
智能软件与⼯程学院
School of Intelligent Software and Engineering

基本数据结构
Basic Data Structures

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne.Thanks for their supports!

钮鑫涛
Nanjing University

2023 Fall

智能软件与⼯程学院
School of Intelligent Software and Engineering

What is a “data structure”?

• A data structure is a way to store and organize data in order to facilitate
access and modifications.

‣ E.g., array, linked list.

• Different types of data usually demand different data structures.

• One type of data could be represented by different data structures.

Computer
Execute an algorithm

<1, 9, 1, 3> <1,1, 3, 9>

Computer
Execute an algorithm

<1, 9, 1, 3> <1,1, 3, 9>
1 9 1 3 1 9 1 3

智能软件与⼯程学院
School of Intelligent Software and Engineering

Abstract Data Type (ADT)
• A data structure usually provides an interface.

‣ Often, the interface is also called an abstract data type (ADT).

‣ An ADT specifies what a data structure “can do” and “should do”, but not “how to do”
them.

• ADT: List, which supports get, set, add, remove, …

• Data structure: ArrayList, LinkedList, …

• An ADT is a logical description, and a data structure is a concrete implementation.

‣ Similar to .h file and .cpp file.

‣ Different data structures can implement same ADT.

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Queue ADT

• The Queue ADT represents a collection of items to which we
can add items and remove the next item.

‣ Add(x): add x to the queue.

‣ Remove(): remove the next item y from queue, return y.

• The queuing discipline decides which item to be removed.

智能软件与⼯程学院
School of Intelligent Software and Engineering

FIFO Queue
The Queue ADT represents a collection of items to which we can add items and remove the
next item.

Add(x): add x to the queue.

Remove(): remove the next item y from queue, return y.

• The first-in-first-out (FIFO) queuing discipline: 
items are removed in the same order they are added.

• FIFO Queue:

‣Add(x) or Enqueue(x): add x to the end of the queue

‣Remove() or Dequeue(): remove the first item from the queue

智能软件与⼯程学院
School of Intelligent Software and Engineering

Example

智能软件与⼯程学院
School of Intelligent Software and Engineering

LIFO Queue：Stack

• The last-in-first-out (LIFO) queuing discipline: 
the most recently added item is the next one removed

The Queue ADT represents a collection of items to which we can add items and remove the
next item.

Add(x): add x to the queue.

Remove(): remove the next item y from queue, return y.

• Stack (LIFO Queue):

‣Add(x) or Push(x): add x to the top of the stack

‣Remove() or Pop(): remove the item a the top of the stack

Push(x)Pop()

智能软件与⼯程学院
School of Intelligent Software and Engineering

Example

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Deque ADT
• The Deque (Double-Ended Queue) ADT represents a sequence of items

with a front and a back, which supports the following operations:

‣ AddFirst(x): add x to the front of the queue

‣ AddLast(x): add x to the back of the queue.

‣ RemoveFirst(): remove the first item y from queue, return y.

‣ RemoveLast(): remove the last item y from queue, return y.

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Deque ADT

• A Deque is a generalization of both the FIFO Queue and LIFO Queue
(Stack）

‣ Deque can implement FIFO Queue: Enqueue(x) is AddLast(x),
Dequeue() is RemoveFirst()

‣ Deque can implement Stack (LIFO Queue): Push(x) is AddLast(x),
Pop() is RemoveLast()

智能软件与⼯程学院
School of Intelligent Software and Engineering

The List ADT
• A List is a sequence of items , which supports the following operations:

‣ Size(): return n, the length of the list

‣ Get(i): return

‣ Set(i,x): set

‣ Add(i,x): set for , set , increase list size by 1

‣ Remove(i): set for , decrease list size by 1

x1, x2, . . . , xn

xi

xi = x

xj+1 = xj n ≥ j ≥ i xi = x

xj = xj+1 n − 1 ≥ j ≥ i

a c b d k e…
1 2 3 4 5 n…

智能软件与⼯程学院
School of Intelligent Software and Engineering

The List ADT

• List can implement Duque:

‣ AddFirst(x) —> Add(1,x)

‣ AddLast(x) —> Add(Size()+1,x)

‣ RemoveFirst() —> Remove(1)

‣ RemoveLast() —> Remove(Size())

智能软件与⼯程学院
School of Intelligent Software and Engineering

Using array to implement List — ArrayList

c f a

1 2 3 4 5 6 7 8

c f a d

a c f q d

c f q d

a c q d

Add(4,d)

Set(3,q)

Add(1,a)

Remove(3)

Queries and updates are fast
Modifications are fast at “end”, but slow at “front” or “middle”.

• The list operations implemented by ArrayList

‣ Size(): always

‣ Get(i): always

‣ Set(i,x): always

‣ Add(i,x): to

‣ Remove(i): to

Θ(1)

Θ(1)

Θ(1)

Θ(1) Θ(n)

Θ(1) Θ(n)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Using array to implement List — ArrayList

• The list operations implemented by ArrayList

‣ Size(): always

‣ Get(i): always

‣ Set(i,x): always

‣ Add(i,x): to

‣ Remove(i): to

Θ(1)

Θ(1)

Θ(1)

Θ(1) Θ(n)

Θ(1) Θ(n)

Queries and updates are fast
Modifications are fast at “end”, but slow at “front” or “middle”.

Q: Is ArrayList good for Stack?

• A: Yes. (Push and Pop are fast)

Q: Is ArrayList good for FIFO Queue?

• A: No. Why?

Q: Is ArrayList good for Deque?

• A: No.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Too many operations!

Using circular array to implement Deque — ArrayDeque

• ArrayList is good for Stack, but not FIFO Queue or Deque

c f a e q

1 2 3 4 5 6 7 8

head tail

f a e q

head tail

RemoveFirst()

f a e q

1 2 3 4 5 6 7 8

tailhead

RemoveFirst()

qe
a

f

tail

3

2

1 8

7

6

54

head

智能软件与⼯程学院
School of Intelligent Software and Engineering

Using circular array to implement Deque — ArrayDeque

• Maintain head and tail:

‣ AddFirst and RemoveFirst: move head.

‣ AddLast and RemoveLast: move tail.

‣ Use modular arithmetic to “wrap around” at
both ends.

f a e q

1 2 3 4 5 6 7 8

tailhead

qe
a

f

tail

3

2

1 8

7

6

54

head

AddLast(x):
 tail := (tail % N)+1
 A[tail] := x
RemoveLast():
 tail := (tail = 1) ? N : (tail - 1)

AddFirst(x):
 head := (head = 1) ? N : (head - 1)
 A[head] := x
RemoveFirst():
 head := (head % N) + 1

All of them are O(1)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Using circular array to implement Deque — ArrayDeque

Queries and updates are fast
Modifications are fast at “front” and
“end” (i.e., head and tail), but
still slow at “middle”.
ArrayDeque is good for Stack,
FIFO Queue, and Deque; but can
be slow for some List operations.
Capacity of array is also a problem!

• Maintain head and tail:

‣ AddFirst and RemoveFirst: move head.

‣ AddLast and RemoveLast: move tail.

‣ Use modular arithmetic to “wrap around” at
both ends.

AddLast(x):
 tail := (tail % N)+1
 A[tail] := x
RemoveLast():
 tail := (tail = 1) ? N : (tail - 1)

AddFirst(x):
 head := (head = 1) ? N : (head - 1)
 A[head] := x
RemoveFirst():
 head := (head % N) + 1

All of them are O(1)

智能软件与⼯程学院
School of Intelligent Software and Engineering

When the array is full?

• Resizing arrays

‣ Create a new array of greater size and copy the elements of the original
array into it.

‣ abandon the old array and use the new one in its place.

• The question is, how large?

智能软件与⼯程学院
School of Intelligent Software and Engineering

When the array is full?
• Suppose we have array with initial capacity being 1, then insert N items

‣ Resize it to have one additional cell every time? —> requiring
 copy operations.

‣ Resize the array by doubling its size every time?

- For simplicity, let for some constant k. —> requiring
 =

‣ We could of course do better if we multiplied the size of the array by an even
larger value, but then there would likely be a lot more unused cells in the
array on average (consider the case that resizing happens infrequently).

1 + 2 + 3 + . . . N − 1 ∼ N2

N = 2k

1 + 2 + 4 + . . . + 2k−1 2k − 1 ∼ N

智能软件与⼯程学院
School of Intelligent Software and Engineering

Amortized analysis
• Starting from an empty data structure, average

running time per operation over a worst-case
sequence of operations.

• Thus, if resizing by one more cell each time, the
amortized complexity is for each operation.

• if resizing by doubling space each time, the
amortized complexity is for each operation.

• We well learn it later…

Θ(n)

Θ(1)
Introduced by Robert Tarjan at 1985

What about worst?

智能软件与⼯程学院
School of Intelligent Software and Engineering

When to shrink array?
• When pop() each time, we shrink the array by 1 less cell?

• When the array is one-half full, we shrink the array to the halve size?

‣ Causing “Thrashing” problem!!! Since, if now we add just one element, we
need to copy the size, and then pop one element, we should shrink it
back the halve size —> When pushes and pops come with relatively equal
frequency, it will be too expensive!

• So when popping, we only resize down when the array is 1/4th full!

• After all, by doing this we ensure that the array holding the contents of our
stack will ALWAYS be between 25% and 100% full!

智能软件与⼯程学院
School of Intelligent Software and Engineering

Using Linked list to implement List — LinkedList

• The list operations implemented by LinkedList

‣ Size(): always

‣ Get(i): to

‣ Set(i,x): to

‣ Add(i,x): to

‣ Remove(i): to

Θ(1)

Θ(1) Θ(n)

Θ(1) Θ(n)

Θ(1) Θ(n)

Θ(1) Θ(n)

a c d f k

head tail

Q: Is LinkedList good for Stack?

• A: Yes. (Push and Pop at head are fast)

Q: Is ArrayList good for FIFO Queue?

• A: Yes. (Enqueue and Dequeue are fast)

Q: Is ArrayList good for Deque?

• A: No.(RemoveLast can be slow.)
Traversing backwards from tail is not efficient!

智能软件与⼯程学院
School of Intelligent Software and Engineering

Not good for traversing backwards

Using doubly-Linked list to implement List — DLinkedList

• The list operations implemented by DLinkedList

‣ Size(): always

‣ Get(i): to

‣ Set(i,x): to

‣ Add(i,x): to

‣ Remove(i): to

Θ(1)

Θ(1) Θ(n)

Θ(1) Θ(n)

Θ(1) Θ(n)

Θ(1) Θ(n)

a c d f k

head tail

DLinkedList is good for Stack, FIFO Queue, and Deque; but can be slow for some List operations.

ka f

head tail

c d

智能软件与⼯程学院
School of Intelligent Software and Engineering

Using doubly-Linked list to implement List — DLinkedList

ka f

tail

c d

AddFirst(x):
 x.next := head
 head.prev := x
 head := x
 x.prev := NULL

AddFirst(x):
 x.next := head
 if head != NULL
 head.prev := x
 head := x
 x.prev := NULL

What if head==NULL?

x

head

What about tail?

• The list operations implemented by DLinkedList

‣ Size(): always

‣ Get(i): to

‣ Set(i,x): to

‣ Add(i,x): to

‣ Remove(i): to

Θ(1)

Θ(1) Θ(n)

Θ(1) Θ(n)

Θ(1) Θ(n)

Θ(1) Θ(n)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Similar operations for head and tail, and need to consider boundary conditions

Using doubly-Linked list to implement List — DLinkedList

ka f

head tail

c d

• The list operations implemented by DLinkedList

‣ Size(): always

‣ Get(i): to

‣ Set(i,x): to

‣ Add(i,x): to

‣ Remove(i): to

Θ(1)

Θ(1) Θ(n)

Θ(1) Θ(n)

Θ(1) Θ(n)

Θ(1) Θ(n) ka f

head tail

c d

Can we connect them?

智能软件与⼯程学院
School of Intelligent Software and Engineering

Using doubly-Linked list to implement List — DLinkedList

• A circular, doubly linked list with a sentinel:

‣ A sen6nel node is a dummy node used as an
alternative over using NULL as the path terminator

‣ The sentinel's next points to the first node on the
list, and its prev points to the last node on the list.

‣ The first node's prev points to the sentinel, as
does the last node's next.

Sentinel

aSentinel

AddFirst(x):
 x.next := Sentinel.next
 Sentinel.next.prev := x
 Sentinel.next := x
 x.prev := Sentinel

aSentinel c

AddFirst(a)

AddFirst(c)

RemoveFirst():
 Sentinel.next := Sentinel.next.next
 Sentinel.next.prev := Sentinel.next.prev.prev

aSentinel

RemoveFirst()

Using sentinel can marginally increased speed of operations

智能软件与⼯程学院
School of Intelligent Software and Engineering

Summary util now
• Queue ADT: FIFO Queue, Stack (LIFO Queue), Deque

• List ADT: can implement various Queue

• Array based implementations (simple/circular):

‣ Queries are fast, updates (i.e., Set) are also fast

‣ Modifications (i.e., Add and Remove) are fast at “start” and “end”, but slow in “middle”

‣ Capacity can be a problem

• Linked list based implementations (singly/doubly linked):

‣ Operations (queries, updates, and modifications) are fast at “start” and “end”, but slow in “middle”

‣ No capacity issue

智能软件与⼯程学院
School of Intelligent Software and Engineering

Applications of
basic data structures

智能软件与⼯程学院
School of Intelligent Software and Engineering

Application of Queue
Bounded-Buffer – Shared-Memory between processes

// shared data
ArrayDeque buffer

//producer process
while true
 while (buffer.head + 1) % buffer.size() = buffer.tail
 wait and continue // indicating full
 buffer.addLast(produceItem())

//consumer process
while true
 while buffer.head = buffer.tail
 wait and continue // indicating empty
 consumeItem(buffer.removeFirst())

智能软件与⼯程学院
School of Intelligent Software and Engineering

Application of Queue
Bounded-Buffer – Shared-Memory between processes

head = 1

tail = 1

Initially, there is no data, head = tail,
cannot read any data from out.

If we only write, and never read, then
when head = N , the last element of this
buffer cannot write.

head = 1

tail = N

head = 2

tail = 1

When one item is consumed, the
producer can write one more cell.

How about just using one variable, say,
count, to indicates full or empty?

智能软件与⼯程学院
School of Intelligent Software and Engineering

Application of Stack

• Compiler needs to check whether the parentheses (), brackets [], and
braces {} are matched.

Balancing Symbols

CheckParen(str):
 Stack s
 int i := 1
 while str[i] != NULL
 if str[i] is ‘(’ or ‘[’ or ‘{’
 s.push(str[i])
 if str[i] is ‘)’ or ‘]’ or ‘}’
 if s.empty()
 return false
 if s.pop() and str[i] mismatch
 return false
 i++
 return s.empty()

if(a > b) {b = c[10];}

if(a > b) {b = c[10];

if(a > b)) {b = c[10];}

if(a > b) {b = c[10);}

（ ） { [] }

（ ） { []

（ ））

（ ） { [)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Application of Stack
• How does a function call work?

• Example：

‣ Alice: only knows addition.

‣ Bob: only knows multiplication.

‣ Ques6on: 100+234+35×45+25

Function Calls

FuncAlice():
sum :=100+234
temp := FuncBob(35,45)
sum += temp
sum += 25
return sum

FuncBob(a,b):
c=a*b
return c

temp:
sum:

智能软件与⼯程学院
School of Intelligent Software and Engineering

Application of Stack
• How does a function call work?

• Example：

‣ Alice: only knows addition.

‣ Bob: only knows multiplication.

‣ Ques6on: 100+234+35×45+25

Function Calls

FuncAlice():
sum :=100+234
temp := FuncBob(35,45)
sum += temp
sum += 25
return sum

FuncBob(a,b):
c=a*b
return c

temp:
sum: 334

智能软件与⼯程学院
School of Intelligent Software and Engineering

Application of Stack
• How does a function call work?

• Example：

‣ Alice: only knows addition.

‣ Bob: only knows multiplication.

‣ Ques6on: 100+234+35×45+25

Function Calls

FuncAlice():
sum :=100+234
temp := FuncBob(35,45)
sum += temp
sum += 25
return sum

FuncBob(a,b):
c=a*b
return c

temp:
sum: 334

b: 35
a: 45

智能软件与⼯程学院
School of Intelligent Software and Engineering

Application of Stack
• How does a function call work?

• Example：

‣ Alice: only knows addition.

‣ Bob: only knows multiplication.

‣ Ques6on: 100+234+35×45+25

Function Calls

FuncAlice():
sum :=100+234
temp := FuncBob(35,45)
sum += temp
sum += 25
return sum

FuncBob(a,b):
c=a*b
return c

temp:
sum: 334

b: 35
a: 45
return address

智能软件与⼯程学院
School of Intelligent Software and Engineering

Application of Stack
• How does a function call work?

• Example：

‣ Alice: only knows addition.

‣ Bob: only knows multiplication.

‣ Ques6on: 100+234+35×45+25

Function Calls

FuncAlice():
sum :=100+234
temp := FuncBob(35,45)
sum += temp
sum += 25
return sum

FuncBob(a,b):
c=a*b
return c

temp:
sum: 334

b: 35
a: 45
return address
c:

智能软件与⼯程学院
School of Intelligent Software and Engineering

Application of Stack
• How does a function call work?

• Example：

‣ Alice: only knows addition.

‣ Bob: only knows multiplication.

‣ Ques6on: 100+234+35×45+25

Function Calls

FuncAlice():
sum :=100+234
temp := FuncBob(35,45)
sum += temp
sum += 25
return sum

FuncBob(a,b):
c=a*b
return c

temp:
sum: 334

b: 35
a: 45
return address
c: 1575

智能软件与⼯程学院
School of Intelligent Software and Engineering

Application of Stack
• How does a function call work?

• Example：

‣ Alice: only knows addition.

‣ Bob: only knows multiplication.

‣ Ques6on: 100+234+35×45+25

Function Calls

FuncAlice():
sum :=100+234
temp := FuncBob(35,45)
sum += temp
sum += 25
return sum

FuncBob(a,b):
c=a*b
return c

temp:
sum: 334

b: 35
a: 45
return address
c: 1575

EAX: 1575

智能软件与⼯程学院
School of Intelligent Software and Engineering

Application of Stack
• How does a function call work?

• Example：

‣ Alice: only knows addition.

‣ Bob: only knows multiplication.

‣ Ques6on: 100+234+35×45+25

Function Calls

FuncAlice():
sum :=100+234
temp := FuncBob(35,45)
sum += temp
sum += 25
return sum

FuncBob(a,b):
c=a*b
return c

temp:
sum: 334

b: 35
a: 45
return address

EAX: 1575

智能软件与⼯程学院
School of Intelligent Software and Engineering

Application of Stack
• How does a function call work?

• Example：

‣ Alice: only knows addition.

‣ Bob: only knows multiplication.

‣ Ques6on: 100+234+35×45+25

Function Calls

FuncAlice():
sum :=100+234
temp := FuncBob(35,45)
sum += temp
sum += 25
return sum

FuncBob(a,b):
c=a*b
return c

temp:
sum: 334

b: 35
a: 45

EAX: 1575

智能软件与⼯程学院
School of Intelligent Software and Engineering

Application of Stack
• How does a function call work?

• Example：

‣ Alice: only knows addition.

‣ Bob: only knows multiplication.

‣ Ques6on: 100+234+35×45+25

Function Calls

FuncAlice():
sum :=100+234
temp := FuncBob(35,45)
sum += temp
sum += 25
return sum

FuncBob(a,b):
c=a*b
return c

temp: 1575
sum: 334

b: 35
a: 45

EAX: 1575

智能软件与⼯程学院
School of Intelligent Software and Engineering

Application of Stack
• How does a function call work?

• Example：

‣ Alice: only knows addition.

‣ Bob: only knows multiplication.

‣ Ques6on: 100+234+35×45+25

Function Calls

FuncAlice():
sum :=100+234
temp := FuncBob(35,45)
sum += temp
sum += 25
return sum

FuncBob(a,b):
c=a*b
return c

temp: 1575
sum: 1909

b: 35
a: 45

EAX: 1575

智能软件与⼯程学院
School of Intelligent Software and Engineering

Application of Stack
• How does a function call work?

• Example：

‣ Alice: only knows addition.

‣ Bob: only knows multiplication.

‣ Ques6on: 100+234+35×45+25

Function Calls

FuncAlice():
sum :=100+234
temp := FuncBob(35,45)
sum += temp
sum += 25
return sum

FuncBob(a,b):
c=a*b
return c

temp: 1575
sum: 334

b: 35
a: 45

EAX: 1575

智能软件与⼯程学院
School of Intelligent Software and Engineering

Application of Stack
• How does a function call work?

• Example：

‣ Alice: only knows addition.

‣ Bob: only knows multiplication.

‣ Ques6on: 100+234+35×45+25

Function Calls

FuncAlice():
sum :=100+234
temp := FuncBob(35,45)
sum += temp
sum += 25
return sum

FuncBob(a,b):
c=a*b
return c

temp: 1575
sum: 334

b: 35
a: 45

EAX: 1575

Call Stack

智能软件与⼯程学院
School of Intelligent Software and Engineering

Eliminating Recursion
• Function calls are implemented via a “call stack”

• Recursion is a specific type of function call

FactRec(val):
if val = 1
 acc := 1
else
 acc := FactRec(val-1)
res := val*acc
return res

class Frame {
 int val
 int acc
 Frame prevFrame
}

FactIter(n):
Stack s
s.push(Frame(n, -1, NULL))
while !s.empty()
 frame := s.peek()
 if frame.val <= 1
 frame.acc := 1

 if frame.acc != -1
 res := (frame.val)*(frame.acc)
 if frame.prevFrame!=NULL

 (frame.prevFrame).acc := res
 s.pop()
 else
 s.push(Frame(frame.val - 1, -1, frame))

return res

With the help of a stack, recursion
can be replaced by iteration

Get the top
element of the

stack

智能软件与⼯程学院
School of Intelligent Software and Engineering

Eliminating Recursion

• Q: Why recursion can be undesirable?

‣ A: Recursion can be slow and memory consuming due to the creation
and maintenance of stack frames.

• Q: Why recursion can be desirable?

‣ A: Recursion can make the code clearer, concise, and intuitive.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Tail recursion
• A function is called tail-recursive if each activation of the function will

make at most one single recursive call, and will return immediately
after that call.

FactRec(n):
if n = 1
 return 1
else
 return n*FactRec (n - 1)

EuclidGCDRec(m, n):
if n = 0
 return m
else
 rem := m % n
 return EuclidGCDRec(n, rem)

Not immediately!

智能软件与⼯程学院
School of Intelligent Software and Engineering

Tail Recursion

Euclid (m, n):
if n = 0
 return m
else
 rem := m % n
 return Euclid(n, rem)

Euclid(6, 4):
4 = 0 ?
rem := 6 % 4
… … …
return

Once reaching the base case,
can safely return result immediately!

Euclid(4, 2):
2 = 0 ?
rem := 4 % 2
… … …
return

Euclid(2, 0):
0 = 0 ?
return 2

2

2

• A function is called tail-recursive if each activation of the function will
make at most one single recursive call, and will return immediately
after that call.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Tail Recursion to Iteration
• Each function parameter is a variable.

• Convert the main body of the function into a loop:

‣ Base cases: do computation and return results.

‣ Recursive cases: do computation and update variables.

EuclidGCDIter (m, n):
while true
 if n = 0
 return m
 else
 rem := m % n
 m := n
 n := rem

EuclidGCDRec(m, n):
if n = 0
 return m
else
 rem := m % n
 return EuclidGCDRec(n, rem)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Iteration versus Recursion
• Recursion can be converted into iteration

‣ Generic method: simulate a call stack

‣ Special case: tail recursion

• Iteration can be converted into tail recursion

‣ No one is always perfect

‣ Iteration can be faster and more memory efficient

‣ Recursion can be clearer, more concise and intuitive

智能软件与⼯程学院
School of Intelligent Software and Engineering

Further reading
• [CLRS] Ch10 (10.1-10.3)

• [Morin] Ch1 (1.1, 1.2), Ch2 (2.1-2.4), Ch3 (3.1, 3.2)

• [Deng] Ch1 (1.4*), Ch4 (4.1-4.4)

• [Weiss] Ch3 (3.6)

• [CSAPP] Ch3 (3.7*)

