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Model for Computation—Turing Machine

An infinite tape divided into cells.

A head that can read or symbols on the tape, and move the tape left or right one cell at a
time.

A state register storing current state of the machine, among finitely many states.

A finite table of instructions:

> Given current state and current read symbol:
Either erase or write a symbol;
Move the head (left, right, or remain stationary);

- Stay the same state or change to a new state.




Decision Problem

* Decision problem: problems that expect a YES or NO answer.
> An instance of decision problem conceptually contains two parts:
- Instance description;
- The question itself.

> For such problems, we can split all possible instances into two categories: YES-instances
(whose correct answer is YES) and No-instances (whose correct answer is NO).

« Example:

» Given a graph G, a pair of nodes (u, v), an integer k, is every path between (u, v) of length
at least k?

» Given a multiset S, is there a way to partition S into two subsets of equal sum?



I IO 24 e

are an fngineem’ g

‘Optimization vs Decision

* In an optimization problem, among all feasible solutions, we find one that
maximizes (or minimizes) a given objective.

» Example: Given a graph G, a pair of nodes (u, v), what is the length of the
shortest path between (u, v)?

* |f we have an efficient algorithm for a decision problem, then we can usually
solve the corresponding optimization problem efficiently, and vice versa.

» Example: Given a graph G, a pair of nodes (u, v), an integer k, is every
path between (u, v) of length at least k?

>~ Another example: chromatic number vs k-colorable.



Computability

 For each decision problem, there exists a TM to decide it?

> |Informally, we say a TM solves (decides) a decision problem if for each
instance of the problem, within finite steps, the TM correctly outputs “yes” or
“no” and then halts.

> No! E.g., The halting problem.
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" Problems can be solved in practice

computational
difficulty of
decision problems

\ ?J undecidable

* For these computable problems, can all of them be solved efficiently In
practice?

* For a given decision problem, can TM decide it quickly?
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Problems can be solved In practice

* Which problems will we be able to solve in practice”?

> A working definition. Those with poly-time algorithms.

von Neumann
(1953)

In a 1956 letter, Goedel asked
von Neumann about the
computational complexity of an

NP complete problem

Nash Godel
(1956)

(1955)

Cobham
(1964)

Edmonds
(1965)

Rabin
(1966)
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The Class P

» Consider a decision problem 2, let I be an instance of .
» Let [/| denote the length of I under, say, binary encoding.

. An algorithm </ for & is polynomially bounded, if the runtime of & is (| 1])°Y for all I.

* P is the set of decision problems each of which has a polynomially bounded algorithm.

* P is the set of decision problems each of which can be decided by some TM within
polynomial time.

 Most (but not all) problems we have studied so far are in P.



Some noteson P

P contains the set of so-called tractable problems.

. So problems with O(n ") time algorithms also tractable?

> Being in P doesn’t mean a problem has efficient algorithms.
 Nonetheless:

> Problems not in P are definitely expensive to solve.

> Problems in P have “closure properties” for algorithm composition.

> The property of being in P Is independent of computation models.
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A note on size of input

» Recall decision problem & € P if there exists an algorithm that can solve < in
([ 1) time for every instance I of .

Normally we assume the encoding:

IsPrlme(n). e of an integer is polynomially related to its binary
fori:=2ton-1 representation
if 1% =0 e of a finite set is polynomially related to its encoding as
a list of its elements, enclosed in braces and
return False separated by commas.

return 7True

e This algorithm has poly-n runtime, so Primes € P ?

 No! The size of the input is O(log n) with binary encoding.

* Indeed Primes € P, but proved with a different algorithm
(AKS primality test by Agrawal, Kayal, and Saxena)



Subset Sum

* Problem: Given an array X|1:--n]| of n positive integers, can we find a
subset in X that sums to given integer 17

 Step 1: Characterize the structure of solution.

> |f there is a solution S, either X[ 1] is in it or not.

* Step 2: Recursively define the value of an optimal solution.

» Let s5(7, 1) = true iff instance “X|[i ... n], ’ has a solution.

true ift =0
| ss(i + 1,1) if 1 < X|[1]
$80,1) = false if i > n

ss(i+ 1,0) vss(i + 1,6t — X[i]) otherwise
e Step 3: Compute the value of an optimal solution (Bottom-Up).

» Build an 2D array ss[1...n,0...T]

> Evaluation order: bottom row to top row; left to right within each row.

SubsetSumDP(X . T): O(nT)

ss|n, 0] := True
forr:=1to T
ss|n, t] := (X[n] =1t) ? True : False
fori:=n-1 downto 1
ss|i, O] := True
for ¢ :=1 to X[i] - 1
ssli, t] :=ssli+ 1,1}
forr:=X[i]to T
ss[i,t] :=0r(ss[i+1,1],ss[i+1,1-X[i]])
return ss|[1,7]



Subset Sum

* Problem: Given an array X|1:--n] of n positive integers, can we find a
subset in X that sums to given integer 17?

« Simple solution: recursively enumerates all 2" subsets, leading to an
algorithm costing O(2") time.

» Dynamic programming: costing O(nT) time.

* Both algorithms are not polynomial time algorithms!
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Problems can be solved in practice

computational
difficulty of
decision problems
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Non-deterministic Turing Machine

* An infinite tape divided into cells.

* A head that can read or write symbols on the tape, and move the
tape left or right one cell at a time.

* A state reqgister storing current state of the machine, among finitely
many states.

e A finite table of instructions:

668686

> Given current state and current read symbol, there are many YES NO NO NO NO
actions can be chosen — Nondeterminism!

> Nondeterminism can be viewed as a kind of parallel computation
wherein multiple independent processes or threads can be
running concurrently.
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The Class NP

* An Non-deterministic Turing Machine (NTM) M on input x returns
“yes” iff some execution of M(x) halts in “yes” state.

 Informally, we say an NTM solves (decides) a decision problem &

in time f(n) if for each instance I of & with |I| = n, within f(n)
steps, the NTM correctly returns “yes” or “no”.

> i.e., the height of the computation tree for [ is no longer than

668686

f(n). YES NO NO NO NO

* NP is the set of decision problems each of which can be decides
by some NTM within polynomial time.

* NP means “non-deterministic polynomial time.”
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The Class NP, Take Two

o Let algorithm C(/, t) is a “certifier” or “verifier” for problem & if for every
instance /, [ is a YES-instance iff there exists a string ¢ such that C(/, ?) = yes.

> Such string 7 is called a “certificate” or “witness” or “proof”

» Set of decision problems for which there exists a poly-time certifier.
> |f I is a YES-instance, then there exists t such that such that C(/, 1) = yes.
> |f I is a NO-instance, then for all ¢, C(/, t) = no.

> Note: the certificate f should have length polynomial in size of /.
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"The Class NP, Take Two

 Given a Boolean formula ¢ in CNF, is ¢ satisfiable?

e an iEng

» Example: = (Xx; V) A3 VX)) A (X VX V) A (X))
> A certificate:

- Xy = true, X, = true, x3 = true, x, = true
> Certifier:

- Sequentially evaluate each clause by assigning values (from the certificate)
to each variable in that clause. If the values of all clauses are evaluated to be
truth then return 1, otherwise return 0. (poly-time)
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- The Class NP, Take Two

* Theorem: NP equals the set of decision problems for which there exists a poly-time
certifier.

e Proof:

» —> Suppose p : N — N is a polynomial and & is decided by a NTM N that runs in
time p(n). For every YES-instance I for &, there must be a sequence of
nondeterministic choices (i.e., a path in the computation tree) that makes /V return
YES on input /. We can use this sequence as a certificate for [. This certificate has
length p(|I|) and can be verified in polynomial time by a deterministic machine,

which simulates the action of NV using these nondeterministic choices and verifies that
it would have been YES after using these nondeterministic choices. Thus, we have:

the set of decision problems for which there exists a poly-time certifier C NP



- The Class NP, Take Two

* Theorem: NP equals the set of decision problems for which there exists a poly-time
certifier.

 Proof:

» <= If for a decision problem & which has a poly-time certifier V, then we describe
a polynomial-time NTM N that decides 2. On input I, it uses the ability to make
nondeterministic choices to write down a string u of length p( || ) (the length of
each path is at most p( || ), each path can be regarded as a candidate proof of /).
Then it runs the deterministic verifier V' to verify that u is a valid certificate for /, and if

so, return true. Clearly, N returns true on [ if and only if a valid certificate exists for /.
Thus, we have:
NP C the set of decision problems for which there exists a poly-time certifier.



P C NP

* P is the set of decision problems that have polynomially bounded
algorithms.

* P is the set of decision problems that can be decided by (deterministic) TM
within polynomial time.

* NP is the set of decision problems for which there exists a poly-time certifier.

* NP is the set of decision problems that can be decided by NTM within
polynomial time.

* Any deterministic-algorithm is also a special non-deterministic algorithm,
any TM is also a special NTM.
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The big question P = NP

* Most people believe P # NP.

e Informally, NTM and non-deterministic algorithm allows exponential “trials” within
polynomial time.

Clay Mathematics Institute

About Programs & Awards People The Millennium Prize Problems  Online resources Events N

Birch and Swinnerton-
Dyer Conjecture

‘ ‘ ‘ Hodge Conjecture
= e "o Navier-Stokes Equation

* P is the set of decision problems efficiently solvable. P vs NP

Poincaré Conjecture

* NP is the set of decision problems efficiently verifiable.

Solving a problem should be harder than verifying an answer?

Yet we haven't found any &? € NP, while & & P
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computational
difficulty of
decision problems

undecidable
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NP completeness
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 NP-Complete (NPC) problems are the hardest ones in NP,

» A decision problem &£ is NPC if:
> The problem & is in NP.

> |f we have an algorithm for &2, then all problems in NP can
be solved with limited extra work.

Complexity

(if P # NP)
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Reduction

* |f we have an algorithm for &2, and can convert an instance of @ to an instance
of &, then we effectively have an algorithm for @ already!

y = 1(x)
(input for )

transfer output

Algorithm for & T

X answer for Q(x)

input for @

Algorithm for @

 Example: shortest distances in unit-length graphs via BFS



Polynomial Reduction

 Define function T~ input of decision problem @ — input of decision problem &°.
 T'is a polynomial reduction from @ to & if

» [ can be computed within polynomial time (w.r.t. input length).

> Input x is a “yes” input for @ iff 7(x) is a “yes” input for .

Y= T(x) : /
X T Algorithm for & T answer for a(x)

iInout for @

(inpbut for &)

Algorithm for O

» (@ is polynomially reducible to &*: Q@ <, &P

» P is at least as hard as O.
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The hardest among the hard ones

 NP-Complete (NPC) problems are the hardest ones in NP.

A decision problem £ is NPC if:

Complexity
(if P = NP)

> The problem < is in NP.

> For every problem @ in NP, it is polynomially reducible to .




NPC and NP-hard

» A decision problem &£ is NP-hard if:

> For every problem @ in NP, it is
polynomially reducible to <.

 NP-hard problems are the ones that are “at
least as hard as the hardest problems In

NP”.

Complexity

NP-hard

A decision problem & is NPC if it is both
NP and NP-hard
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' Prove a decision problem is NPC

« How to prove a decision problem is NPC?

> Show the problem is in NP.

> Show@ & NP is polynomially reducible to the problem.

Infinity!
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' SAT: the First NPC Problem

 SAT: Given a Boolean formula ¢ in CNF, is ¢ satisfiable?

> Example:
P =0 V) A3 VID A VIV I) A (x)

 The Cook-Levin Theorem: SAT is NP-Complete.

> |Western world]| Stephen Cook, 1971.

Stephen Cook Leonid Levin

> [USSR] Leonid Levin, 1973.



And It all starts here...

* Once we find the first NPC problem, finding other NPC problems will be much
easler:

: Beware of the direction
> Show the candidate P € NP. f e

> Show SAT (or other NPC problem) is polynomially reducible to.

* [everaging the Cook-Levin Theorem, Richard Karp lists 21 NPC
problems, in the year of 1972.

* More NPC problems are later found... (e.g., problems in the book
|Garey & Johnson])

Richard Karp



when you don’t know
complexity theory

when you have a lower bound

“I can’t find an efficient algorithm, | “I can’t find an efficient algorithm, because “I can’t find an efficient algorithm, but
guess I’'m just too dumb.” no such algorithm is possible!” neither can all these famous people.”
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3-SAT is NPC

« 3-SAT: given a Boolean formula ¢ in CNF in which each clause has exactly three distinct literals,
is ¢ satisfiable?

» Example: @ = (X, VX, VX)) A3 VX VX)) A (X VXV X))
* The easy part: 3-SAT is in NP.
> Any valid truth assignment can be a certificate.

> S0 “yes” instances can be verified in polynomial time.

* The more challenging part: 3-SAT is NP-hard.

> Reduce 3-SAT to SAT? (Show 3-SAT <, SAT?)

> Reduce SAT to 3-SAI. (Show SAT <p 3-SAl.)



TEFr

3-SAT Is NP-hard

» Reduce SAT to 3-SAT. (Show SAT <p 3-SAT.)
 Convert an instance ¢ of SAT to an instance ¢ of 3-SAT:

~ Conversion can be done in polynomial time (w.r.t. | ¢ |).

> (@ is satisfiable iff ¢’ is satisfiable.
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3-SAT Is NP-hard

» Convert each clause C of ¢ in the following way:

> C: (Zl)’ let
C'=xX VX VZIODAXVLVZ)OAGVXH VARV Y Z)

» C = (Zl VZ2), let C' = (xl\/zl VZ2)/\(X_1VZ1 VZI)
» C=(y1 V7V 2Z),simplylet C'=C

» C=( V2 V...VZ7),where k > 3, let
C' = (ZlVszxl)/\()TlVZ3VX2)/\()TZVZ4VX3)/\...
N4V 5oV 3) ANXZY 5o VX
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Clique is NPC

 Clique: Given (G, k), does graph G contain clique of size k?

 The easy part: Cligue is in NP.

» Any k vertices in a clique can be a certificate.

> S0 “yes” instances can be verified in polynomial time.

The vertices connected by blue edges

* The more challenging part: Clique is NP-harad. (pairwise adjacent) are 4-clique

There are 6 1-cliques (all these vertices)
There are 9 2-cliques (all these edges)

» Show 3-SAT SP Cllq ue. There are 4 3-cliques (triangles in the 4-clique)



Clique is NP-hard

» Show 3-SAT <, Clique

> Given an instance @ of 3-SAT, convert it to an instance (G, k) of Clique within polynomial
time.

> Answer for ¢ of 3-SAT is YES iff answer for (G, k) of Clique is YES.

* Conversion procedure:

> Let k be the number of clauses in ¢.

» For each clause C; of @) create three nodes v; {, V; 5, V; 5.

» Connect two nodes v; ;and v, iff: 1 7 i, and v; jand v, . are not literals negating each other.



Clique is NP-hard

e )= VLV ATV VX)AGR VIV
1 2 3 1 2 3 1 2 3

» = If ¢ is satisfiable, in each clause at least
one literal will be satisfied. Nodes correspond to

these £ literals will be a clique.

» <If there is a k clique in the graph, this clique
will contain one node from each clause. These
nodes correspond to non-conflicting literals,
iImplying a satisfying assignment.
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Further reading

+ [CLRS] Ch.34 (34.1-34.5)

V THOMAS H.CORMEN
} CHARLES E. LEISERSON
RONALD L. RIVEST

\ CLIFFORD STEIN

Computational
Complexity i

N
"\

INTRODUCTION TO

ALGORITHMS MICHAEL SIPSER

EDITION

Sanjeev Arora
and B0az Barak

Refer to [Sipser] and [Arora & Barak] for
more about computational complexity

COMPUTERS AND INTRACTABILITY
A Guide 10 the Theory of NP-Completeness

Mchaol R Garey / Davd S Johrson

Refer to [Garey & Johnson] for
more NP-completeness problems



