b

The slides aze main[y ac{aptec[ﬁom the o’zigina[ones shazed éy C/wwc!ng :Z/Leng and Kevin Wayne.j hanks fo’z thei Suppot

>
=
7))
L
> T
MR =
%U%
m_._wmuO
= O\
C
©
Z

Divide and Conquer

S5 TiEF R

ka1
rydes
[Tigent Soﬁ*ware and fngineering

&

2
ny S
Jm -
—
()
=
3

| BEERIFS TiEFbx

> =~

Z, 2y , , ,
& €] School of Intelligent Software and Engineerin
& S of 9 few g

The recursion-tree method

A great tool for solving divide-and-
conqguer recurrences.

> Simple, pictorial, yet general.

A recursion tree iIs a rooted tree with

one node for each recursive subproblem.

The value of each node Is the time
spent on that subproblem excluding
recursive calls.

The sum of all values is the runtime of
the algorithm.

A recursion tree for the recurrence T(n) = rT(n/c) + f(n)

f(n)

+

r- f(n/c)

+

r2 - f(n/c?)

g | Saes T Hﬁn

Z E-'
s/ Scliool of mteligent Software and Engine

The recurrence-tree method

Typical divide-and-conquer approach:

> Divide a size n problem into r subproblems

each of size n/c, the cost for “divide” and
“combine” is f(n)

> Solve problem directly if n < n, for some
small constant n,.

» T(n) =r-Tn/c) + f(n), T(ny) = ¢,
> T(n) =r-T(n/c) +fn), T(H) = A1)

\
\

we can choose whatever value of n, is
most convenient for our analysis

f(n)

ftn/c) f(n/c) fvec) f(n/c)
A A AN A
f(n/c?) 2) f(H/C?);T f(n/c?) 2) f(n/c?) 2)

A recursion tree for the recurrence 17(n) = rI(n/c) + f(n)

Total cost is Z . f(n/c"), where L = log.n

f(n)

+

r- f(n/c)

+

r2 - f(n/c?)

| meER S TR

> —
?’w 5" School o Qnt‘e[ﬁ'gent Soﬁ'ware and Engineem’ng

Combine recursion tree and substitution

 What if subproblems are of different sizes?

Unbalanced, different root-to-leaf

» E.g., T(n) =T(n/3)+ T(2n/3) + O(n) having different lengths

|
! | | . . .
| | | : :
|
-

When the problem size < nj

| meERp S TR
of

> —
7‘5 <§° School Qnt‘e[ﬁ'gent Sofrware and fngineering

\4

Combine recursion tree and substitution

 What if subproblems are of different sizes?

» E.g., T(n) =Tn/3) + T(2n/3) + O(n)

» level cost: cn

2n
1l C(?) » level cost: cn

4n

B (—) [L[N c(—) T P C(?) e »level cost: cn

The cost of all
iInternal nodes is:

|
! | | | . .
| | | : :
|
v

When the problem size < nj,

don’t care about
base constant
factors

=

0 &b fk T FL A4 e
Y. EEERGFS TiEFbx
Z"x 4{55 School (f Qnt‘e[ﬁ'genf Soﬁ'ware and Engineem’ng

Combine recursion tree and substitution

 What if subproblems are of different sizes?

» E.g., T(n) =Tn/3) + T(2n/3) + O(n)

» level cost: cn

2n
1l C(?) » level cost: cn

4n

B (—) [L[N c(—) T P C(?) »level cost: cn

: ; .
| | |
| |
|
O(1) N o 1) @(1)

When the problem size < nj,

l | | . :

I | | | - |
. | l | : l
O(1) O(1) ' ' | !

s O(1) o(1) O(1)

How many leaves?

\4

ﬁ EAfﬁF'ﬁ *E%Bﬂ:
ool of Inte

Comblne recursion tree and substitution

» Since the height (max lengths from root to leaf) h = [log;,(n/ny)| + 1,
then the size of leaves will is smaller than 2/ = 2Ulogsnnl+l < oplogsn2 9

» Leads to the cost of leaves to be O(n'°%22) ~ O(n''h
> O(nlgn) +O0n""" = 0m'"" - not tight!
 Can we get a more accurate number of leaves?

~ Guess, e.g., the leaves are also O(nlgn)?

T *E%BJE

Comblne recursion tree and substitution

* Guess and verify

> Let L(n) be the number of leaves in the recursion tree for 7(n)

o) — 1 if n < ng
() = {L(n/3) +L2n/3) ifn > n,

> Inductive hypothesis: L(n) < d-nlg(n+ 1), for all values less than n

» Base case: L(1) <d-1g2, which is very easy to be satisfied by choosing proper d

> Inductive step:

L(n) = L(n/3)+ L(2n/3) <d-n/3lgn/3+1)+d-2n/31g(2n/3 + 1)
<d-nlg2n/3+1)<d-nlg(n+ 1)

‘The cost of all
~ leaves is:

Onlgn)

| meER S TR

> —
?’w 5" School o Qnt‘e[ﬁ'gent Soﬁ'ware and Engineem’ng

Combine recursion tree and substitution

 What if subproblems are of different sizes?

» E.g., T(n) =T(n/3) + T(2n/3) + O(n)

|
! | | | . .
| | | : :
|
-

When the problem size < nj

O&atbthk T FO 4=
BRI G S Tiz= P
School of Qm‘e[ﬁ'gent Sofrware and Engineem’ng

2 Master
Method |

5 557\143 5T =k

ntelligent Software and Engineering

- Simple version of Master Theorem

Theorem (Master theorem, =E¥) Leta > 1 and b > 1, and d be constants (independent of n),

and let 7(n) be defined on the nonnegative integers by the recurrence

— = — — — — ——
-~ —
— —
—
——
——
—
—
" —
—

T(n) = a - T(n/b)+®(nd)

Interpret n/b to either |n/b| or [n/b], and the theorem is still true
Then T(n) has the following asymptotic bounds:

On%lgn) ifa= b
T(n) = { O if a < b?
A& ifa > b?

a: number of subproblems

b : factor by which input size shrinks
d

d : need to do n“ work to create all the subproblems and combine their solutions

3
0 &btk T £O R4 1S
PV.| SEREHS TiEFbr
7‘5 4435 School of Qnt@[ﬁgent Sofrware and Engineering

Applications of master theorem

T(n) = a - T(n/b) + O(n?

* Karatsuba integer multiplication O(n?lgn) ifa= b
T(n) = { O(nY) if a < b?

» T(n) =3T(n/2)+0On) » a=3,b=2,d =1, leading to a > b*
On'°%%) ifa > b?

. T(n) = O(1n'°23) ~ O(n')
* MergeSort
» T(n) =2T(n/2) +On) - a=2,b=2,d =1, leading to a = b*
» T(n) = O(nlgn)
* Consider the following:
» T(n) =Tn/2)+0On) » a=1,b=2,d =1, leading to a < b*

» T(n) = O(n)

| BEERIFS TiEFbx
of

=
<§° School ﬂnt‘e[ﬁ’gent Soﬁ'ware and fngineerin

Proof of the master theorem

» Suppose T(n) = a - T(n/b) + ¢ - n®

SNl

) b

Total cost is C

.. » level cost: cnd
n
""""" i > level cost: a - c(n/b)?
n n n n n I n 5 - A2 2\d
...... C(ﬁ)c(ﬁ) C(ﬁ) C(ﬁ) C(ﬁ) C(ﬁ) C(ﬁ) C(ﬁ) --»level cost: a C(n/b)
......... » y
... » level cost: a’ - c(n/b")

lOgb n Let ®(1) = c for convenience

.n4. Z (alb?)!

1=0

| S TR
z 9 hool of In neert

~ Now let’s check all the cases

On‘lgn) ifa= b
_ _ 1.d
e« Casel: a=0> T(n) = 3 BO(n% if a < b?

log, On'°%) ifa > b?
= T(n) = cn? Z (alb%)
=0

log, n
= cn? Z 1
t=0
= cn‘(log, n + 1)
= cn(lgn/lgb + 1)

= O(nélgn)

W SRS Tk
€ 9 hool of In 1 f

~ Now let’s check all the cases

On%lgn) ifa = b?
I(n) = § 6(n9 if a < b?
e« Case?2: a < b? On'°&%) ifa > b?

log, n

~ T(n) = cn” 2 (alb?)!
=0

Geometric sums

N t N+
Zx = forx = 1
° x—1
=0
)CN+1 —1 1
 f0<x <1, 1< 1 < : , with N growing and x being constant,
X — — X
itis O(1)

» |[f x =1, all terms are the same

X
Clfx>1,xV < < xV - (), with N growing and x being constant, it

is O(x™)

x—1

W SRS Tk
€ 9 hool of In [f

~ Now let’s check all the cases

On%lgn) ifa = b?
T(n) = § ©(n% if a < b?
e Case?2: a < b Om'°%% ifa > b?

log, n

- T(n) = cn® Z (alb?)
=0

= cn? - [some constant]

= O(n?

W SRS Tk
€ 9 hool of In [f

~ Now let’s check all the cases

On%lgn) ifa = b?
T(n) = § ©(n% if a < b?
« Case 3: a > b On'°%) ifa > b?

log, n

- T(n) = cn® Z (alb?)
=0

— @(nd(a/bd)logb n)

— @(nlogb a)

| BEEHS IEF b
of 1

> =
Z 2 / , ,
% <§J SCHOO[nw[ﬁgent SO' iware anc[fngmeermg

Understanding the master theorem

T(n) = a - T(n/b) + O(n?

a: number of subproblems
O(nllgn) ifa= b b : factor by which input size shrinks

T(n) = { O if a < b9 d : need to do n? work to create all the

O ifq> b subproblems and combine their solutions
n if a

* Branching causes the number of problems to explode! The most work is
at the bottom of the tree!

 The problems lower in the tree are smaller! The most work is at the top of
the tree!

)

D&tk T FE =A==
PV, SEREGESITREF xR
% g] School of an(ﬁ’gent Sofrware and Engineering

(General Master Theorem

Theorem (Master theorem, =TEIE) Leta > 1 and b > 1 be constants, and let f(n) be a
function, and let T(n) be defined on the nonnegative integers by the recurrence

T(n) =a - T(n/b) + f(n)

where we interpret n/b to either |n/b| or |n/b|. Then T(n) has the following asymptotic bounds:
1. If fin) = O(n'°%9€) for some constant € > 0, then T(n) = O(n'°%%).

2. If f(n) = On'°%%), then T(n) = O(n'°%%1g n).

3. If f(n) = Q(n'°%9%€) for some constant € > 0, and if a - f(n/b) < c - f(n) for some ¢ < 1 and
all sufficiently large n, then T(n) = O(f(n)).

D&tk T FE =A==
| BEERHS TEF6x
4435 School cf an(figent Soﬁ'ware and Engineering

General Master Theorem

Theorem (Master theorem, =&
iIntegers by the recurrence

I2) Leta > 1 and b > 1 be constants, and let f(7) be a function, and let 7(n) be defined on the nonnegative

T(n)=a-T(n/b) + f(n)

where we interpret n/b to either |n/b| or [n/b]. Then T(n) has the following asymptotic bounds:
1. If f(n) = O(n'°%%€) for some constant € > 0, then T(n) = O(n'°%%).

2. If f(n) = O(n'°%%), then T(n) = O(n'°%1g n).

3. If f(n) = Q(n'°8%+¢) for some constant € > 0, and if a - f(n/b) < ¢ - f(n) for some ¢ < 1 and all sufficiently large n, then T(n) = O(f(n)).
* The Master Theorem does not cover all cases!

. For example to f(n) = O(n'°&%=¢)

> Ifa = b =72 and f(n) = n/lg n, case one does not apply

 When master theorem does not apply, we need to use substitution approach and recursion tree method.

sggﬁﬂﬁﬁ'&%h
ool of Inte

~ Ignoring Floors and Ceilings is Okay

e When COhSlder the recurrence (1£Y343\) of MergeSort, i.e.,

T(n)=2-Tn/2)+ O(n)
» What if the given n is odd? What it is mean sort an array of size ? ?

e Actually, the actual recurrence of MergeSort IS

T(n)=T({n/2|)+ T(|n/2]) + O(n)

« How can we get the real time complexity of this recurrence”?

TEFr

" Domain transformation

* We can transform the recurrence into a more familiar form, by defining a new
function in terms of the one we want to solve, e.qg:

> First, let’s overestimate the time bound, we have the following relation to
eliminate the celling:

T(n) <2-T(|n/2])+0On) <2-T(n/2+1)+ BO(n)

> Define a new function S(n) = T(n + a), choosing the constant a so that
S(n) satisfies the simpler recurrence S(n) < 25(n/2) + O(n)

- S =Tn+a) <2-Tn/2+a/l2+1)+0O0n+ a)
=2-Sn/2+al2+1—a)+0O0n+ a)
- Setting a = 2 simplifies this recurrence, i.e., S(n) < S(n/2) + O(n)

TEFr

" Domain transformation

e« T(n) <2-T({n/2|)+0On)<2-Tn/2+ 1)+ O(n)

. S(n) = T(n + 2)

. S(n) < Sn/2)+0O(mn) — Sh) = Omlogn)

» We have T(n) = S(n —2) = O((n — 2)log(n — 2)) = O(nlogn)

+ A similar argument implies the matching lower bound T(n) = Q(n log n)

» Therefore, T(n) = O(nlogn)

e Similar domain transformations can be used to remove floors, celilings,
and even lower order terms from any divide and conguer recurrence

 But now that we realize this, we don’t need to bother grinding through the
details ever again!

3
O&abthk T ¥O =24 (=

PV.| SEREHS TiEFbr

7‘5 4@5 School of Qnt@[ﬁgent Sofrware and fngineering

A simple quiz

 Consider the recurrence:
» T(n)=2-Tn/2+ 17) + O(n)

 Can you get its time complexity?

Summary until now

* Divide, Conquer (recursively or directly), and Combine.

 Same problem can be divided in different ways, leading to different algorithms with
different performances!

> MergeSort uses half-and-half split, how about 1-and-(n - 1) split?

* Correctness of divide-and-conquer algorithms:
> Use mathematical induction
* Time complexity of divide-and-conquer algorithms:

> Recursion-tree method, substitution method (Guess and Verify), Master method

O&atbthk T FO 4=
BRI G S Ti=Px
School (f ﬂnt‘e[ﬁ'gent Soﬁ'ware and fngineering

educe-and-Conquer

3
O&abthk T ¥O =24 (=

PV.| SEREHS TiEFbr

7‘5 4@5 School of Qnt@[ﬁgent Sofrware and fngineering

Reduce and Conquer

* We might not need to consider all subproblems.
> In fact, sometimes only need to consider one subproblem.
 The "combine” step will also be easier, or simply trivial...

* |t is also called decrease and conguer

The Search Problem

 |Input: an array A containing n elements, and an element x.

« Qutput: index of x if it’s in A, otherwise return “no”.

9 | 3|7 | 1|5 | 6 9 | 3 | 7 | 1
returns “4” returns “no”
e Simple solution: sequential scan.
« Worst-case runtime is ®(n), but inevitable...
 What if the input array is sorted?
2 | 4 | 4| 5 | 6| 7|89 | 11|17 | 23|28 |17

11

17

23

28

Find the middle element: 7.

Compare 17 to the middle element: 7 < 17.

Reduce the array to one of the two splits: the right half.

Recurse!

Binary Search

17

Binary Search

* Find the middle element: 11.
« Compare 17 to the middle element: 11 < 17.
 Reduce the array to one of the two splits: the right half.

e Recursel

Binary Search

* Find the middle element: 23.
« Compare 17 to the middle element: 23 > 17.
 Reduce the array to one of the two splits: the left half.

e Recursel

3
O&abthk T ¥O =24 (=

PV.| SEREHS TiEFbr

7‘5 4@5 School of Qnt@[ﬁgent Sofrware and fngineering

Binary Search

* Find the middle element: 23.
e Compare 17 to the middle element: 17 = 17.

e \We have found the element, and we are done!

Binary Search

Reduce-and-Conquer:

o Start with a problem of size n.
 Compare the middle element to the specified element.
* Either we are done or have reduced the problem to size n/2.

> Only consider one of the two subproblems. (REDUCE!)

* Repeat.

Binary Search

BinarySearch(A., X): » Does it solve the search problem,
left .= 1,right :=n given the input array is sorted?
while true

middle .= (left+right)/2 floor or ceil? > No! (E.g., when x is not in A.)
it Almiddle] = x
return middle

else if A[middle] < x Does it solve the search problem,
left := middle + 1 given the input is sorted and x € A?
else
right := middle - 1 > Yes”

e At the beginning of each iteration, Alleft] < x < A[right]. (Use induction.)
e At the beginning of some iteration, it must be left = right.
e |n that iteration, it must be Alleft] = Alright] = x, and we are done!

Binary Search

 Why this algorithm works??

BinarySearch(A. X):
left .= 1,right :==n
while [eft <= right
middle = (left+right)/2
it Almiddle] = x
return middle
else if A[lmiddle] < x

» if x € A previous argument still holds.
» ifx & A, then

> After each iteration, we reduce input size by at least half.

left .= middle + 1 > At some iteration, left = right.
else
right := middle - 1 > After that iteration, left > right.

Time complexity of BinarySearch? T(n) < T(n/2) + O(1) T(n) = O(logn)

=

0 &btk T 2 R4 e
P9, BERGESIREF xR
7‘5 4435 School of Qnt@[ﬁgent Sofrware and fngineering

Peak finding

 Input: an array A of n elements.
 Output: a local maximum; i.e., a peak.
> An element A[i] is a peak if it is no smaller than its adjacent elements.

> Every non-empty A has at least one peak. (Why?)

A

TEFr

~ Local vs Global Maximum

* Global max is better, but finding it takes more time...

> Sequential scan needs O(n) time, and it’s inevitable.

¢« Sometimes a peak is “good enough”.

* FInding a peak costs much less time!

Peak finding

* Find middle element: 6.

« Compare middle element to its adjacent elements:
> Middle element = its left neighbor? Yes.
> Middle element = its right neighbor? No!

 Reduce the array to one of the two splits: the right half. (There must exist a peak in the part
containing the large neighbor! [WHY?])

e Recurse!

Peak finding

* Find middle element: 6.

« Compare middle element to its adjacent elements:
> Middle element = its left neighbor? Yes.
> Middle element = its right neighbor? No!

 Reduce the array to one of the two splits: the right half. (There must exist a peak in the part
containing the large neighbor! [WHY?])

e Recurse!

Peak finding

 Find middle element: 17.
 Compare middle element to its adjacent elements:
> Middle element = its left neighbor? Yes.

> Middle element = its right neighbor? Yes, We are done!

| BERESIREFR

=
<§° School of ﬂnt‘e[ﬁ'gent Sofrware and Engineering

Peak finding

PeakFinding(A):
left .= 1,right :==n
while left <= right

Current array is not empty.

middle = (left+right)/2 Get the middle element.
if middle > left and A[middle - 1] > Almiddle] If middle <left neighbor
: , (if there is such neighbor),
”ght = middle - 1 recurse into left part.
else if middle < right and A[middle + 1] > A[middle] If middle < right neighbor
leﬁ -— middle + 1 (if there is such neighbor),
: recurse into right part.
else .
We find a peak!
return A[{middle]

Why this algorithm is correct? 1. It always terminates. (WHY?)

| BERESIREFR

=
<§° School of ﬂnt‘e[ﬁ'gent Sofrware and Engineering

Peak finding

PeakFinding(A):
left .= 1,right :==n
while left <= right

Current array is not empty.

middle = (left+right)/2 Get the middle element.
if middle > left and A[middle - 1] > Almiddle] If middle <left neighbor
: , (if there is such neighbor),
”ght = middle - 1 recurse into left part.
else if middle < right and A[middle + 1] > A[middle] If middle < right neighbor
leﬁ -— middle + 1 (if there is such neighbor),
: recurse into right part.
else .
We find a peak!
return A[{middle]

Why this algorithm is correct? 2. It always returns a right answer. (WHY?)

| BERESIREFR

=
59 School of Qnt‘e[ﬁ'genf Soﬁ'ware and fngineering

Peak finding

PeakFinding(A):
left .= 1,right :==n
while left <= right

Current array is not empty.

middle = (left+right)/2 Get the middle element.
if middle > left and A[middle - 1] > A[middle] 't middle <left neighbor
. : (if there is such neighbor),
rlght = middle - 1 recurse into left part.
else if middle < right and A[middle + 1] > A[middle] If middle < right neighbor
left .= middle + 1 (if there is such neighbor),
: recurse into right part.
else
We find a peak!
return A[{middle]

Runtime of this algorithm? O(logn) Finding local max is faster!

3
O&2bthk T FO 4=
PV.| SEREHS TiEFbr
7‘5 4@5 School of Qnt@[ﬁgent Sofrware and fngineering

Peak finding, now in 2D !

e Input: a2D arrayAofn Xn = n’ elements.

 Output: a /ocal maximum; i.e., a peak.

> An element AJi][j] Is a peak if it’s no smaller than its four adjacent

elements.
10| 8 | 5| 2 | 1
3 2|1]5 |7
17| 5| 9 | 2 | 5
7 19| 4| 6|8
6 | 1| 4| 6 | 8

> Every non-empty A has at least one peak. (WHY?)

- Proof: Start from a node, follow an “increasing path”, eventually must
reach a peak.

ﬁ EAT'-LF '3__&%575
ool of Intelligent Software and Engine

Peak finding in 2D, Algorithm |

“Compress” each column into one element, resulting an 1D array.
» Use max of each column to represent that column.

> Run previous algorithm on the 1D array and return a peak.

10

—h

~
— O | O DN | 0o
oI O DO N
|0 O N | —

~ | O | =2 O

17 | 9 9 6 3

ﬁ E)\Tq: '3__&%571:
ool of Intelligent Software and Engine

Peak finding in 2D, Algorithm |

“Compress” each column into one element, resulting an 1D array.
» Use max of each column to represent that column.

> Run previous algorithm on the 1D array and return a peak.

Correctness?

a O(n?) + O(log n) = O(n?)

mi | b | my too slow...

W Beems TRk
Z"f 4435 School of an(ﬁ'gent Soﬁ'ware

Pe

and Engineem’n

ak finding in 2D, Algorithm I

e Scan the middle column and find the max element m.
 If mis a peak then return it, and we are done.
 Otherwise, left or right neighbor of m is bigger than m.

 Recurse into that part.

A divide (reduce) and conquer algorithm!

1012851151 1012851151 101285151 101285151 1002851151
313121772 313121772 313121 |7]|7]|2 313121772 313|121 |7]|7]2
5|6 |7[2]5]3]5 5|6 /7121535 5|6 |7[25[3]5 516|772 5[3]5 9|6 |/7[2]5]3]5
/13111986 |7 /131111986 |7 /1311119186 |7 /131119 8|6 |7 /1311198 [6 |7
615/121/4 84 |2 615/121/4 84 |2 65/121/4 8 4|2 615/121/4 84 |2 615/121/4 842
2141114353 2141114353 214114353 2141114353 2141114353
11213[518[319 11213[518[319 112]3[5]/8]319 1121315181319 11213518139

| HeERES TiEF b
ofiln

2 =
< é? School

t@[ﬁgent Sofrware and fngineering

Peak finding in 2D, Algorithm I

» Scan the middle column and find the max element m.
> |f m is a peak then return it, and we are done.

> Otherwise, left or right neighbor of m is bigger than m, then recurse into that part.

Correctness?

« Max of middle column is a peak; or a peak exists in the part containing the
large neighbor, and that peak is the max of its column.

* A peak (found by the algorithm) in the part containing the large neighbor is also
a peak in the original matrix.

* The algorithm eventually returns a peak of some (sub)matrix.

| BERESIREFR

=
5" School (f Qnt‘e[ﬁ'gent Sofrware and fngineerin

Peak finding in 2D, Algorithm ||

» Scan the middle column and find the max element m.

> |f m is a peak then return it, and we are done.

> Otherwise, left or right neighbor of m is bigger than m, then recurse into that part.

Runtime of this algorithm?
—

e T(n,n") <T(n/2,n)+ O

o T(n,n") < (Ign)-0Mn')=00mIlgn)= 0Mnlgn)

Much faster than the O(n?) algorithm, but can we do better?

Peak finding in 2D

 \When considering the “reducing”, the smaller the size of the subproblem
IS, the better the performance is the algorithm

* Algorithm |l reduce the problem into halve size, can it be smaller?

VA
BE
ool of Tnte

Q#E_

» Scan the “cross” and find max element m.

jz%ﬁm
Sﬁw cffg

- Peak finding in 2D, Algorithm I

> |If m i1s a peak then return it, and we are done.

> Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

11

21

11

O N O W

B~ B~ O | = O

O O |IN| O DN

Q| 0| O N | —

10 5 | 2 | 1
3 1 5 | 7
S |11 | 9 | 2 | 5
/7 121 | 4 | 6 | 8
6 | T 4 | 6 | 8

21

11

O | N O W

B~ | B~ O = O

o)) NN \C NN O) BN \V

00| O | N | —

21

O N O W

A1~ O =2 O

o)) NN \C NI G) BN \V

Q| 00| O N | =

| HeERES TiEF b
ofiln

2 =
< é? School

t@[ﬁgent Sofrware and fngineering

Peak finding in 2D, Algorithm Il

» Scan the “cross” and find max element .
> |If m I1s a peak then return it, and we are done.

> Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

Correctness?

 Max in the cross is a peak; or a peak exists in the quadrant containing the large
neighbor, and that peak is the max of some cross.

* A peak (found by the algorithm) in the quadrant containing the large neighbor is
also a peak In the original matrix.

* The algorithm eventually returns a peak of some (sub)matrix.

: %ﬁgwr'ﬁ:_ﬁ#n
Vo) School of ntelligent and Engine

Peak finding in 2D, Algorithm IlI

» Scan the “cross” and find max element m:.

> |If m I1s a peak then return it, and we are done.

> Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

False Claim: A peak (found by the algorithm) in the quadrant containing the large neighbor is also

a peak in the original matrix.

Ol

o

Ol

Ol

— O |O1

— 10 O1

—h

o

o))

S N NS REL S

N [—= = |

S eSS e

N (= = |

S SN E S N E A SR S

QD [—

N (= = [

A

eSS s S

N (= = [

W |—

N = = (A

\-h-h-h-h-h-h-h

Not a peak!

=

O &btk T F2 R4
PV, ZeERHS ITiEF6r
Z"x Q{? School of Qnt‘e[ﬁ'genf Soﬁ'ware and Engineem’n

Peak finding in 2D, Algorithm Il

» Scan the “cross” and find max element m:.

> |If m I1s a peak then return it, and we are done.

> Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

False Claim: A peak (found by the algorithm) in the quadrant containing the large neighbor is also

a peak in the original matrix.

4 If the peak found in the quadrant is on the boundary of the
j guadrant, then it may be smaller than its neighbor that is in
. -
alalalalalals the original matrix!
4 116
4 11111 -
I)
413192 How to fix it”

Not a peak!

. %ﬁbﬂﬁ: '3 _jE—T—Bﬂ:
V) School of Mntelligent and Engine

Peak finding in 2D, Algorithm |l

“cross and boundary” (i.e., a “window frame”)
—

» Scan the © cross and find max element m.

> |If m I1s a peak then return it, and we are done.

> Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

- %ﬂﬁbﬂ{q: '3 _jE—T—BE
V) School of Mntelligent and Engine

Peak finding in 2D, Algorithm |l

“cross and boundary” (i.e., a “window frame”)
—

» Scan the © cross and find max element m.

> |If m I1s a peak then return it, and we are done.

> Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

m m g is peak in this window
h h g is peak in the original matrix?

: %ﬁbwﬁF'ﬁ_ﬁ%I&
¢/ School of Intelligent Software and Engine

Peak finding in 2D, Algorithm |l

“cross and boundary” (i.e., a “window frame”)

» Scan the “cre

36" and find max element m.
> |If m I1s a peak then return it, and we are done.

> Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

Claim: A peak (found by the algorithm) in the quadrant containing

the large neighbor is also a peak in the original matrix.
Proof:

e |f the peak found by the algorithm in the quadrant is not on
the boundary of the quadrant, then clearly it’s a peak in the
h original matrix.

e Otherwise, the peak found by the algorithm in the quadrant is
on the boundary of the quadrant (say g); and it’s also a peak in

the original matrix (since g > h > m > r).

: %ﬁgwr'ﬁ:jﬁﬁn
Vo) School of ntelligent and Engine

Peak finding in 2D, Algorithm |l

“cross and boundary” (i.e., a “window frame”)

> Scan the f6r088” and find max element m.
> |If m I1s a peak then return it, and we are done.

> Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

Runtime of this algorithm

T(n,n) < T(n/2, n/2) + O(n)

r |8 e T(n,n) = O(n)

Further reading

« [CLRS] Ch.2 (2.3), Ch.4

e [Erickson] Ch.1 (excluding 1.5 and 1.8)

Algorithms

ALGCORITHMS

EDITION

Jeft Erickson

