BEERMHES TiEF b

School of Clnte[ﬁ’gent Soﬁ*ware and fngmeermg

HEZF
Nanjing University
2023 Fall

j/t@ S[LJ@S are mam[y ac{aptec{ﬁom th@ o’ugma[ones S/Ld’l@d by CAQOJOHQ ZAeng anc[./(QVLIQ v 5 _."“

| meERp S TR
of

> 43' School Qnt‘e[ﬁgent Sofrware and fngmeermg

What is a “data structure”?

* A data structure is a way to store and organize data in order to facilitate
access and modifications.

> E.g., array, linked list.

» Different types of data usually demand different data structures.

* One type of data could be represented by different data structures.

Computer

Execute an algorithm
<]l 9 1 3

Computer
Execute an algorithm

=

0 &btk T 2 R4 e
PV, SEREGESITREF xR
7‘5 4435 School of an[ﬁgent Sofrware and fngineering

Abstract Data Type (ADT)

* A data structure usually provides an interface.

» Often, the interface is also called an abstract data type (ADT).

> An ADT specifies what a data structure “can do” and “should do”, but not “how to do”
them.

« ADT: List, which supports get, set, add, remove, ...
 Data structure: ArraylList, LinkedList,

* An ADT is a logical description, and a data structure is a concrete implementation.
> Similar to .h file and .cpp file.

> Different data structures can implement same ADT.

TEFr

The Queue ADT

 The Queue ADT represents a collection of items to which we
can add items and remove the next item.

» Add (x) : add X to the queue.
» Remove (): remove the next item y from queue, return .

 The queuing discipline decides which item to be removed.

FIFO Queue

The Queue ADT represents a collection of items to which we can add items and remove the
next item.

Add(x): add x to the queue.

Remove(): remove the next item y from queue, returny.

* The first-in-first-out (FIFO) queuing discipline:
items are removed Iin the same order they are added.

 FIFO Queue:

» Add (x) or Enqueue (x) : add x to the end of the queue

» Remove () orDequeue () :remove the first item from the queue

3y
OD&bkhk T 30 R4 e
| BEERS IREF R
4‘35 School of Qm—e[ﬁ'gent Soﬁ'ware and Engineem’ng

Enqueue (a)

Enqueue (b)

b

Dequeue ()

Enqueue (£f)

f

T C el 3 et et B

LIFO Queue: Stack

The Queue ADT represents a collection of items to which we can add items and remove the
next item.

Add(x): add x to the queue.

Remove(): remove the next item y from queue, return .

* The last-in-first-out (LIFO) queuing discipline: Pop()
the most recently added item is the next one removed

« Stack (LIFO Queue);

» Add (x) or Push (x) : add x to the top of the stack

» Remove () or Pop (): remove the item a the top of the stack

[EF R

The Deque ADT

« The Deque (Double-Ended Queue) ADT represents a sequence of items
with a front and a back, which supports the following operations:

» AddFirst (x): add x to the front of the queue

» AddLast (x): add x to the back of the queue.
» RemoveFirst ():remove the first item y from queue, returny.

» RemoveLast (): remove the last item y from queue, return y.

The Deque ADT

* A Deque is a generalization of both the FIFO Queue and LIFO Queue

(Stack)

» Deque can implement FIFO Queue:

Dequeue () IS RemoveFirst ()

» Deque can implement Stack (LIFO Queue): Push (x) is AddLas

Pop ()

IS Removelast ()

sngueue (x) IsAddLast (x),

=

O&abthk T FO 4=
PV, SERESIREFR
Z"f Qg School of an[ﬁgent Soﬁ'ware and angineering

The List ADT

 AList is asequence of items X, X,, ..., X,, which supports the following operations:
» Size ():return n, the length of the list

> Get (1):return Xx;
» Set(i,x):setx;, =X

» Add(i,x): setx;) =x;forn 2] 21, setx; = x, increase list size by 1

» Remove (i): setx; =X forn — 1 > j > i, decrease list size by 1

1 2 3 4
2l c o d

5 n

K

The List ADT

e List can implement Duque:

» AddFirst(x) —> Add(1l, x)
» AddLast (x) —> Add(Size()+1, x)
» RemovelFirst () —>Remove (1)

» RemovelLast () —>Remove (Size ())

B S TREF R
f tellige igen ftw and E Engineering

Using array to implement List — ArrayList

* The list operations implemented by ArrayList

» Size ():always ®(1)

Add (4, d)

» Get (i):always ©(1) C f ad

Set (3, q)

» Set (i, x):always O(1) . f . 3

+ Add (1, x): O(1)to On) a ¢ f q d

v v
4‘ 4‘
" 4’
’4 -

.- | | Rémove(B)

» Remove (1): O(1) to O(n) " ‘

Queries and updates are fast

Modifications are fast at ‘end”, but slow at “front” or middle".

B S TREF R
f tellige igen ftw and E Engineering

Using array to implement List — ArrayList

* The list operations implemented by ArrayList Q:ls ArrayList good for Stack?
> Size ():always O(1) e A: Yes. (Push and Pop are fast)
» Get (i) :always ®(1) Q:Is ArrayList good for FIFO Queue?
» Set (i, x):always ®(1) * A: No. Why?
> Add (. O(1) to O(n) Q: Is ArrayList good for Deque?
» Remove (1): (1) to O(n) * A: No.

Queries and updates are fast

Modifications are fast at ‘end”, but slow at “front” or middle".

Usmg circular array to implement Deque — ArrayDeque

e ArrayList IS good for Stack, but not FIFO Queue or Deque

'f' ' | | | ' RemoveFi1rst () faeq

- &

RemoveFirst (

Too many operations!

O &btk T F2 R4
| BEERHS TEF6x
g School cf Qntz(figent Soﬁ'ware and fngineering

Using circular array to implement Deque — ArrayDeque

e Maintain head and tail:

» AddFirst and RemoveFirst: move head.

» AddLast and Removel.ast: move tail.

f i a e g
» Use modular arithmetic to “wrap around” at
both ends.

Addl ast(x): AddFirst(x):

tail := (tail % N)+1 head := (head =1) ? N: (head - 1)

Altail] :=x Alhead] = x
Removel ast(): RemoveFirsto:

tail :=(tail=1) ? N : (tail - 1) head = (head % N) + 1

All of them are O(1)

MUsmg cwcular array to implement Deque — ArrayDeque

e Maintain head and tail:

» AddFirst and RemoveFirst: move head.

» AddLast and Removel.ast: move tail.

> Use modular arithmetic to “wrap around” at

both ends.
Addl astx): AddFirstx):
tail := (tail % N)+1 head = (head =1) 7?7 N : (head - 1)
Altail] :==x Alhead] = x
Removel astQ: RemoveFirsto:
tail == (tail=1) ? N: (tail - 1) head = (head % N) + 1

All of them are O(1)

e Queries and updates are fast

e NModifications are fast at ‘front” and
epds e mead and tail) bl
still slow at "middle™.

® ArrayDeque IS good for Stack,
FIFO Queue, and Deque; but can
be siIow. 1or same List operations.

e Capacity of array Is also a problem!

When the array is full?

* Resizing arrays

> Create a new array of greater size and copy the elements of the original
array into it.

> abandon the old array and use the new one In its place.

 The question is, how large”?

When the array is full?

e Suppose we have array with initial capacity being 1, then insert N items

> Resize it to have one additional cell every time? —> requiring
1+243+...N—1 ~ N’ copy operations.

> Resize the array by doubling its size every time?

- For simplicity, let N = 2% for some constant k. —> requiring
1 4+24+4+...+281=2k_1 ~N

> We could of course do better if we multiplied the size of the array by an even
larger value, but then there would likely be a lot more unused cells in the
array on average (consider the case that resizing happens infrequently).

Starting from an empty data structure, average
running time per operation over a worst-case
sequence of operations.

Thus, If resizing by one more cell each time, the

amortized complexity is ®(n) for each operation.

If resizing by doubling space each time, the

amortized complexity is ®(1) for each operation.

We well learn it later...

What about worst?

Amortized analysis

| w‘ ‘;"\(

Introduced by Robert Tarjan at 1985

3

0 &btk T £O R4 1S
PV.| SEREHS TiEFbr
7‘5 4435 School of Qnt@[ﬁgent Sofrware and Engineering

When to shrink array?

 When pop() each time, we shrink the array by 1 less cell?
 When the array is one-half full, we shrink the array to the halve size?

> Causing “Thrashing” problem!!! Since, if now we add just one element, we
need to copy the size, and then pop one element, we should shrink it
pback the halve size —> When pushes and pops come with relatively equal
frequency, it will be too expensive!

S0 when popping, we only resize down when the array is 1/4th full!

* After all, by doing this we ensure that the array holding the contents of our
stack will ALWAYS be between 25% and 100% full!

i %ﬁEET\TfIZ'—i:_?FE%BE
¢J School of Mtelligent Software and Engineering

Using Linked list to implement List — LinkedList

* The list operations implemented by LinkedList
» Size ():always O(1)
» Get (1): 0O(1) to O(n)
> Set (i,x):0(1) to O(n)
» Add (: O(1) to O(n)

» Remove (1): ®(1) to ®(n)

Traversing backwards from tail is not efficient!

Q: Is LinkedList good for Stack?
 A:Yes. (Push and Pop at head are fast)

Q:ls ArrayList good for FIFO Queue?

 A:Yes. (Enqueue and Dequeue are fast)
Q: Is ArrayList good for Deque?

 A: No.(RemoveLlast can be slow.)

U ng doubly-Linked list to implement List — DLinkedList

* The list operations implemented by DLinkedList

> Size ():always O(1) }EEE

> Get (1):0(1) to O(n)

Not good for traversing backwards

> Set (i,x):0(]) to O(n)

» Add (: (1) to O(n)

» Remove (1): ®(1) to O(n)

DLinkedList is good for Stack, FIFO Queue, and Deque; but can be slow for some List operations.

EEERRFS _ji%ﬁn

§sﬁ(f (Tigent Software and Engineering

stmg doubly-Linked list to implement List — DLinkedList

* The list operations implemented by DLinkedList

» Size ():always O(1)

> Get (1):0(1) to O(n)

> Set (1,x):0(1)to O(n) A ddFi it AddFirst):
mext = he-a] x.next .= head

> Add (: O(1) to O(n) .y 'r_ev . Whatif head==NULL? if peqd |= NULL
hoa d.l?— . - g head.prev := x

> Remove (®(1) to ®(n) x.prev .= NULL head :=x

x.prev .= NULL

What about tai1?

% SRS T2

¢/ School of Intelligent Software and Engine

Gsmg doubly-Linked list to implement List — DLinkedList

* The list operations implemented by DLinkedList

» Size ():always ®(1)
» Get (1): O(1) to O(n)
» Set (i,x):0(]) to ®(n)

> Add (: O(1) to O(n)

» Remove (i): O(1) to O(n)

Can we connect them?

i, 1 %‘ﬁ*‘é‘fFM’—“F'i__iFE%Bn
) School of melligent Software and Engine

Usmg doubly-Linked list to implement List — DLinkedList

* A circular, doubly linked list with a sentinel: |
Sentinel

> A sentinel node is a dummy node used as an ' AddFirst (a)

alternative over using NULL as the path terminator

> The sentinel's next points to the first node on the Sentinel
list, and its prev points to the last node on the list.

.:AddFirst(c)
> The first node's prev points to the sentinel, as T
does the last node's next.

Sentinel
AddFirstx): RemoveFirst(:
x.next := Sentinel.next Sentinel.next .= Sentinel .next.next RemoveFirst ()
Sentinel.next.prev := x Sentinel .next.prev := Sentinel .next.prev.prev

Sentinel .next := X
x.prev .= Sentinel Sentinel

Using sentinel can marginally increased speed of operations

Summary util now

e Queue ADT: FIFO Queue, Stack (LIFO Queue), Deque
e List ADT: can implement various Queue

* Array based implementations (simple/circular):
» Queries are fast, updates (i.e., Set) are also fast
» Modifications (i.e., Add and Remove) are fast at “start” and “end”, but slow in “middle”
> Capacity can be a problem

* Linked list based implementations (singly/doubly linked):

> Operations (queries, updates, and modifications) are fast at “start” and “end”, but slow in “middle”

> No capacity issue

L Applications of
basic data structures_|

Application of Queue

Bounded-Buffer - Shared-Memory between processes

// shared data //producer process

hil
ArrayDeque buffer while true

while (buffer.head + 1) % buffer.size() = buffer.tail
wait and continue // indicating full
buffer.addLast(produceltem())

//consumer process
while true

while buffer.head = buffer.tail
wait and continue // indicating empty
consumeltem(buffer.removelFirst())

W | SheS TR

[
&) School of Intelligent Software and Engineerin
& 9 9 9

Application of Queue

Bounded-Buffer - Shared-Memory between processes

tail=N
tail=1 \‘
/1
/

head =1 head =1

Initially, there is no data, head = tail, If we only write, and never read, then

cannot read any data from out. when head = N, the last element of this

buffer cannot write.

tail=1

How about just using one variable, say,

count, to indicates full or empty?

head =2

When one item is consumed, the
producer can write one more cell.

Application of Stack

Balancing Symbols

 Compiler needs to check whether the parentheses (), brackets [|, and

braces {} are matched.

CheckParen(str):
Stack s

inti =1

if(a > b) {b = c[10];} (ﬁiffo}

while strfi] '= NULL
if strfi]is ‘Cor ‘[or ‘{’
s.push(str[i])
it strfi]is ¢’
if s.empty()

ifla>b) {b =c[10;: IERENE

fa> b)) {b = cf101} TR

it ifa > b) {b = c[10);} INEREE

return s.empty()

| BEERIFS TiEFbx

> =~
> @{5 School (f ﬂnt‘e[ﬁgent Soﬁ’ware and fngmeermg

Application of Stack

Function Calls

 How does a function call work?
« Example:
> Alice: only knows addition.

> Bob: only knows multiplication.

> Question: 100+234+35x45+25

FuncAlice():
sum :=100+234
temp .= FuncBob(35 4)5)
sum += temp

sum += 25
return sum

FuncBob(a.b):
c=a*b
return c

| BEERIFS TiEFbx

> =~
> @{5 School (f ﬂnt‘e[ﬁgent Soﬁ’ware and fngmeermg

Application of Stack

Function Calls

 How does a function call work?
« Example:
> Alice: only knows addition.

> Bob: only knows multiplication.

» Question: 100+234+35x45+25 sum: 334

FuncAlice():
sum :=100+234
temp .= FuncBob(35 4)5)
sum += temp

sum += 25
return sum

FuncBob(a.b):
c=a*b
return c

| BEERIFS TiEFbx

> =~
> @{5 School of ﬂnt‘e[ﬁgent Soﬁ’ware and fngmeermg

Application of Stack

Function Calls

 How does a function call work?
« Example:
> Alice: only knows addition.

> Bob: only knows multiplication.

> Question: 100+234+35x45+25

FuncAlice():

sum :=100+234

temp := FuncBob(35 45) g
sum += temp

sum += 25

return sum

FuncBob(a.b):
c=a*b
return c

| BEERIFS TiEFbx

> =~
> @{5 School of ﬂnt‘e[ﬁgent Soﬁ’ware and fngmeermg

Application of Stack

Function Calls

 How does a function call work?
« Example:
> Alice: only knows addition.

> Bob: only knows multiplication.

» Question: 100+234+35x45+25 sum: 334

FuncAlice():
sum :=100+234 b: 35
temp .= FuncBob(35 45) 4 a: 45
sum += temp return address

sum += 25
return sum

FuncBob(a.b):
c=a*b
return c

| BEERIFS TiEFbx

> =~
> @{5 School of ﬂnt‘e[ﬁgent Soﬁ’ware and fngmeermg

Application of Stack

Function Calls

 How does a function call work?
« Example:
> Alice: only knows addition.

> Bob: only knows multiplication.

» Question: 100+234+35x45+25 sum: 334

FuncAlice():

sum :=100+234 b: 35
temp := FuncBob(35 45) e

a: 45
sum += temp return address

sum += 25
return sum

FuncBob(a.b):
c=a*b
return c

Application of Stack

Function Calls

 How does a function call work?
« Example:
> Alice: only knows addition.

> Bob: only knows multiplication.

» Question: 100+234+35x45+25 sum: 334
FuncAlice():

sum :=100+234 b: 35

temp .= FuncBob(35 45) 4 a: 45

sum += temp return address

sum += 25 c: 1575

return sum
FuncBob(a.b):

c=a*b

return c

Application of Stack

Function Calls

* How does a function call work?

« Example:

EAX: 1575
> Alice: only knows addition.

> Bob: only knows multiplication.

» Question: 100+234+35x45+25 sum: 334
FuncAlice():

sum :=100+234 b: 35

temp .= FuncBob(35 45) 4 a: 45

sum += temp return address

sum += 25 c: 1575

return sum
FuncBob(a.b):

c=a*b

return c

Application of Stack

Function Calls

* How does a function call work?

« Example:

EAX: 1575
> Alice: only knows addition.

> Bob: only knows multiplication.

» Question: 100+234+35x45+25 sum: 334

FuncAlice():
sum :=100+234 b: 35
temp .= FuncBob(35 45) 4 a- 45
sum += temp return address

sum += 25
return sum

FuncBob(a.b):
c=a*b
return c

Application of Stack

Function Calls

* How does a function call work?

« Example:

EAX: 1575
> Alice: only knows addition.

> Bob: only knows multiplication.

> Question: 100+234+35x45+25

FuncAlice():

sum :=100+234

temp := FuncBob(35 45) g
sum += temp

sum += 25

return sum

FuncBob(a.b):
c=a*b
return c

Application of Stack

Function Calls

* How does a function call work?

« Example:

EAX: 1575
> Alice: only knows addition.

> Bob: only knows multiplication.

» Question: 100+234+35x45+25 sum: 334

FuncAlice(): temp: 1575

sum :=100+234 b: 35
temp = FuncBob(35 45) g~ a: 45
sum += temp

sum += 25

return sum

FuncBob(a.b):
c=a*b
return c

Application of Stack

Function Calls

* How does a function call work?

« Example:

EAX: 1575
> Alice: only knows addition.

> Bob: only knows multiplication.

> Question: 100+234+35x45+25

FuncAlice(): temp: 1575

sum :=100+234 b: 35
temp := FuncBob(35 A45) a: 45
sum += temp s

sum += 25
return sum

FuncBob(a.b):
c=a*b
return c

Application of Stack

Function Calls

* How does a function call work?

« Example:

EAX: 1575
> Alice: only knows addition.

> Bob: only knows multiplication.

» Question: 100+234+35x45+25 sum: 334

FuncAlice(): temp: 1575
sum :=100+234 b: 35
temp := FuncBob(35 AS) a: 45
sum += temp

sum += 25
return sum

FuncBob(a.b):
c=a*b
return c

| meEE S TR
9 School (f ﬂnt‘e[ﬁ'gent Sofrware and Engineering

* How does a function call work?
« Example:

> Alice: only knows addition.

> Bob: only knows multiplication.

> Question: 100+234+35x45+25

FuncAlice():
sum :=100+234
temp .= FuncBob(35 4)5)
sum += temp

sum += 25
return sum

FuncBob(a.b):
c=a*b
return c

Function Calls

EAX: 1575

sum: 334
temp: 1575

b: 35
a: 45

Application of Stack

Call Stack

Increasing
address

Frame pointer
%ebp

Stack pointer
hesp

+4+4n

+8

+4

Stack “bottom”

Argument n

Argument 1

Return address

Saved %ebp

Saved registers,

local variables,
and
temporaries

Argument
build area

> Earlier frames

> Caller's frame

> Current frame

Stack “top”

Eliminating Recursion

Function calls are implemented via a “call stack” |

Recursion is a specific type of function call

FactRec(val):

if val=1
acc ;=1
else
acc := FactRec(val-1)
res ;= val*acc
return res

class Frame {

h

int val
Int acc
Frame prevFrame

With the help of a stack, recursion

can be replaced by iteration

Factlter(n):

Stack s Get the top
s.push(Frame(n, -1, NULL)) element of the
while !s.empty() stack

frame = s.peek()
if frame.val <=1
frame.acc =1
if frame.acc = -1
res := (frame.val)*(frame.acc)
if frame prevFrame!=NULL
(frame .prevFrame).acc :=res

s.pop()
else

s.push(Frame(frame.val - 1, -1, frame))
return res

=

0 &btk T 2 R4 e
PV, SEREGESITREF xR
7‘5 4435 School of an[ﬁgent Sofrware and fngineering

Eliminating Recursion

* Q: Why recursion can be undesirable?

> A: Recursion can be slow and memory consuming due to the creation
and maintenance of stack frames.

e Q: Why recursion can be desirable?

> A: Recursion can make the code clearer, concise, and intuitive.

Tail recursion

e A function is called tail-recursive if each activation of the function will
make at most one single recursive call, and will return immediately
after that call.

FactRec(n): EucthCDRec(m, n):
if n=1 if n=0
. return m
return 1 ol
else
rem = m % n

e FF T .
b A eeb el L T T L) return EuclidGCDRec(n, rem)

Not immediately!

Tail Recursion

e A function is called tail-recursive if each activation of the function will

make at most one single recursive call, and will return immediately
after that call.

Euclid (m. n): Euclid(6. 4):
return m rem .=9 7o Euchid(4, 2):
else et TT—32=07?
return 2 : ._
rem =m % n rem:= 4 % 2
return Euclid(n, rem) dreturn 2
. MEuclid(2, 0):

N_0=07
Once reaching the base case, R

can safely return result immediately!

(FEF[R
are and ‘E g

Tail Recursion to Iteration

 Each function parameter is a variable.
* Convert the main body of the function into a loop:
> Base cases: do computation and return results.

> Recursive cases: do computation and update variables.

EuchidGCDIter (m. n):

EuclidGCDRec(m, n): while true

if n=0 if n=0
return m return m

else else
rem = m % n rem :=m % n
return EuclidGCDRec(n, rem) m:=n

n.=rem

3
0 &btk T £O R4 1S

PV.| SEREHS TiEFbr

7‘5 4435 School of Qnt@[ﬁgent Sofrware and Engineering

lteration versus Recursion

 Recursion can be converted into iteration
> Generic method: simulate a call stack
» Special case: tail recursion
e |teration can be converted into tail recursion
> No one Is always perfect
> |teration can be faster and more memory efficient

» Recursion can be clearer, more concise and intuitive

a5

| EHE8E

THOMAS H.CORMEN
CHARLES E. LEISERSON
|

¢/ School of ntelligent Software

S TA2F b

¢ and fngineering

Further reading

[CLRS] Ch10 (10.1-10.3)

[Morin] Ch1 (1.1, 1.2), Ch2 (2.1-2.4), Ch3 (3.1, 3.2)
[Deng] Ch1 (1.4°), Ch4 (4.1-4.4)

[Weiss] Ch3 (3.6)

[CSAPP] Ch3 (3.7")

Open
Data
Structures

EEE]

RONALD L. RIVEST

CLIFFORD STEIN

BRIE RE

it H & 5

HIBLEH) (C++HESHR)

(553 M)

BIEXREH M4

MARK ALLEN WEISS

DATA STRUCTURES
"AND

ALGORITHM ANALYSI

AVA

.
.

’
- l

[Second Cdtion |
COMPUTER SYSTEMS

A Programmer’s Perspective

"'”ﬁ%&'Qs"""mﬂnw

Bryant - O'Hallaron

