
智能软件与⼯程学院
School of Intelligent Software and Engineering

计算复杂性
computational complexity

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne.Thanks for their supports!

钮鑫涛
Nanjing University

2023 Fall

智能软件与⼯程学院
School of Intelligent Software and Engineering

Model for Computation—Turing Machine
• An infinite tape divided into cells.

• A head that can read or write symbols on the tape, and move the tape left or right one cell at a
time.

• A state register storing current state of the machine, among finitely many states.

• A finite table of instructions:

‣ Given current state and current read symbol:

- Either erase or write a symbol;

- Move the head (left, right, or remain stationary);

- Stay the same state or change to a new state.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Decision Problem
• Decision problem: problems that expect a YES or NO answer.

‣ An instance of decision problem conceptually contains two parts:

- Instance description;

- The question itself.

‣ For such problems, we can split all possible instances into two categories: YES-instances
(whose correct answer is YES) and No-instances (whose correct answer is NO).

• Example:

‣ Given a graph , a pair of nodes , an integer , is every path between of length
at least ?

‣ Given a multiset , is there a way to partition into two subsets of equal sum?

G (u, v) k (u, v)
k

S S

智能软件与⼯程学院
School of Intelligent Software and Engineering

Optimization vs Decision
• In an optimization problem, among all feasible solutions, we find one that

maximizes (or minimizes) a given objective.

‣ Example: Given a graph , a pair of nodes , what is the length of the
shortest path between ?

• If we have an efficient algorithm for a decision problem, then we can usually
solve the corresponding optimization problem efficiently, and vice versa.

‣ Example: Given a graph , a pair of nodes , an integer , is every
path between of length at least ?

‣ Another example: chromatic number vs -colorable.

G (u, v)
(u, v)

G (u, v) k
(u, v) k

k

智能软件与⼯程学院
School of Intelligent Software and Engineering

Computability

• For each decision problem, there exists a TM to decide it?

‣ Informally, we say a TM solves (decides) a decision problem if for each
instance of the problem, within finite steps, the TM correctly outputs “yes” or
“no” and then halts.

‣ No! E.g., The halting problem.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Problems can be solved in practice

• For these computable problems, can all of them be solved efficiently in
practice?

• For a given decision problem, can TM decide it quickly?

🤔 undecidable

computational 
difficulty of 

decision problems

智能软件与⼯程学院
School of Intelligent Software and Engineering

Problems can be solved in practice
• Which problems will we be able to solve in practice?

‣ A working definition. Those with poly-time algorithms.

von Neumann
(1953)

Gödel
(1956)

Edmonds
(1965)

Rabin
(1966)

Cobham
(1964)

Nash
(1955)

In a 1956 letter, Göedel asked

von Neumann about the

computational complexity of an

NP complete problem

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Class P
• Consider a decision problem , let be an instance of .

• Let denote the length of under, say, binary encoding.

• An algorithm for is polynomially bounded, if the runtime of is for all .

• P is the set of decision problems each of which has a polynomially bounded algorithm.

• P is the set of decision problems each of which can be decided by some TM within
polynomial time.

• Most (but not all) problems we have studied so far are in P.

𝒫 I 𝒫

| I | I

𝒜 𝒫 𝒜 (| I |)O(1) I

智能软件与⼯程学院
School of Intelligent Software and Engineering

Some notes on P
• P contains the set of so-called tractable problems.

• So problems with time algorithms also tractable?

‣ Being in P doesn’t mean a problem has efficient algorithms.

• Nonetheless:

‣ Problems not in P are definitely expensive to solve.

‣ Problems in P have “closure properties” for algorithm composition.

‣ The property of being in P is independent of computation models.

Θ(n100)

智能软件与⼯程学院
School of Intelligent Software and Engineering

A note on size of input
• Recall decision problem if there exists an algorithm that can solve in

 time for every instance of .

• This algorithm has poly- runtime, so Primes P ?

• No! The size of the input is with binary encoding.

𝒫 ∈ P 𝒫
(| I |)O(1) I 𝒫

n ∈

O(log n)

IsPrime(n):
for i := 2 to n - 1
if n%i = 0
return False

return True

Normally we assume the encoding:
• of an integer is polynomially related to its binary

representation
• of a finite set is polynomially related to its encoding as

a list of its elements, enclosed in braces and
separated by commas.

• Indeed Primes P, but proved with a different algorithm
(AKS primality test by Agrawal, Kayal, and Saxena)

∈

智能软件与⼯程学院
School of Intelligent Software and Engineering

Subset Sum
• Problem: Given an array of positive integers, can we find a

subset in that sums to given integer ?

• Step 1: Characterize the structure of solution.

‣ If there is a solution , either is in it or not.

• Step 2: Recursively define the value of an optimal solution.

‣ Let = true iff instance “ ” has a solution.

‣

• Step 3: Compute the value of an optimal solution (Bottom-Up).

‣ Build an 2D array

‣ Evaluation order: bottom row to top row; left to right within each row.

X[1⋯n] n
X T

S X[1]

ss(i, t) X[i . . . n], t

ss(i, t) =

true if t = 0
ss(i + 1,t) if t < X[i]
false if i > n
ss(i + 1,t) ∨ ss(i + 1,t − X[i]) otherwise

ss[1...n,0...T]

SubsetSumDP(X,T):
ss[n, 0] := True
for t := 1 to T

ss[n, t] := (X[n] = t) ? True : False
for i := n - 1 downto 1

ss[i, 0] := True
for t :=1 to X[i] - 1

ss[i, t] := ss[i + 1, t]
for t := X[i] to T

ss[i, t] := Or(ss[i + 1, t], ss[i + 1, t - X[i]])
return ss[1,T]

Runtime is
O(nT)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Subset Sum

• Problem: Given an array of positive integers, can we find a
subset in that sums to given integer ?

• Simple solution: recursively enumerates all subsets, leading to an
algorithm costing time.

• Dynamic programming: costing time.

• Both algorithms are not polynomial time algorithms!

X[1⋯n] n
X T

2n

O(2n)

O(nT)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Problems can be solved in practice

🤔 undecidable

computational 
difficulty of 

decision problems

P

decidable

P

智能软件与⼯程学院
School of Intelligent Software and Engineering

Non-deterministic Turing Machine
• An infinite tape divided into cells.

• A head that can read or write symbols on the tape, and move the
tape left or right one cell at a time.

• A state register storing current state of the machine, among finitely
many states.

• A finite table of instructions:

‣ Given current state and current read symbol, there are many
actions can be chosen — Nondeterminism!

‣ Nondeterminism can be viewed as a kind of parallel computation
wherein multiple independent processes or threads can be
running concurrently.

…

…

…

YES NO NO NO NO

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Class NP
• An Non-deterministic Turing Machine (NTM) on input returns

“yes” iff some execution of halts in “yes” state.

• Informally, we say an NTM solves (decides) a decision problem
in time if for each instance of with , within
steps, the NTM correctly returns “yes” or “no”.

‣ i.e., the height of the computation tree for is no longer than
.

• NP is the set of decision problems each of which can be decides
by some NTM within polynomial time.

• NP means “non-deterministic polynomial time.”

M x
M(x)

𝒫
f(n) I 𝒫 | I | = n f(n)

I
f(n)

…

…

…

YES NO NO NO NO

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Class NP, Take Two
• Let algorithm is a “certifier” or “verifier” for problem if for every

instance , is a YES-instance iff there exists a string such that = yes.

‣ Such string is called a “certificate” or “witness” or “proof”

• Set of decision problems for which there exists a poly-time certifier.

‣ If is a YES-instance, then there exists such that such that = yes.

‣ If is a NO-instance, then for all , = no.

‣ Note: the certificate should have length polynomial in size of .

C(I, t) 𝒫
I I t C(I, t)

t

I t C(I, t)

I t C(I, t)

t I

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Class NP, Take Two
• Given a Boolean formula in CNF, is satisfiable?

‣ Example:

‣ A certificate:

- , , ,

‣ Certifier:

- Sequentially evaluate each clause by assigning values (from the certificate)
to each variable in that clause. If the values of all clauses are evaluated to be
truth then return 1, otherwise return 0. (poly-time)

ϕ ϕ

ϕ = (x1 ∨ x2) ∧ (x3 ∨ x1) ∧ (x2 ∨ x1 ∨ x2) ∧ (x4)

x1 = true x2 = true x3 = true x4 = true

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Class NP, Take Two
• Theorem: NP equals the set of decision problems for which there exists a poly-time

certifier.

• Proof:

‣ Suppose is a polynomial and is decided by a NTM that runs in
time . For every YES-instance for , there must be a sequence of
nondeterministic choices (i.e., a path in the computation tree) that makes return
YES on input . We can use this sequence as a certificate for . This certificate has
length and can be verified in polynomial time by a deterministic machine,
which simulates the action of using these nondeterministic choices and verifies that
it would have been YES after using these nondeterministic choices. Thus, we have:

⟹ p : ℕ → ℕ 𝒫 N
p(n) I 𝒫

N
I I

p(| I |)
N

the set of decision problems for which there exists a poly-time certifier ⊆ NP

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Class NP, Take Two
• Theorem: NP equals the set of decision problems for which there exists a poly-time

certifier.

• Proof:

‣ If for a decision problem which has a poly-time certifier , then we describe
a polynomial-time NTM that decides . On input , it uses the ability to make
nondeterministic choices to write down a string of length (the length of
each path is at most , each path can be regarded as a candidate proof of).
Then it runs the deterministic verifier to verify that is a valid certificate for , and if
so, return true. Clearly, returns true on if and only if a valid certificate exists for .
Thus, we have:

.

⟸ 𝒫 V
N 𝒫 I

u p(| I |)
p(| I |) I

V u I
N I I

NP ⊆ the set of decision problems for which there exists a poly-time certifier
NP is the set of decision problems that

“yes” instances have short proofs that are efficiently verifiable

智能软件与⼯程学院
School of Intelligent Software and Engineering

P ⊆ NP
• P is the set of decision problems that have polynomially bounded

algorithms.

• P is the set of decision problems that can be decided by (deterministic) TM
within polynomial time.

• NP is the set of decision problems for which there exists a poly-time certifier.

• NP is the set of decision problems that can be decided by NTM within
polynomial time.

• Any deterministic-algorithm is also a special non-deterministic algorithm,
any TM is also a special NTM.

智能软件与⼯程学院
School of Intelligent Software and Engineering

The big question P ≠ NP
• Most people believe .

• Informally, NTM and non-deterministic algorithm allows exponential “trials” within
polynomial time.

• P is the set of decision problems efficiently solvable.

• NP is the set of decision problems efficiently verifiable.

P ≠ NP

Solving a problem should be harder than verifying an answer?

Yet we haven't found any , while 𝒫 ∈ NP 𝒫 ∉ P

…

…

…
YES NO NO NO NO

智能软件与⼯程学院
School of Intelligent Software and Engineering

If P ≠ NP

🤔 undecidable

computational 
difficulty of 

decision problems

P

decidable

NP
P

NP

智能软件与⼯程学院
School of Intelligent Software and Engineering

NP completeness

智能软件与⼯程学院
School of Intelligent Software and Engineering

The hardest among the hard ones

• NP-Complete (NPC) problems are the hardest ones in NP.

• A decision problem is NPC if:

‣ The problem is in NP.

‣ If we have an algorithm for , then all problems in NP can
be solved with limited extra work.

𝒫

𝒫

𝒫

NP

P

NPC

C
om

pl
ex

ity

(if

)
P

≠
N

P

智能软件与⼯程学院
School of Intelligent Software and Engineering

Reduction

• If we have an algorithm for , and can convert an instance of to an instance
of , then we effectively have an algorithm for already!

• Example: shortest distances in unit-length graphs via BFS

𝒫 𝒬
𝒫 𝒬

 Algorithm for 𝒬

T Algorithm for 𝒫 T′

y = T(x)

(input for)𝒫 answer for 𝒬(x)
input for 𝒬

x transfer output

智能软件与⼯程学院
School of Intelligent Software and Engineering

Polynomial Reduction
• Define function : input of decision problem input of decision problem .

• is a polynomial reduction from to if

‣ can be computed within polynomial time (w.r.t. input length).

‣ Input is a “yes” input for iff is a “yes” input for .

T 𝒬 → 𝒫

T 𝒬 𝒫

T

x 𝒬 T(x) 𝒫

 Algorithm for 𝒬

T Algorithm for 𝒫 T′

y = T(x)

(input for)𝒫
answer for 𝒬(x)

input for 𝒬
x

‣ is polynomially reducible to :

‣ is at least as hard as .

𝒬 𝒫 𝒬 ≤P 𝒫

𝒫 𝒬

no

yes

no

yes

𝒬 𝒫

智能软件与⼯程学院
School of Intelligent Software and Engineering

The hardest among the hard ones

• NP-Complete (NPC) problems are the hardest ones in NP.

• A decision problem is NPC if:

‣ The problem is in NP.

‣ If we have an algorithm for , then all problems in NP can
be solved with limited extra work.

𝒫

𝒫

𝒫

NP

P

NPC

C
om

pl
ex

ity

(if

)
P

≠
N

P

‣ For every problem in NP, it is polynomially reducible to .𝒬 𝒫

智能软件与⼯程学院
School of Intelligent Software and Engineering

NPC and NP-hard

• A decision problem is NP-hard if:

‣ For every problem in NP, it is
polynomially reducible to .

• NP-hard problems are the ones that are “at
least as hard as the hardest problems in
NP”.

• A decision problem is NPC if it is both
NP and NP-hard

𝒫

𝒬
𝒫

𝒫
P ≠ NP P = NP

NP P = NP = NPC

P C
om

pl
ex

ity

NPC

NP-hard NP-hard

智能软件与⼯程学院
School of Intelligent Software and Engineering

Prove a decision problem is NPC

• How to prove a decision problem is NPC?

‣ Show the problem is in NP.

‣ Show every is polynomially reducible to the problem.𝒬 ∈ NP

🤔
Infinity!

智能软件与⼯程学院
School of Intelligent Software and Engineering

SAT: the First NPC Problem

• SAT: Given a Boolean formula in CNF, is satisfiable?

‣ Example:

• The Cook-Levin Theorem: SAT is NP-Complete.

‣ [Western world] Stephen Cook, 1971.

‣ [USSR] Leonid Levin, 1973.

ϕ ϕ

ϕ = (x1 ∨ x2) ∧ (x3 ∨ x1) ∧ (x2 ∨ x1 ∨ x2) ∧ (x4)

Stephen Cook Leonid Levin

智能软件与⼯程学院
School of Intelligent Software and Engineering

And it all starts here…
• Once we find the first NPC problem, finding other NPC problems will be much

easier:

‣ Show the candidate .

‣ Show SAT (or other NPC problem) is polynomially reducible to.

P ∈ NP Beware of the direction
of reduction!

• Leveraging the Cook-Levin Theorem, Richard Karp lists 21 NPC
problems, in the year of 1972.

• More NPC problems are later found… (e.g., problems in the book
[Garey & Johnson])

Richard Karp

智能软件与⼯程学院
School of Intelligent Software and Engineering

Saving your job…

“I can’t find an efficient algorithm, I
guess I’m just too dumb.”

“I can’t find an efficient algorithm, because
no such algorithm is possible!”

“I can’t find an efficient algorithm, but
neither can all these famous people.”

when you don’t know
complexity theory

when you have a lower bound when you find it is NP-Complete

智能软件与⼯程学院
School of Intelligent Software and Engineering

3-SAT is NPC
• 3-SAT: given a Boolean formula in CNF in which each clause has exactly three distinct literals,

is satisfiable?

‣ Example:

• The easy part: 3-SAT is in NP.

‣ Any valid truth assignment can be a certificate.

‣ So “yes” instances can be verified in polynomial time.

• The more challenging part: 3-SAT is NP-hard.

‣ Reduce 3-SAT to SAT? (Show 3-SAT SAT?)

ϕ
ϕ

ϕ = (x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4 ∨ x1) ∧ (x1 ∨ x1 ∨ x2)

≤P

‣ Reduce SAT to 3-SAT. (Show SAT 3-SAT.)≤P

智能软件与⼯程学院
School of Intelligent Software and Engineering

3-SAT is NP-hard

• Reduce SAT to 3-SAT. (Show SAT 3-SAT.)

• Convert an instance of SAT to an instance of 3-SAT:

‣ Conversion can be done in polynomial time (w.r.t.).

‣ is satisfiable iff is satisfiable.

≤P

ϕ ϕ′

|ϕ |

ϕ ϕ′

智能软件与⼯程学院
School of Intelligent Software and Engineering

3-SAT is NP-hard
• Convert each clause of in the following way:

‣ , let

‣ , let

‣ , simply let

‣ , where , let

C ϕ

C = (z1)
C′ = (x1 ∨ x2 ∨ z1) ∧ (x1 ∨ x2 ∨ z1) ∧ (x1 ∨ x2 ∨ z1) ∧ (x1 ∨ x2 ∨ z1)

C = (z1 ∨ z2) C′ = (x1 ∨ z1 ∨ z2) ∧ (x1 ∨ z1 ∨ z1)

C = (z1 ∨ z2 ∨ z3) C′ = C

C = (z1 ∨ z2 ∨ . . . ∨ zk) k > 3
C′ = (z1 ∨ z2 ∨ x1) ∧ (x1 ∨ z3 ∨ x2) ∧ (x2 ∨ z4 ∨ x3) ∧ . . .

∧ (xk−4 ∨ zk−2 ∨ xk−3) ∧ (xk−3 ∨ zk−1 ∨ xk)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Clique is NPC
• Clique: Given , does graph contain clique of size ?

• The easy part: Clique is in NP.

‣ Any vertices in a clique can be a certificate.

‣ So “yes” instances can be verified in polynomial time.

• The more challenging part: Clique is NP-hard.

‣ Show 3-SAT Clique.

(G, k) G k

k

≤P

The vertices connected by blue edges
(pairwise adjacent) are 4-clique

There are 6 1-cliques (all these vertices)

There are 9 2-cliques (all these edges)

There are 4 3-cliques (triangles in the 4-clique)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Clique is NP-hard
• Show 3-SAT Clique

‣ Given an instance of 3-SAT, convert it to an instance of Clique within polynomial
time.

‣ Answer for of 3-SAT is YES iff answer for of Clique is YES.

• Conversion procedure:

‣ Let be the number of clauses in .

‣ For each clause of create three nodes .

‣ Connect two nodes and iff: , and and are not literals negating each other.

≤P

ϕ (G, k)

ϕ (G, k)

k ϕ

Ci ϕ vi,1, vi,2, vi,3

vi,j vi′ ,j′
i ≠ i′ vi,j vi′ ,j′

智能软件与⼯程学院
School of Intelligent Software and Engineering

Clique is NP-hard

•

‣ If is satisfiable, in each clause at least
one literal will be satisfied. Nodes correspond to
these literals will be a clique.

‣ If there is a clique in the graph, this clique
will contain one node from each clause. These
nodes correspond to non-conflicting literals,
implying a satisfying assignment.

ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

⟹ ϕ

k

⟸ k

x1 x2 x3

x1

x2

x3

x1

x2

x3

智能软件与⼯程学院
School of Intelligent Software and Engineering

Further reading

• [CLRS] Ch.34 (34.1-34.5)

Refer to [Sipser] and [Arora & Barak] for
more about computa=onal complexity

Refer to [Garey & Johnson] for
more NP-completeness problems

