计算复杂性 computational complexity

钮鍫涛
Nanjing University
2023 Fall

The slides are mainly adapted fiom the original ones shared by Chaodong Zheng and Kevin Wayne．Thanks for their supports！

Model for Computation－Turing Machine

－An infinite tape divided into cells．
－A head that can read or write symbols on the tape，and move the tape left or right one cell at a time．
－A state register storing current state of the machine，among finitely many states．
－A finite table of instructions：
－Given current state and current read symbol：
－Either erase or write a symbol；
－Move the head（left，right，or remain stationary）；
－Stay the same state or change to a new state．

Decision Problem

- Decision problem: problems that expect a YES or NO answer.
- An instance of decision problem conceptually contains two parts:
- Instance description;
- The question itself.
- For such problems, we can split all possible instances into two categories: YES-instances (whose correct answer is YES) and No-instances (whose correct answer is NO).
- Example:
- Given a graph G, a pair of nodes (u, v), an integer k, is every path between (u, v) of length at least k ?
- Given a multiset S, is there a way to partition S into two subsets of equal sum?

Optimization vs Decision

- In an optimization problem, among all feasible solutions, we find one that maximizes (or minimizes) a given objective.
- Example: Given a graph G, a pair of nodes (u, v), what is the length of the shortest path between (u, v) ?
- If we have an efficient algorithm for a decision problem, then we can usually solve the corresponding optimization problem efficiently, and vice versa.
- Example: Given a graph G, a pair of nodes (u, v), an integer k, is every path between (u, v) of length at least k ?
- Another example: chromatic number vs k-colorable.

Computability

- For each decision problem, there exists a TM to decide it?
- Informally, we say a TM solves (decides) a decision problem if for each instance of the problem, within finite steps, the TM correctly outputs "yes" or "no" and then halts.
- No! E.g., The halting problem.

Problems can be solved in practice

－For these computable problems，can all of them be solved efficiently in practice？
－For a given decision problem，can TM decide it quickly？

Problems can be solved in practice

－Which problems will we be able to solve in practice？
－A working definition．Those with poly－time algorithms．

von Neumann
（1953）

In a 1956 letter，Göedel asked
von Neumann about the
computational complexity of an
NP complete problem

Nash
（1955）

Gödel
(1956)

Cobham （1964）

Edmonds

Rabin
（1966）

mit yintam Sidemem vorima	
 	is F eince Bowai da Lainge m het [L
am Sic ciman hevten a abu a mencinte damama，din	
	sime oftimate Mastine vicist．
moikelh Bithmilem	
	yate，hate dea Foryunymom oma
	En minde mimaxitha
	arbeit des Mathanatikes bei ja－oder－main Fiaye vollitädiy ${ }^{*}$ duad Marchinan arectem tionnte．
	Mammints ion $H_{\text {com }}$ deen mot

khit zu ligana，dais $\varphi(a)$ is in Congrame uracut	
paritumi	
Retrimaitisuguctitus．Ena vic	
Fort	
	ynd doen fim So tom ham．
	Wminde，ind an y ym

The Class P

－Consider a decision problem \mathscr{P} ，let I be an instance of \mathscr{P} ．
－Let $|I|$ denote the length of I under，say，binary encoding．
－An algorithm \mathscr{A} for \mathscr{P} is polynomially bounded，if the runtime of \mathscr{A} is $(|I|)^{O(1)}$ for all I ．
－ \mathbf{P} is the set of decision problems each of which has a polynomially bounded algorithm．
－ \mathbf{P} is the set of decision problems each of which can be decided by some TM within polynomial time．
－Most（but not all）problems we have studied so far are in \mathbf{P} ．

Some notes on \mathbf{P}

- P contains the set of so-called tractable problems.
- So problems with $\Theta\left(n^{100}\right)$ time algorithms also tractable?
- Being in \mathbf{P} doesn't mean a problem has efficient algorithms.
- Nonetheless:
- Problems not in \mathbf{P} are definitely expensive to solve.
- Problems in \mathbf{P} have "closure properties" for algorithm composition.
- The property of being in \mathbf{P} is independent of computation models.

A note on size of input

－Recall decision problem $\mathscr{P} \in \mathbf{P}$ if there exists an algorithm that can solve \mathscr{P} in $(|I|)^{O(1)}$ time for every instance I of \mathscr{P} ．

IsPrime（ n ）：
for $i:=2$ to $n-1$
if $n \% i=0$ return False
return True

Normally we assume the encoding：
－of an integer is polynomially related to its binary representation
－of a finite set is polynomially related to its encoding as a list of its elements，enclosed in braces and separated by commas．
－This algorithm has poly－n runtime，so Primes $\in \mathbf{P}$ ？
－No！The size of the input is $O(\log n)$ with binary encoding．
－Indeed Primes $\in \mathbf{P}$ ，but proved with a different algorithm （AKS primality test by Agrawal，Kayal，and Saxena）

Subset Sum

－Problem：Given an array $X[1 \cdots n]$ of n positive integers，can we find a subset in X that sums to given integer T ？
－Step 1：Characterize the structure of solution．
－If there is a solution S ，either $X[1]$ is in it or not．
－Step 2：Recursively define the value of an optimal solution．
－Let $s s(i, t)=$ true iff instance＂$X[i \ldots n], t$＂has a solution．

$$
s s(i, t)= \begin{cases}\text { true } & \text { if } t=0 \\ s s(i+1, t) & \text { if } t<X[i] \\ \text { alse } & \text { if } i>n \\ s s(i+1, t) \vee s s(i+1, t-X[i]) & \text { otherwise }\end{cases}
$$

－Step 3：Compute the value of an optimal solution（Bottom－Up）．

SubsetSumDP（X，T）：

for $t:=1$ to T
$s s[n, t]:=(X[n]=t)$? True : False
for $i:=n-1$ downto 1
$s s[i, 0]:=$ True
for $t:=1$ to $X[i]-1$
$s s[i, t]:=s s[i+1, t]$
for $t:=X[i]$ to T
$s s[i, t]:=\mathbf{O r}(s s[i+1, t], s s[i+1, t-X[i]])$
return $s s[1, T]$
－Build an 2D array $s s[1 . . . n, 0 \ldots T]$
－Evaluation order：bottom row to top row；left to right within each row．

Subset Sum

- Problem: Given an array $X[1 \cdots n]$ of n positive integers, can we find a subset in X that sums to given integer T ?
- Simple solution: recursively enumerates all 2^{n} subsets, leading to an algorithm costing $O\left(2^{n}\right)$ time.
- Dynamic programming: costing $O(n T)$ time.
- Both algorithms are not polynomial time algorithms!

Problems can be solved in practice

Non－deterministic Turing Machine

－An infinite tape divided into cells．
－A head that can read or write symbols on the tape，and move the tape left or right one cell at a time．
－A state register storing current state of the machine，among finitely many states．
－A finite table of instructions：
－Given current state and current read symbol，there are many
 actions can be chosen－Nondeterminism！
－Nondeterminism can be viewed as a kind of parallel computation wherein multiple independent processes or threads can be running concurrently．

The Class NP

－An Non－deterministic Turing Machine（NTM）M on input x returns ＂yes＂iff some execution of $M(x)$ halts in＂yes＂state．
－Informally，we say an NTM solves（decides）a decision problem \mathscr{P} in time $f(n)$ if for each instance I of \mathscr{P} with $|I|=n$ ，within $f(n)$ steps，the NTM correctly returns＂yes＂or＂no＂．
－i．e．，the height of the computation tree for I is no longer than $f(n)$ ．

－NP is the set of decision problems each of which can be decides by some NTM within polynomial time．
－NP means＂non－deterministic polynomial time．＂

The Class NP, Take Two

- Let algorithm $C(I, t)$ is a "certifier" or "verifier" for problem \mathscr{P} if for every instance I, I is a YES-instance iff there exists a string t such that $C(I, t)=$ yes.
- Such string t is called a "certificate" or "witness" or "proof"
- Set of decision problems for which there exists a poly-time certifier.
- If I is a YES-instance, then there exists t such that such that $C(I, t)=$ yes.
- If I is a NO-instance, then for all $t, C(I, t)=\mathbf{n o}$.
- Note: the certificate t should have length polynomial in size of I.

The Class NP，Take Two

－Given a Boolean formula ϕ in CNF，is ϕ satisfiable？
－Example：$\phi=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee \overline{x_{1}}\right) \wedge\left(x_{2} \vee \overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(x_{4}\right)$
－A certificate：
－$x_{1}=$ true，$x_{2}=$ true，$x_{3}=$ true，$x_{4}=$ true
－Certifier：
－Sequentially evaluate each clause by assigning values（from the certificate） to each variable in that clause．If the values of all clauses are evaluated to be truth then return 1，otherwise return 0 ．（poly－time）

The Class NP，Take Two

－Theorem：NP equals the set of decision problems for which there exists a poly－time certifier．
－Proof：
－\Longrightarrow Suppose $p: \mathbb{N} \rightarrow \mathbb{N}$ is a polynomial and \mathscr{P} is decided by a NTM N that runs in time $p(n)$ ．For every YES－instance I for \mathscr{P} ，there must be a sequence of nondeterministic choices（i．e．，a path in the computation tree）that makes N return YES on input I ．We can use this sequence as a certificate for I ．This certificate has length $p(|I|)$ and can be verified in polynomial time by a deterministic machine， which simulates the action of N using these nondeterministic choices and verifies that it would have been YES after using these nondeterministic choices．Thus，we have： the set of decision problems for which there exists a poly－time certifier \subseteq NP

－Theorem：NP equals the set of decision problems for which there exists a poly－time certifier．
－Proof：
－\Longleftarrow If for a decision problem \mathscr{P} which has a poly－time certifier V ，then we describe a polynomial－time NTM N that decides \mathscr{P} ．On input I ，it uses the ability to make nondeterministic choices to write down a string u of length $p(|I|)$（the length of each path is at most $p(|I|)$ ，each path can be regarded as a candidate proof of I ）． Then it runs the deterministic verifier V to verify that u is a valid certificate for I ，and if so，return true．Clearly，N returns true on I if and only if a valid certificate exists for I ． Thus，we have：
NP \subseteq the set of decision problems for which there exists a poly－time certifier．

$\mathbf{P} \subseteq \mathbf{N P}$

- \mathbf{P} is the set of decision problems that have polynomially bounded algorithms.
- \mathbf{P} is the set of decision problems that can be decided by (deterministic) TM within polynomial time.
- NP is the set of decision problems for which there exists a poly-time certifier.
- NP is the set of decision problems that can be decided by NTM within polynomial time.
- Any deterministic-algorithm is also a special non-deterministic algorithm, any TM is also a special NTM.

The big question $\mathbf{P} \neq \mathbf{N P}$

－Most people believe $\mathbf{P} \neq \mathbf{N P}$ ．
－Informally，NTM and non－deterministic algorithm allows exponential＂trials＂within polynomial time．

－P is the set of decision problems efficiently solvable．

－NP is the set of decision problems efficiently verifiable．
Solving a problem should be harder than verifying an answer？

If $\mathbf{P} \neq \mathbf{N P}$

computational

$$
4---\frac{-}{N P}----1
$$
 Г 771411}

\section*{NP completeness

NP completeness
 」

The hardest among the hard ones

－NP－Complete（NPC）problems are the hardest ones in NP．
－A decision problem \mathscr{P} is NPC if：
－The problem \mathscr{P} is in NP．
－If we have an algorithm for \mathscr{P} ，then all problems in NP can be solved with limited extra work．

Reduction

－If we have an algorithm for \mathscr{P} ，and can convert an instance of \mathbb{Q} to an instance of \mathscr{P} ，then we effectively have an algorithm for \mathbb{Q} already！

－Example：shortest distances in unit－length graphs via BFS

Polynomial Reduction

－Define function T ：input of decision problem $\mathbb{Q} \rightarrow$ input of decision problem \mathscr{P} ．
－T is a polynomial reduction from \mathbb{Q} to \mathscr{P} if
－T can be computed within polynomial time（w．r．t．input length）．
－Input x is a＂yes＂input for \mathbb{Q} iff $T(x)$ is a＂yes＂input for \mathscr{P} ．

－ \mathbb{Q} is polynomially reducible to $\mathscr{P}: \mathbb{Q} \leq_{P} \mathscr{P}$
－ \mathscr{P} is at least as hard as \mathbb{Q} ．

The hardest among the hard ones

－NP－Complete（NPC）problems are the hardest ones in NP．
－A decision problem \mathscr{P} is NPC if：
－The problem \mathscr{P} is in NP．
－If we have an algorithm for \mathscr{P} ，then all problems in NP can be solved with limited extra work．
－For every problem \mathbb{Q} in NP，it is polynomially reducible to \mathscr{P} ．

NPC and NP-hard

- A decision problem \mathscr{P} is NP-hard if:
- For every problem \mathbb{Q} in $\mathbf{N P}$, it is polynomially reducible to \mathscr{P}.
- NP-hard problems are the ones that are "at least as hard as the hardest problems in NP".
- A decision problem \mathscr{P} is NPC if it is both NP and NP-hard

Prove a decision problem is NPC

－How to prove a decision problem is NPC？
－Show the problem is in NP．
－Show every $\mathbb{Q} \in \mathbf{N P}$ is polynomially reducible to the problem．

Infinity！

SAT：the First NPC Problem

－SAT：Given a Boolean formula ϕ in CNF，is ϕ satisfiable？
－Example：

$$
\phi=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee \overline{x_{1}}\right) \wedge\left(x_{2} \vee \overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(x_{4}\right)
$$

－The Cook－Levin Theorem：SAT is NP－Complete．
－［Western world］Stephen Cook， 1971.

Stephen Cook

Leonid Levin
－［USSR］Leonid Levin， 1973.

And it all starts here...

- Once we find the first NPC problem, finding other NPC problems will be much easier:
- Show the candidate $\mathbf{P} \in \mathbf{N P}$.
- Show SAT (or other NPC problem) is polynomially reducible to.
- Leveraging the Cook-Levin Theorem, Richard Karp lists 21 NPC problems, in the year of 1972.
- More NPC problems are later found... (e.g., problems in the book [Garey \& Johnson])

Richard Karp

Saving your job．．．

when you don＇t know complexity theory

when you have a lower bound

＂I can＇t find an efficient algorithm，because no such algorithm is possible！＂

when you find it is NP－Complete

＂I can＇t find an efficient algorithm，but neither can all these famous people．＂

3-SAT is NPC

- 3-SAT: given a Boolean formula ϕ in CNF in which each clause has exactly three distinct literals, is ϕ satisfiable?
- Example: $\phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee \overline{x_{4}} \vee x_{1}\right) \wedge\left(x_{1} \vee \overline{x_{1}} \vee \overline{x_{2}}\right)$
- The easy part: 3-SAT is in NP.
- Any valid truth assignment can be a certificate.
- So "yes" instances can be verified in polynomial time.
- The more challenging part: 3-SAT is NP-hard.
- Reduce 3-SAT to SAT? (Show 3-SAT \leq_{P} SAT?)
- Reduce SAT to 3-SAT. (Show SAT $\leq_{P} 3$-SAT.)

3-SAT is NP-hard

- Reduce SAT to 3-SAT. (Show SAT \leq_{P} 3-SAT.)
- Convert an instance ϕ of SAT to an instance ϕ^{\prime} of 3-SAT:
- Conversion can be done in polynomial time (w.r.t. $|\phi|$).
- ϕ is satisfiable iff ϕ^{\prime} is satisfiable.

3－SAT is NP－hard

－Convert each clause C of ϕ in the following way：
－$C=\left(z_{1}\right)$ ，let

$$
C^{\prime}=\left(x_{1} \vee x_{2} \vee z_{1}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee z_{1}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee z_{1}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee z_{1}\right)
$$

－$C=\left(z_{1} \vee z_{2}\right)$ ，let $C^{\prime}=\left(x_{1} \vee z_{1} \vee z_{2}\right) \wedge\left(\overline{x_{1}} \vee z_{1} \vee z_{1}\right)$
－$C=\left(z_{1} \vee z_{2} \vee z_{3}\right)$ ，simply let $C^{\prime}=C$
－$C=\left(z_{1} \vee z_{2} \vee \ldots \vee z_{k}\right)$ ，where $k>3$ ，let $C^{\prime}=\left(z_{1} \vee z_{2} \vee x_{1}\right) \wedge\left(\overline{x_{1}} \vee z_{3} \vee x_{2}\right) \wedge\left(\overline{x_{2}} \vee z_{4} \vee x_{3}\right) \wedge \ldots$

$$
\wedge\left(\overline{x_{k-4}} \vee z_{k-2} \vee x_{k-3}\right) \wedge\left(\overline{x_{k-3}} \vee z_{k-1} \vee x_{k}\right)
$$

Clique is NPC

－Clique：Given (G, k) ，does graph G contain clique of size k ？
－The easy part：Clique is in NP．
－Any k vertices in a clique can be a certificate．
－So＂yes＂instances can be verified in polynomial time．
－The more challenging part：Clique is NP－hard．
－Show 3－SAT \leq_{P} Clique．

The vertices connected by blue edges
vertices connected by blue edg
（pairwise adjacent）are 4－clique
There are 61 －cliques（all these vertices）
There are 92 －cliques（all these edges）
There are 4 3－cliques（triangles in the 4 －clique）

Clique is NP－hard

－Show 3－SAT \leq_{P} Clique
－Given an instance ϕ of 3－SAT，convert it to an instance（ G, k ）of Clique within polynomial time．
－Answer for ϕ of 3－SAT is YES iff answer for (G, k) of Clique is YES．
－Conversion procedure：
－Let k be the number of clauses in ϕ ．
－For each clause C_{i} of ϕ create three nodes $v_{i, 1}, v_{i, 2}, v_{i, 3}$ ．
－Connect two nodes $v_{i, j}$ and $v_{i^{\prime}, j^{\prime}}$ iff：$i \neq i^{\prime}$ ，and $v_{i, j}$ and $v_{i^{\prime}, j^{\prime}}$ are not literals negating each other．

Clique is NP－hard

－$\phi=\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3}\right)$
－\Longrightarrow If ϕ is satisfiable，in each clause at least one literal will be satisfied．Nodes correspond to these k literals will be a clique．
－$\Longleftarrow I f$ there is a k clique in the graph，this clique will contain one node from each clause．These nodes correspond to non－conflicting literals， implying a satisfying assignment．

Further reading

－［CLRS］Ch． 34 （34．1－34．5）

Refer to［Sipser］and［Arora \＆Barak］for more about computational complexity

Refer to［Garey \＆Johnson］for more NP－completeness problems

