0, m_{0} \geq 0$ ， and $n_{0} \geq 0$ such that $0 \leq f(m, n) \leq c \cdot g(m, n)$ for all $n \geq n_{0}$ and $m \geq m_{0}$ ．
－Ex．$f(m, n)=32 m n^{2}+17 m n+32 n^{3}$ ．
－$f(m, n)$ is both $O\left(m n^{2}+n^{3}\right)$ and $O\left(m n^{3}\right)$ ．
－$f(m, n)$ is neither $O\left(n^{3}\right)$ nor $O\left(m n^{2}\right)$ ．

Big Ω notation

Definition（ Ω ）Given a function $g(n)$ ，we denote by $\Omega(g(n))$ the following set of functions：$\Omega(g(n))=\left\{f(n) \mid \exists c>0, \exists n_{0}>0, \forall n \geq n_{0}: f(n) \geq c \cdot g(n)\right\}$
－Asymptotic lower bounds－when we say $f(n)$ is $\Omega(g(n))$ ，we mean that $f(n)$ grows at least as fast as a certain rate $->$ is asymptotically at least $g(n)$ ．

－Ex．$f(n)=32 n^{2}+17 n+1$ ．
－$f(n)$ is both $\Omega\left(n^{2}\right)$ and $\Omega(n)$ ．$\longleftarrow \quad$ choose $c=32, n_{0}=1$
－$f(n)$ is $\operatorname{not} \Omega\left(n^{3}\right)$ ．

Big Θ notation

Definition (Θ) Given a function $g(n)$ ，we denote by $\Theta(g(n))$ the following set of functions： $\Theta(g(n))=\left\{f(n) \mid \exists c_{1}>0, \exists c_{2}>0, \exists n_{0}>0, \forall n \geq n_{0}: c_{1} \cdot g(n) \leq f(n) \leq c_{2} \cdot g(n)\right\}$
－Asymptotic tight bounds When we say $f(n)$ is $\Theta(g(n))$ ，we mean that $f(n)$ grows precisely at a certain rate $->$ it is asymptotically equal to $g(n)$
－Ex．$f(n)=32 n^{2}+17 n+1$ ．
$c_{2} \cdot g(n)$

－$f(n)$ is $\Theta\left(n^{2}\right)$ ．\longleftarrow choose $c_{1}=32, c_{2}=50, n_{0}=1$
－$f(n)$ is neither $\Theta(n)$ nor $\Theta\left(n^{3}\right)$ ．

Small o and ω notation

－$f(n)$ is asymptotically（strictly）smaller than $g(n)$ ：
Definition（o）Given a function $g(n)$ ，we denote by $o(g(n))$ the following set of functions：$o(g(n))=\left\{f(n) \mid \forall c>0, \exists n_{0}>0, \forall n \geq n_{0}: 0 \leq f(n)<c \cdot g(n)\right\}$
－$f(n)$ is asymptotically（strictly）larger than $g(n)$ ：
Definition（ ω ）Given a function $g(n)$ ，we denote by $\omega(g(n))$ the following set of functions：$\omega(g(n))=\left\{f(n) \mid \forall c>0, \exists n_{0}>0, \forall n \geq n_{0}: f(n)>c \cdot g(n)\right\}$

Some properties of asymptotic notations

- Reflexivity
- E.g., $f(n) \in O(f(n))$; but $f(n) \notin o(f(n))$.
- Transitivity
- E.g., if $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, then $f(n) \in O(h(n))$.
- Symmetry
- $f(n) \in \Theta(g(n))$ iff $g(n) \in \Theta(f(n))$.
- Transpose symmetry:
- E.g., $f(n) \in O(g(n))$ iff $g(n) \in \Omega(f(n))$.

Asymptotic bounds and limits

－If cost functions are complex，it is hard to apply the definitions to get its asymptotic bounds．
－In this case，it usually easier to apply limit method．

Asymptotic bounds and limits

- Proposition. If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=c$ for some constant $0<c<\infty$ then $f(n)$ is $\Theta(g(n))$.
- Pf.
- By definition of the limit, for any $\varepsilon>0$, there exists n_{0} such that
. $c-\epsilon \leq \frac{f(n)}{g(n)} \leq c+\epsilon$ for all $n \geq n_{0}$.
- Choose $\varepsilon=1 / 2 c>0$.
- Multiplying by $g(n)$ yields $1 / 2 c \cdot g(n) \leq f(n) \leq 3 / 2 c \cdot g(n)$ for all $n \geq n_{0}$.
- Thus, $f(n)$ is $\Theta(g(n))$ by definition, with $c_{1}=1 / 2 c$ and $c_{2}=3 / 2 c$.

Asymptotic bounds for some common functions

－Proposition．If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$ ，then $f(n)$ is $O(g(n))$ but not $\Omega(g(n))$ ．
－Proposition．If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$ ，then $f(n)$ is $\Omega(g(n))$ but not $O(g(n))$ ．

Asymptotic bounds for some common functions

- Polynomials. Let $f(n)=a_{0}+a_{1} n+\ldots+a_{d} n^{d}$ with $a_{d}>0$. Then, $f(n)$ is $\Theta\left(n^{d}\right)$.
- Pf. $\lim _{n \rightarrow \infty} \frac{a_{0}+a_{1} n+\ldots+a_{d} n^{d}}{n^{d}}=a_{d}>0$
- Logarithms. $\log _{a} n$ is $\Theta\left(\log _{b} n\right)$ for every $a>1$ and every $b>1$.
- Pf. $\frac{\log _{a} n}{\log _{b} n}=\frac{1}{\log _{b} a}$
- Logarithms and polynomials. $\log _{a} n$ is $O\left(n^{d}\right)$ for every $a>1$ and every $d>0$.
- Pf. $\lim _{n \rightarrow \infty} \frac{\log _{a} n}{n^{d}}=0$

Asymptotic bounds for some common functions

- Exponentials and polynomials. n^{d} is $O\left(r^{n}\right)$ for every $r>1$ and every $d>0$.
- Pf. $\lim _{n \rightarrow \infty} \frac{n^{d}}{r^{n}}=0$
- Factorials. $n!$ is $O\left(n^{n}\right)$
- Pf. Stirling's formula: $n!\sim \sqrt{2 \pi n} \cdot\left(\frac{n}{e}\right)^{n}$

Comparing some common functions

$\Theta(1)$ ，constant
$\Theta(\log n)$ ，logarithm
$\Theta(n)$ ，linear
tractable
$\Theta(n \log n)$ ，linearithmic
$\Theta\left(n^{c}\right)$ ，polynomial
$\Theta\left(2^{n}\right)$ ，exponential
$\Theta(n!)$ ，factorials

Polynomial running time

－When considering brute force algorithm to solve one problem，it is usually asymptotically equal to exponential functions．
－When an algorithm has a polynomial running time，we say it is efficient， and the corresponding problem is so－called easy or tractable．
－The algorithm has typically exposes some crucial structure of the problem．

Although，there are exceptions

－Some poly－time algorithms in the wild have galactic constants and／or huge exponents．
－Q．Which would you prefer： $20 n^{120}$ or $n^{1+0.02} i^{20} \ln n$ ？

Map graphs in polynomial time

Further reading

- [CLRS] Ch. 2 (2.1, 2.2), Ch. 3
- [Rosen] Ch. 1 (1.7, 1.8) and Ch. 5 (5.1, 5.2)

