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Model for Computation—Turing Machine
• An infinite tape divided into cells.

• A head that can read or write symbols on the tape, and move the tape left or right one cell at a 
time.


• A state register storing current state of the machine,  among finitely many states.


• A finite table of instructions:


‣ Given current state and current read symbol: 


- Either erase or write a symbol;


- Move the head (left, right, or remain stationary);


- Stay the same state or change to a new state.
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Decision Problem
• Decision problem:  problems that expect a YES or NO answer.


‣ An instance of decision problem conceptually contains two parts:


- Instance description;


- The question itself.


‣ For such problems, we can split all possible instances into two categories: YES-instances 
(whose correct answer is YES) and No-instances (whose correct answer is NO).


• Example: 


‣ Given a graph , a pair of nodes , an integer , is every path between  of length 
at least ?


‣ Given a multiset , is there a way to partition  into two subsets of equal sum?

G (u, v) k (u, v)
k

S S
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Optimization vs Decision
• In an optimization problem, among all feasible solutions, we find one that 

maximizes (or minimizes) a given objective.


‣ Example: Given a graph , a pair of nodes , what is the length of the 
shortest path between ?


• If we have an efficient algorithm for a decision problem, then we can usually 
solve the corresponding optimization problem efficiently, and vice versa.


‣ Example: Given a graph , a pair of nodes , an integer , is every 
path between  of length at least ?


‣ Another example: chromatic number vs -colorable.

G (u, v)
(u, v)

G (u, v) k
(u, v) k

k
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Computability

• For each decision problem, there exists a TM to decide it?


‣ Informally, we say a TM solves (decides) a decision problem if for each 
instance of the problem, within finite steps, the TM correctly outputs “yes” or 
“no” and then halts.


‣ No! E.g., The halting problem.



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Problems can be solved in practice

• For these computable problems, can all of them be solved efficiently in 
practice?


• For a given decision problem, can TM decide it quickly?

🤔 undecidable

computational 
difficulty of 

decision problems



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Problems can be solved in practice
• Which problems will we be able to solve in practice?


‣ A working definition.  Those with poly-time algorithms.

von Neumann 
(1953)

Gödel 
(1956)

Edmonds 
(1965)

Rabin 
(1966)

Cobham 
(1964)

Nash 
(1955)

In a 1956 letter, Göedel asked 

von Neumann about the 

computational complexity of an 

NP complete problem
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The Class P
• Consider a decision problem , let  be an instance of .

• Let  denote the length of  under, say, binary encoding.


• An algorithm  for  is polynomially bounded, if the runtime of  is  for all .


• P is the set of decision problems each of which has a polynomially bounded algorithm.


• P is the set of decision problems each of which can be decided by some TM within 
polynomial time.


• Most (but not all) problems we have studied so far are in P.

𝒫 I 𝒫

| I | I

𝒜 𝒫 𝒜 ( | I | )O(1) I
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Some notes on P
• P contains the set of so-called tractable problems.


• So problems with  time algorithms also tractable?


‣ Being in P doesn’t mean a problem has efficient algorithms.


• Nonetheless:


‣ Problems not in P are definitely expensive to solve.


‣ Problems in P have “closure properties” for algorithm composition.


‣ The property of being in P is independent of computation models.

Θ(n100)
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A note on size of input
• Recall decision problem  if there exists an algorithm that can solve  in 

 time for every instance  of .

• This algorithm has poly-  runtime, so Primes  P ?


• No! The size of the input is  with binary encoding.

𝒫 ∈ P 𝒫
( | I | )O(1) I 𝒫

n ∈

O(log n)

IsPrime(n): 
for i := 2 to n - 1
if  n%i  = 0
return False

return True

Normally we assume the encoding: 
• of an integer is polynomially related to its binary 

representation 
• of a finite set is polynomially related to its encoding as 

a list of its elements, enclosed in braces and 
separated by commas. 

• Indeed Primes  P, but proved with a different algorithm 
(AKS primality test by Agrawal, Kayal, and Saxena)

∈
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Subset Sum
• Problem: Given an array  of  positive integers, can we find a 

subset in  that sums to given integer ?


• Step 1: Characterize the structure of solution.


‣ If there is a solution , either  is in it or not.


• Step 2: Recursively define the value of an optimal solution.


‣ Let  = true iff instance “ ” has a solution.


‣



• Step 3: Compute the value of an optimal solution (Bottom-Up).


‣ Build an 2D array 


‣ Evaluation order: bottom row to top row; left to right within each row.

X[1⋯n] n
X T

S X[1]

ss(i, t) X[i . . . n], t

ss(i, t) =

true if t = 0
ss(i + 1,t) if t < X[i]
false if i > n
ss(i + 1,t) ∨ ss(i + 1,t − X[i]) otherwise

ss[1...n,0...T]

SubsetSumDP(X,T):
ss[n, 0] := True
for t := 1 to T

ss[n, t] := (X[n] = t) ? True : False
for i := n - 1 downto 1

ss[i, 0] := True
for t :=1 to X[i] - 1

ss[i, t] := ss[i + 1, t]
for t := X[i] to T

ss[i, t] := Or(ss[i + 1, t], ss[i + 1, t - X[i]])
return ss[1,T]

Runtime is 
O(nT)
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Subset Sum

• Problem: Given an array  of  positive integers, can we find a 
subset in  that sums to given integer ?


• Simple solution: recursively enumerates all  subsets, leading to an 
algorithm costing  time.


• Dynamic programming: costing  time.


• Both algorithms are not polynomial time algorithms!

X[1⋯n] n
X T

2n

O(2n)

O(nT)
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Problems can be solved in practice

🤔 undecidable

computational 
difficulty of 

decision problems

P

decidable

P
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Non-deterministic Turing Machine
• An infinite tape divided into cells.

• A head that can read or write symbols on the tape, and move the 
tape left or right one cell at a time.


• A state register storing current state of the machine,  among finitely 
many states.


• A finite table of instructions:


‣ Given current state and current read symbol, there are many 
actions can be  chosen — Nondeterminism!


‣ Nondeterminism can be viewed as a kind of parallel computation 
wherein multiple independent processes or threads can be 
running concurrently. 

…

…

…

YES NO NO NO NO
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The Class NP
• An Non-deterministic Turing Machine (NTM)  on input  returns 

“yes” iff some execution of  halts in “yes” state.


• Informally, we say an NTM solves (decides) a decision problem  
in time  if for each instance  of  with , within  
steps, the NTM correctly returns “yes” or “no”.


‣ i.e., the height of the computation tree for  is no longer than 
.


• NP is the set of decision problems each of which can be decides 
by some NTM within polynomial time.


• NP means “non-deterministic polynomial time.”

M x
M(x)

𝒫
f(n) I 𝒫 | I | = n f(n)

I
f(n)

…

…

…

YES NO NO NO NO
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The Class NP, Take Two
• Let algorithm  is a “certifier” or “verifier” for problem  if for every 

instance ,   is a YES-instance iff there exists a string  such that  = yes. 

‣ Such string  is called a “certificate” or “witness” or “proof”


• Set of decision problems for which there exists a poly-time certifier.


‣ If  is a YES-instance, then there exists  such that such that  = yes.


‣ If  is a NO-instance, then for all ,  = no.


‣ Note: the certificate  should have length polynomial in size of .

C(I, t) 𝒫
I I t C(I, t)

t

I t C(I, t)

I t C(I, t)

t I
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The Class NP, Take Two
• Given a Boolean formula  in CNF, is  satisfiable?


‣ Example: 


‣ A certificate: 


- , , , 


‣ Certifier:


- Sequentially evaluate each clause by assigning values (from the certificate) 
to each variable in that clause. If the values of all clauses are evaluated to be 
truth then return 1, otherwise return 0. (poly-time)

ϕ ϕ

ϕ = (x1 ∨ x2) ∧ (x3 ∨ x1) ∧ (x2 ∨ x1 ∨ x2) ∧ (x4)

x1 = true x2 = true x3 = true x4 = true
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The Class NP, Take Two
• Theorem: NP equals the set of decision problems for which there exists a poly-time 

certifier.


• Proof:


‣  Suppose  is a polynomial and  is decided by a NTM  that runs in 
time . For every YES-instance  for ,  there must be a sequence of 
nondeterministic choices (i.e., a path in the computation tree) that makes  return 
YES on input . We can use this sequence as a certificate for . This certificate has 
length  and can be verified in polynomial time by a deterministic machine, 
which simulates the action of  using these nondeterministic choices and verifies that 
it would have been YES after using these nondeterministic choices. Thus, we have: 

⟹ p : ℕ → ℕ 𝒫 N
p(n) I 𝒫

N
I I

p( | I | )
N

the set of decision problems for which there exists a poly-time certifier ⊆ NP
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The Class NP, Take Two
• Theorem: NP equals the set of decision problems for which there exists a poly-time 

certifier.


• Proof:


‣  If for a decision problem  which has a poly-time certifier , then we describe 
a polynomial-time NTM  that decides . On input , it uses the ability to make 
nondeterministic choices to write down a string  of length  (the length of 
each path is at most , each path can be regarded as a candidate proof of ). 
Then it runs the deterministic verifier  to verify that  is a valid certificate for , and if 
so, return true. Clearly,  returns true on  if and only if a valid certificate exists for . 
Thus, we have:

. 

⟸ 𝒫 V
N 𝒫 I

u p( | I | )
p( | I | ) I

V u I
N I I

NP ⊆ the set of decision problems for which there exists a poly-time certifier
NP is the set of decision problems that  

“yes” instances have short proofs that are efficiently verifiable
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P ⊆ NP
• P is the set of decision problems that have polynomially bounded 

algorithms.


• P is the set of decision problems that can be decided by (deterministic) TM 
within polynomial time.


• NP is the set of decision problems for which there exists a poly-time certifier.


• NP is the set of decision problems that can be decided by NTM within 
polynomial time.


• Any deterministic-algorithm is also a special non-deterministic algorithm, 
any TM is also a special NTM.
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The big question P ≠ NP
• Most people believe .

• Informally, NTM and non-deterministic algorithm allows exponential “trials” within 
polynomial time.


• P is the set of decision problems efficiently solvable.


• NP is the set of decision problems efficiently verifiable.

P ≠ NP

Solving a problem should be harder than verifying an answer?

Yet we haven't found any , while 𝒫 ∈ NP 𝒫 ∉ P

…

…

…
YES NO NO NO NO
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If P ≠ NP

🤔 undecidable

computational 
difficulty of 

decision problems

P

decidable

NP
P

NP
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NP completeness
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The hardest among the hard ones

• NP-Complete (NPC) problems are the hardest ones in NP.


• A decision problem  is NPC if:


‣ The problem  is in NP.


‣ If we have an algorithm for , then all problems in NP can 
be solved with limited extra work.

𝒫

𝒫

𝒫

NP

P

NPC

C
om

pl
ex

ity
  

(if
 

)
P

≠
N

P
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Reduction

• If we have an algorithm for , and can convert an instance of  to an instance 
of , then we effectively have an algorithm for  already!


• Example: shortest distances in unit-length graphs via BFS

𝒫 𝒬
𝒫 𝒬

  Algorithm for           𝒬

T Algorithm for 𝒫 T′ 

y = T(x)

(input for )𝒫 answer for  𝒬(x)
input for  𝒬

x transfer output
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Polynomial Reduction
• Define function : input of decision problem   input of decision problem .

•  is a polynomial reduction from  to  if


‣  can be computed within polynomial time (w.r.t. input length).

‣ Input  is a “yes” input for  iff  is a “yes” input for .

T 𝒬 → 𝒫

T 𝒬 𝒫

T

x 𝒬 T(x) 𝒫

  Algorithm for           𝒬

T Algorithm for 𝒫 T′ 

y = T(x)

(input for )𝒫
answer for  𝒬(x)

input for  𝒬
x

‣  is polynomially reducible to :  


‣  is at least as hard as .

𝒬 𝒫 𝒬 ≤P 𝒫

𝒫 𝒬

no

yes

no

yes

𝒬 𝒫
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The hardest among the hard ones

• NP-Complete (NPC) problems are the hardest ones in NP.


• A decision problem  is NPC if:


‣ The problem  is in NP.


‣ If we have an algorithm for , then all problems in NP can 
be solved with limited extra work.

𝒫

𝒫

𝒫

NP

P

NPC

C
om

pl
ex

ity
  

(if
 

)
P

≠
N

P

‣ For every problem  in NP, it is polynomially reducible to .𝒬 𝒫



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

NPC and NP-hard

• A decision problem  is NP-hard if:


‣ For every problem  in NP, it is 
polynomially reducible to .


• NP-hard problems are the ones that are “at 
least as hard as the hardest problems in 
NP”.


• A decision problem  is NPC if it is both 
NP and NP-hard

𝒫

𝒬
𝒫

𝒫
P ≠ NP P = NP

NP P = NP = NPC

P C
om

pl
ex

ity
 

NPC

NP-hard NP-hard
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Prove a decision problem is NPC

• How to prove a decision problem is NPC?


‣ Show the problem is in NP.


‣ Show every  is polynomially reducible to the problem.𝒬 ∈ NP

🤔
Infinity!
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SAT: the First NPC Problem

• SAT: Given a Boolean formula  in CNF, is  satisfiable?


‣ Example: 



• The Cook-Levin Theorem: SAT is NP-Complete.


‣ [Western world] Stephen Cook, 1971.


‣ [USSR] Leonid Levin, 1973.

ϕ ϕ

ϕ = (x1 ∨ x2) ∧ (x3 ∨ x1) ∧ (x2 ∨ x1 ∨ x2) ∧ (x4)

Stephen Cook Leonid Levin
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And it all starts here…
• Once we find the first NPC problem, finding other NPC problems will be much 

easier:


‣ Show the candidate .


‣ Show SAT (or other NPC problem) is polynomially reducible to.

P ∈ NP  Beware of the direction 
of reduction!

• Leveraging the Cook-Levin Theorem, Richard Karp lists 21 NPC 
problems, in the year of 1972.


• More NPC problems are later found… (e.g., problems in the book 
[Garey & Johnson])

Richard Karp
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Saving your job…

“I can’t find an efficient algorithm, I 
guess I’m just too dumb.”

“I can’t find an efficient algorithm, because 
no such algorithm is possible!”

“I can’t find an efficient algorithm, but 
neither can all these famous people.”

when you don’t know 
complexity theory 

when you have a lower bound when you find it is NP-Complete
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3-SAT is NPC
• 3-SAT: given a Boolean formula  in CNF in which each clause has exactly three distinct literals, 

is  satisfiable?


‣ Example: 


• The easy part: 3-SAT is in NP.


‣ Any valid truth assignment can be a certificate.


‣ So “yes” instances can be verified in polynomial time.


• The more challenging part: 3-SAT is NP-hard.


‣ Reduce 3-SAT to SAT? (Show 3-SAT  SAT?)

ϕ
ϕ

ϕ = (x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4 ∨ x1) ∧ (x1 ∨ x1 ∨ x2)

≤P

‣ Reduce SAT to 3-SAT. (Show SAT  3-SAT.)≤P
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3-SAT is NP-hard

• Reduce SAT to 3-SAT. (Show SAT  3-SAT.)


• Convert an instance  of SAT to an instance  of 3-SAT:


‣ Conversion can be done in polynomial time (w.r.t. ).


‣  is satisfiable iff  is satisfiable.

≤P

ϕ ϕ′ 

|ϕ |

ϕ ϕ′ 
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3-SAT is NP-hard
• Convert each clause  of  in the following way:


‣ , let 



‣ , let 


‣ , simply let 


‣ , where , let 

C ϕ

C = (z1)
C′ = (x1 ∨ x2 ∨ z1) ∧ (x1 ∨ x2 ∨ z1) ∧ (x1 ∨ x2 ∨ z1) ∧ (x1 ∨ x2 ∨ z1)

C = (z1 ∨ z2) C′ = (x1 ∨ z1 ∨ z2) ∧ (x1 ∨ z1 ∨ z1)

C = (z1 ∨ z2 ∨ z3) C′ = C

C = (z1 ∨ z2 ∨ . . . ∨ zk) k > 3
C′ = (z1 ∨ z2 ∨ x1) ∧ (x1 ∨ z3 ∨ x2) ∧ (x2 ∨ z4 ∨ x3) ∧ . . .

∧ (xk−4 ∨ zk−2 ∨ xk−3) ∧ (xk−3 ∨ zk−1 ∨ xk)
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Clique is NPC
• Clique: Given , does graph  contain clique of size ?


• The easy part: Clique is in NP.


‣ Any  vertices in a clique can be a certificate.


‣ So “yes” instances can be verified in polynomial time.


• The more challenging part: Clique is NP-hard.


‣ Show 3-SAT  Clique.

(G, k) G k

k

≤P

The vertices connected by blue edges 
(pairwise adjacent) are 4-clique


There are 6 1-cliques (all these vertices)

There are 9 2-cliques  (all these edges)


There are 4 3-cliques (triangles in the 4-clique)
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Clique is NP-hard
• Show 3-SAT  Clique


‣ Given an instance  of 3-SAT, convert it to an instance  of Clique within polynomial 
time.


‣ Answer for  of 3-SAT is YES iff answer for  of Clique is YES.


• Conversion procedure:


‣ Let  be the number of clauses in .


‣ For each clause  of  create three nodes . 

‣ Connect two nodes  and  iff: , and  and  are not literals negating each other.

≤P

ϕ (G, k)

ϕ (G, k)

k ϕ

Ci ϕ vi,1, vi,2, vi,3

vi,j vi′ ,j′ 
i ≠ i′ vi,j vi′ ,j′ 
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Clique is NP-hard

• 


‣  If  is satisfiable, in each clause at least 
one literal will be satisfied. Nodes correspond to 
these  literals will be a clique.


‣ If there is a  clique in the graph, this clique 
will contain one node from each clause. These 
nodes correspond to non-conflicting literals, 
implying a satisfying assignment.

ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

⟹ ϕ

k

⟸ k

x1 x2 x3

x1

x2

x3

x1

x2

x3
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Further reading

• [CLRS] Ch.34 (34.1-34.5)

Refer to [Sipser] and [Arora & Barak] for 
more about computa=onal complexity

Refer to [Garey & Johnson] for 
more NP-completeness problems


