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The recursion-tree method
• A great tool for solving divide-and-

conquer recurrences.


‣ Simple, pictorial, yet general.


• A recursion tree is a rooted tree with 
one node for each recursive subproblem.


• The value of each node is the time 
spent on that subproblem excluding 
recursive calls.


• The sum of all values is the runtime of 
the algorithm.

A recursion tree for the recurrence T(n) = rT(n/c) + f(n)
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The recurrence-tree method
• Typical divide-and-conquer approach:


‣ Divide a size n problem into r subproblems 
each of size , the cost for “divide” and 
“combine” is 


‣ Solve problem directly if  for some 
small constant .

‣

n/c
f(n)

n ≤ n0
n0

T(n) = r ⋅ T(n/c) + f(n), T(n0) = c0

A recursion tree for the recurrence T(n) = rT(n/c) + f(n)
‣ T(n) = r ⋅ T(n/c) + f(n), T(1) = f(1)

we can choose whatever value of  is 
most convenient for our analysis

n0 Total cost is , where 
L

∑
i=0

ri ⋅ f(n/ci) L = logc n
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Combine recursion tree and substitution 
• What if subproblems are of different sizes?


‣ E.g., T(n) = T(n/3) + T(2n/3) + Θ(n)
cn

c(
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) c(
2n
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)

c(
n
9

) c(
2n
9

) c(
4n
9

)c(
2n
9

)

Θ(1) Θ(1)
Θ(1) Θ(1) Θ(1) Θ(1)

Θ(1) Θ(1) Θ(1)
Θ(1)When the problem size ≤ n0

Unbalanced, different root-to-leaf 
having different lengths
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Combine recursion tree and substitution 
• What if subproblems are of different sizes?


‣ E.g., T(n) = T(n/3) + T(2n/3) + Θ(n)
cn

c(
n
3

) c(
2n
3

)

c(
n
9

) c(
2n
9

) c(
4n
9

)c(
2n
9

)

Θ(1) Θ(1)
Θ(1) Θ(1) Θ(1) Θ(1)

Θ(1) Θ(1) Θ(1)
Θ(1)When the problem size ≤ n0

Height: ⌊log3/2(n/n0)⌋ + 1

level cost:  cn

level cost:  cn

The cost of all  
internal nodes is:


O(n lg n)

level cost:  cn

don’t care about 
base constant 

factors 
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Combine recursion tree and substitution 
• What if subproblems are of different sizes?


‣ E.g., T(n) = T(n/3) + T(2n/3) + Θ(n)
cn

c(
n
3

) c(
2n
3

)

c(
n
9

) c(
2n
9

) c(
4n
9

)c(
2n
9

)

Θ(1) Θ(1)
Θ(1) Θ(1) Θ(1) Θ(1)

Θ(1) Θ(1) Θ(1)
Θ(1)When the problem size ≤ n0

level cost:  cn

level cost:  cn

level cost:  cn

How many leaves?

Height: ⌊log3/2(n/n0)⌋ + 1
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Combine recursion tree and substitution 

• Since the height (max lengths from root to leaf)  = , 
then the size of leaves will is smaller than   ?


‣ Leads to the cost of leaves to be 


‣     not tight!


• Can we get a more accurate number of leaves?


‣ Guess, e.g., the leaves are also ?

h ⌊log3/2(n/n0)⌋ + 1
2h = 2⌊log3/2 n⌋+1 ≤ 2nlog3/2 2

O(nlog3/2 2) ∼ O(n1.71)

O(n lg n) + O(n1.71) = O(n1.71) →

O(n lg n)
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Combine recursion tree and substitution 
• Guess and verify


‣ Let  be the number of leaves in the recursion tree for 


‣ 


‣ Inductive hypothesis:  , for all values less than  


‣ Base case:  ,  which is very easy to be satisfied by choosing proper 


‣ Inductive step: 

L(n) T(n)

L(n) = {1 if n < n0

L(n/3) + L(2n/3) if n ≥ n0

L(n) ≤ d ⋅ n lg(n + 1) n

L(1) ≤ d ⋅ lg 2 d

L(n) = L(n/3) + L(2n/3) ≤ d ⋅ n/3 lg(n/3 + 1) + d ⋅ 2n/3 lg(2n/3 + 1)
< d ⋅ n lg(2n/3 + 1) < d ⋅ n lg(n + 1) The cost of all  

leaves is:

O(n lg n)
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Combine recursion tree and substitution 
• What if subproblems are of different sizes?


‣ E.g., T(n) = T(n/3) + T(2n/3) + Θ(n)
cn

c(
n
3

) c(
2n
3

)

c(
n
9

) c(
2n
9

) c(
4n
9

)c(
2n
9

)

Θ(1) Θ(1)
Θ(1) Θ(1) Θ(1) Θ(1)

Θ(1) Θ(1) Θ(1)
Θ(1)When the problem size ≤ n0

Complexity: O(n lg n)
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Master

Method 
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Simple version of Master Theorem
Theorem  (Master theorem, 主定理)  Let  and , and   be constants (independent of ), 
and let  be defined on the nonnegative integers by the recurrence





Then  has the following asymptotic bounds:


a ≥ 1 b > 1 d n
T(n)

T(n) = a ⋅ T(n/b) + Θ(nd)

T(n)

T(n) =
Θ(nd lg n) if a = bd

Θ(nd) if a < bd

Θ(nlogb a) if a > bd

: number of subproblems
 : factor by which input size shrinks
 : need to do  work to create all the subproblems and combine their solutions

a
b
d nd

Interpret  to either  or , and the theorem is still truen/b ⌊n/b⌋ ⌈n/b⌉
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Applications of master theorem
• Karatsuba integer multiplication


‣     , leading to 


‣ 


• MergeSort


‣     , leading to 


‣ 


• Consider the following:


‣     , leading to 


‣

T(n) = 3T(n/2) + Θ(n) → a = 3, b = 2, d = 1 a > bd

T(n) = Θ(nlog2 3) ∼ Θ(n1.6)

T(n) = 2T(n/2) + Θ(n) → a = 2, b = 2, d = 1 a = bd

T(n) = Θ(n lg n)

T(n) = T(n/2) + Θ(n) → a = 1, b = 2, d = 1 a < bd

T(n) = Θ(n)


T(n) = a ⋅ T(n/b) + Θ(nd)

T(n) =
Θ(nd lg n) if a = bd

Θ(nd) if a < bd

Θ(nlogb a) if a > bd
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Proof of the master theorem
• Suppose T(n) = a ⋅ T(n/b) + c ⋅ nd

Total cost is c ⋅ nd ⋅
logb n

∑
i=0

(a/bd)t

cnd

c(
n
b

) c(
n
b

)

c(
n
b2

)

level cost:  cnd

level cost:  a ⋅ c(n/b)dc(
n
b

) c(
n
b

)
a

c(
n
b2

) c(
n
b2

) c(
n
b2

)

a

c(
n
b2

)c(
n
b2

) c(
n
b2

) c(
n
b2

)

a

c(
n
b2

) c(
n
b2

) c(
n
b2

) c(
n
b2

)

a

c(
n
b2

) c(
n
b2

) c(
n
b2

) c(
n
b2

)

a

………….

level cost:  a2 ⋅ c(n/b2)d

level cost:  at ⋅ c(n/bt)d

………….
level cost:  alogb n ⋅ cΘ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)………….

Let   for convenience Θ(1) = c
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Now let’s check all the cases
• Case 1:  


‣ 


             


              


              


              

a = bd

T(n) = cnd
logb n

∑
t=0

(a/bd)t

= cnd
logb n

∑
t=0

1

= cnd(logb n + 1)

= cnd(lg n/lg b + 1)

= Θ(nd lg n)

T(n) =
Θ(nd lg n) if a = bd

Θ(nd) if a < bd

Θ(nlogb a) if a > bd
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Now let’s check all the cases

• Case 2:  


‣ 


            


            

a < bd

T(n) = cnd
logb n

∑
t=0

(a/bd)t

T(n) =
Θ(nd lg n) if a = bd

Θ(nd) if a < bd

Θ(nlogb a) if a > bd
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Geometric sums

•   =  for 


‣ If ,     ,  with N growing and x being constant, 

it is 


‣ If x = 1,  all terms are the same


‣ If x > 1,  , with N growing and x being constant, it 

is 

N

∑
t=0

xt xN+1 − 1
x − 1

x ≠ 1

0 < x < 1 1 ≤
xN+1 − 1

x − 1
≤

1
1 − x

Θ(1)

xN ≤
xN+1 − 1

x − 1
≤ xN ⋅ (

x
x − 1

)

Θ(xN)
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Now let’s check all the cases

• Case 2:  


‣ 


             


             

a < bd

T(n) = cnd
logb n

∑
t=0

(a/bd)t

= cnd ⋅ [some constant]

= Θ(nd)

T(n) =
Θ(nd lg n) if a = bd

Θ(nd) if a < bd

Θ(nlogb a) if a > bd
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Now let’s check all the cases

• Case 3:  


‣ 


             


             

a > bd

T(n) = cnd
logb n

∑
t=0

(a/bd)t

= Θ(nd(a/bd)logb n)

= Θ(nlogb a)

T(n) =
Θ(nd lg n) if a = bd

Θ(nd) if a < bd

Θ(nlogb a) if a > bd
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Understanding the master theorem 

• Branching causes the number of problems to explode!  The most work is 
at the bottom of the tree!


• The problems lower in the tree are smaller!  The most work is at the top of 
the tree!


T(n) = a ⋅ T(n/b) + Θ(nd)

T(n) =
Θ(nd lg n) if a = bd

Θ(nd) if a < bd

Θ(nlogb a) if a > bd

: number of subproblems
 : factor by which input size shrinks
 : need to do  work to create all the 

subproblems and combine their solutions

a
b
d nd
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General Master Theorem
Theorem  (Master theorem, 主定理)  Let  and  be constants, and let  be a 
function, and let  be defined on the nonnegative integers by the recurrence





where we interpret  to either  or . Then  has the following asymptotic bounds:


1. If    for some constant , then  = .


2. If ,  then  = .


3. If  for some constant , and if  for some  and 
all sufficiently large , then  = .

a ≥ 1 b > 1 f(n)
T(n)

T(n) = a ⋅ T(n/b) + f(n)

n/b ⌊n/b⌋ ⌈n/b⌉ T(n)

f(n) = O(nlogb a−ϵ) ϵ > 0 T(n) Θ(nlogb a)

f(n) = Θ(nlogb a) T(n) Θ(nlogb a lg n)

f(n) = Ω(nlogb a+ϵ) ϵ > 0 a ⋅ f(n/b) ≤ c ⋅ f(n) c < 1
n T(n) Θ( f(n))
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General Master Theorem

• The Master Theorem does not cover all cases!


• For example to 


‣ If  and , case one does not apply


• When master theorem does not apply, we need to use substitution approach and recursion tree method.

f(n) = O(nlogb a−ϵ)

a = b = 2 f(n) = n/lg n

Theorem  (Master theorem, 主定理)  Let  and  be constants, and let  be a function, and let  be defined on the nonnegative 
integers by the recurrence





where we interpret  to either  or . Then  has the following asymptotic bounds:


1. If    for some constant , then  = .


2. If ,  then  = .


3. If  for some constant , and if  for some  and all sufficiently large , then  = .

a ≥ 1 b > 1 f(n) T(n)

T(n) = a ⋅ T(n/b) + f(n)

n/b ⌊n/b⌋ ⌈n/b⌉ T(n)

f(n) = O(nlogb a−ϵ) ϵ > 0 T(n) Θ(nlogb a)

f(n) = Θ(nlogb a) T(n) Θ(nlogb a lg n)

f(n) = Ω(nlogb a+ϵ) ϵ > 0 a ⋅ f(n/b) ≤ c ⋅ f(n) c < 1 n T(n) Θ( f(n))
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Ignoring Floors and Ceilings is Okay

• When consider the recurrence (递归式) of MergeSort, i.e., 



‣ What if the given  is odd? What it is mean sort an array of size  ?


• Actually, the actual recurrence of MergeSort is 



• How can we get the real time complexity of this recurrence? 

T(n) = 2 ⋅ T(n/2) + Θ(n)

n 13
2

T(n) = T(⌈n/2⌉) + T(⌊n/2⌋) + Θ(n)
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Domain transformation
• We can transform the recurrence into a more familiar form, by defining a new 

function in terms of the one we want to solve, e.g:


‣ First, let’s overestimate the time bound, we have the following relation to 
eliminate the ceiling: 




‣ Define a new function , choosing the constant  so that 
 satisfies the simpler recurrence 


-

T(n) ≤ 2 ⋅ T(⌈n/2⌉) + Θ(n) ≤ 2 ⋅ T(n/2 + 1) + Θ(n)

S(n) = T(n + α) α
S(n) S(n) ≤ 2S(n/2) + Θ(n)

S(n) = T(n + α) ≤ 2 ⋅ T(n/2 + α/2 + 1) + Θ(n + α)
= 2 ⋅ S(n/2 + α/2 + 1 − α) + Θ(n + α)

- Setting   simplifies this recurrence, i.e., α = 2 S(n) ≤ S(n/2) + Θ(n)
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Domain transformation
• 


•  


•         


• We have 


• A similar argument implies the matching lower bound 


• Therefore, 

T(n) ≤ 2 ⋅ T(⌈n/2⌉) + Θ(n) ≤ 2 ⋅ T(n/2 + 1) + Θ(n)

S(n) = T(n + 2)

S(n) ≤ S(n/2) + Θ(n) → S(n) = O(n log n)

T(n) = S(n − 2) = O((n − 2)log(n − 2)) = O(n log n)

T(n) = Ω(n log n)

T(n) = Θ(n log n)
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Domain transformation

• Similar domain transformations can be used to remove floors, ceilings, 
and even lower order terms from any divide and conquer recurrence


• But now that we realize this, we don’t need to bother grinding through the 
details ever again!
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A simple quiz

• Consider the recurrence:


‣ 


• Can you get its time complexity?

T(n) = 2 ⋅ T(n/2 + 17) + Θ(n)
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Summary until now
• Divide, Conquer (recursively or directly), and Combine.

• Same problem can be divided in different ways, leading to different algorithms with 
different performances!

‣ MergeSort uses half-and-half split, how about 1-and-(  - 1) split?


• Correctness of divide-and-conquer algorithms:


‣ Use mathematical induction


• Time complexity of divide-and-conquer algorithms:


‣ Recursion-tree method, substitution method (Guess and Verify), Master method

n
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Reduce-and-Conquer 
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Reduce and Conquer

• We might not need to consider all subproblems.


‣ In fact, sometimes only need to consider one subproblem.


• The “combine” step will also be easier, or simply trivial…


• It is also called decrease and conquer
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The Search Problem
• Input: an array  containing  elements, and an element .

• Output: index of  if it’s in , otherwise return “no”.

A n x

x A

9 3 7 1 5 6

• Simple solution: sequential scan.


• Worst-case runtime is , but inevitable…


• What if the input array is sorted?

Θ(n)

9 3 7 1 5 61

returns “4” returns “no”

8

2 4 4 5 6 7 8 9 11 17 23 28 17
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Binary Search

• Find the middle element: 7.


• Compare 17 to the middle element: 7 < 17.


• Reduce the array to one of the two splits: the right half.


• Recurse!

2 4 4 5 6 7 8 9 11 17 23 28 17
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Binary Search

• Find the middle element: 11.


• Compare 17 to the middle element: 11 < 17.


• Reduce the array to one of the two splits: the right half.


• Recurse!

2 4 4 5 6 7 8 9 11 17 23 28 17
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Binary Search

• Find the middle element: 23.


• Compare 17 to the middle element: 23 > 17.


• Reduce the array to one of the two splits: the left half.


• Recurse!

2 4 4 5 6 7 8 9 11 17 23 28 17
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Binary Search

• Find the middle element: 23.


• Compare 17 to the middle element: 17 = 17.


• We have found the element, and we are done!

2 4 4 5 6 7 8 9 11 17 23 28 17
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Binary Search

Reduce-and-Conquer: 

• Start with a problem of size .

• Compare the middle element to the specified element.


• Either we are done or have reduced the problem to size .


‣ Only consider one of the two subproblems. (REDUCE!)


• Repeat.

n

n/2

2 4 4 5 6 7 8 9 11 17 23 28 17
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Binary Search
BinarySearch(A, x):
left := 1, right := n
while true
  middle :=  (left+right)/2
  if  A[middle] = x
    return middle

  else if  A[middle] < x
    left := middle + 1

  else
    right := middle - 1

• Does it solve the search problem, 
given the input array is sorted?


‣ No! (E.g., when x is not in A.)

• Does it solve the search problem, 
given the input is sorted and ?


‣ Yes?

x ∈ A

• At the beginning of each iteration, A[left] ≤ x ≤ A[right]. (Use induction.)

• At the beginning of some iteration, it must be left = right.

• In that iteration, it must be A[left]  = A[right] = x, and we are done!

floor or ceil?
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Binary Search
BinarySearch(A, x):
left := 1, right := n
while left <= right
  middle :=  (left+right)/2
  if  A[middle] = x
    return middle

  else if  A[middle] < x
    left := middle + 1

  else
    right := middle - 1

• Why this algorithm works?


‣ if  previous argument still holds.


‣ if , then 


‣ After each iteration, we reduce input size by at least half.

‣ At some iteration, left = right.

‣ After that iteration, left > right.

‣

x ∈ A

x ∉ A

Time complexity of BinarySearch? T(n) ≤ T(n/2) + Θ(1) T(n) = O(log n)
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Peak finding
• Input: an array A of n elements.


• Output: a local maximum; i.e., a peak.


‣ An element A[i] is a peak if it is no smaller than its adjacent elements.


‣ Every non-empty A has at least one peak. (Why?)
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Local vs Global Maximum

• Global max is better, but finding it takes more time…


‣ Sequential scan needs  time, and it’s inevitable.


• Sometimes a peak is “good enough”.


• Finding a peak costs much less time!

O(n)
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Peak finding

• Find middle element: 6.


• Compare middle element to its adjacent elements:


‣ Middle element ≥ its left neighbor? Yes.


‣ Middle element ≥ its right neighbor? No!


• Reduce the array to one of the two splits: the right half. (There must exist a peak in the part 
containing the large neighbor! [WHY?])


• Recurse!

2 4 9 2 5 6 23 4 6 8 17 5
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Peak finding

• Find middle element: 6.


• Compare middle element to its adjacent elements:


‣ Middle element ≥ its left neighbor? Yes.


‣ Middle element ≥ its right neighbor? No!


• Reduce the array to one of the two splits: the right half. (There must exist a peak in the part 
containing the large neighbor! [WHY?])


• Recurse!

2 4 9 2 5 6 23 4 6 8 17 5
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Peak finding

• Find middle element: 17.


• Compare middle element to its adjacent elements:


‣ Middle element ≥ its left neighbor? Yes.


‣ Middle element ≥ its right neighbor? Yes, We are done!

2 4 9 2 5 6 23 4 6 8 17 5
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Peak finding
PeakFinding(A):
left := 1, right := n
while left <= right
  middle :=  (left+right)/2
  if  middle > left  and  A[middle - 1] > A[middle]
    right := middle - 1

  else if  middle < right  and  A[middle + 1] > A[middle]
    left := middle + 1

  else
    return A[middle]

Current array is not empty.

Get the middle element.

If middle < left neighbor  
(if there is such neighbor),  
recurse into left part.

If middle < right neighbor  
(if there is such neighbor),  
recurse into right part.

We find a peak!

Why this algorithm is correct? 1. It always terminates. (WHY?)
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Peak finding
PeakFinding(A):
left := 1, right := n
while left <= right
  middle :=  (left+right)/2
  if  middle > left  and  A[middle - 1] > A[middle]
    right := middle - 1

  else if  middle < right  and  A[middle + 1] > A[middle]
    left := middle + 1

  else
    return A[middle]

Current array is not empty.

Get the middle element.

If middle < left neighbor  
(if there is such neighbor),  
recurse into left part.

If middle < right neighbor  
(if there is such neighbor),  
recurse into right part.

We find a peak!

Why this algorithm is correct? 2. It always returns a right answer. (WHY?)
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Peak finding
PeakFinding(A):
left := 1, right := n
while left <= right
  middle :=  (left+right)/2
  if  middle > left  and  A[middle - 1] > A[middle]
    right := middle - 1

  else if  middle < right  and  A[middle + 1] > A[middle]
    left := middle + 1

  else
    return A[middle]

Current array is not empty.

Get the middle element.

If middle < left neighbor  
(if there is such neighbor),  
recurse into left part.

If middle < right neighbor  
(if there is such neighbor),  
recurse into right part.

We find a peak!

Runtime of this algorithm? O(log n) Finding local max is faster!
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Peak finding, now in 2D！
• Input: a 2D array A of  elements.


• Output: a local maximum; i.e., a peak.


‣ An element A[i][j] is a peak if it’s no smaller than its four adjacent 
elements.

n × n = n2

10 8 5 2 1
3 2 1 5 7

17 5 9 2 5
7 9 4 6 8
6 1 4 6 8

‣ Every non-empty A has at least one peak. (WHY?)


- Proof: Start from a node, follow an “increasing path”, eventually must 
reach a peak.
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Peak finding in 2D, Algorithm I
• “Compress” each column into one element, resulting an 1D array.


‣ Use max of each column to represent that column.


‣ Run previous algorithm on the 1D array and return a peak.

10 8 5 2 1
3 2 1 5 7

17 5 9 2 5
7 9 4 6 8
6 1 4 6 8

17 9 9 6 8
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Peak finding in 2D, Algorithm I
• “Compress” each column into one element, resulting an 1D array.


‣ Use max of each column to represent that column.


‣ Run previous algorithm on the 1D array and return a peak.

a
c m d
mi b mj

Correctness? Complexity

 m ≥ a, m ≥ b
m ≥ mi ≥ c, m ≥ mj ≥ d

O(n2) + O(log n) = O(n2)

too slow… 
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Peak finding in 2D, Algorithm II
• Scan the middle column and find the max element m.


• If m is a peak then return it, and we are done.


• Otherwise, left or right neighbor of m is bigger than m.


• Recurse into that part. A divide (reduce) and conquer algorithm!

10 2 8 5 1 5 1
3 3 2 1 7 7 2
5 6 7 2 5 3 5
7 3 11 9 8 6 7
6 5 21 4 8 4 2
2 4 1 4 3 5 3
1 2 3 5 8 3 9

10 2 8 5 1 5 1
3 3 2 1 7 7 2
5 6 7 2 5 3 5
7 3 11 9 8 6 7
6 5 21 4 8 4 2
2 4 1 4 3 5 3
1 2 3 5 8 3 9

10 2 8 5 1 5 1
3 3 2 1 7 7 2
5 6 7 2 5 3 5
7 3 11 9 8 6 7
6 5 21 4 8 4 2
2 4 1 4 3 5 3
1 2 3 5 8 3 9

10 2 8 5 1 5 1
3 3 2 1 7 7 2
5 6 7 2 5 3 5
7 3 11 9 8 6 7
6 5 21 4 8 4 2
2 4 1 4 3 5 3
1 2 3 5 8 3 9

10 2 8 5 1 5 1
3 3 2 1 7 7 2
5 6 7 2 5 3 5
7 3 11 9 8 6 7
6 5 21 4 8 4 2
2 4 1 4 3 5 3
1 2 3 5 8 3 9
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Peak finding in 2D, Algorithm II
‣ Scan the middle column and find the max element m.


‣ If m is a peak then return it, and we are done.


‣ Otherwise, left or right neighbor of m is bigger than m, then recurse into that part.

Correctness? 

• Max of middle column is a peak; or a peak exists in the part containing the 
large neighbor, and that peak is the max of its column.


• A peak (found by the algorithm) in the part containing the large neighbor is also 
a peak in the original matrix.


• The algorithm eventually returns a peak of some (sub)matrix.



智能软件与⼯程学院

School of Intelligent Software and Engineering 

Peak finding in 2D, Algorithm II
‣ Scan the middle column and find the max element m.


‣ If m is a peak then return it, and we are done.


‣ Otherwise, left or right neighbor of m is bigger than m, then recurse into that part.

Runtime of this algorithm? 

•   implying 


• 


•

T(n) ≤ T(n/2) + Θ(n) T(n) = O(n)

T(n, n′￼) ≤ T(n/2, n′￼) + O(n′￼)

T(n, n′￼) ≤ (lg n) ⋅ O(n′￼) = O(n′￼lg n) = O(n lg n)

Much faster than the  algorithm, but can we do better?O(n2)

Not correct! 2D!
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Peak finding in 2D

• When considering the “reducing”,  the smaller the size of the subproblem 
is, the better the performance is the algorithm


• Algorithm II reduce the problem into halve size, can it be smaller?
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Peak finding in 2D, Algorithm III
‣ Scan the “cross” and find max element m.


‣ If m is a peak then return it, and we are done.


‣ Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

10 8 5 2 1
3 2 1 5 7
5 11 9 2 5
7 21 4 6 8
6 1 4 6 8

10 8 5 2 1
3 2 1 5 7
5 11 9 2 5
7 21 4 6 8
6 1 4 6 8

10 8 5 2 1
3 2 1 5 7
5 11 9 2 5
7 21 4 6 8
6 1 4 6 8

10 8 5 2 1
3 2 1 5 7
5 11 9 2 5
7 21 4 6 8
6 1 4 6 8
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Peak finding in 2D, Algorithm III

• Max in the cross is a peak; or a peak exists in the quadrant containing the large 
neighbor, and that peak is the max of some cross.


• A peak (found by the algorithm) in the quadrant containing the large neighbor is 
also a peak in the original matrix.


• The algorithm eventually returns a peak of some (sub)matrix.

‣ Scan the “cross” and find max element m.


‣ If m is a peak then return it, and we are done.


‣ Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

Correctness? 
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Peak finding in 2D, Algorithm III
‣ Scan the “cross” and find max element m.


‣ If m is a peak then return it, and we are done.


‣ Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

False Claim:  A peak (found by the algorithm) in the quadrant containing the large neighbor is also 
a peak in the original matrix. 

4
4
4

4 4 4 4 4 4 5
4 1 6
4 1 1 1
4 3 2

4
4
4

4 4 4 4 4 4 5
4 1 6
4 1 1 1
4 3 2

4
4
4

4 4 4 4 4 4 5
4 1 6
4 1 1 1
4 3 2

4
4
4

4 4 4 4 4 4 5
4 1 6
4 1 1 1
4 3 2

4
4
4

4 4 4 4 4 4 5
4 1 6
4 1 1 1
4 3 2

Not a peak!
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Peak finding in 2D, Algorithm III
‣ Scan the “cross” and find max element m.


‣ If m is a peak then return it, and we are done.


‣ Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

False Claim:  A peak (found by the algorithm) in the quadrant containing the large neighbor is also 
a peak in the original matrix. 

Not a peak!

4
4
4

4 4 4 4 4 4 5
4 1 6
4 1 1 1
4 3 2

If the peak found in the quadrant is on the boundary of the 
quadrant, then it may be smaller than its neighbor that is in 
the original matrix!

How to fix it?
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Peak finding in 2D, Algorithm III
‣ Scan the “cross” and find max element m.


‣ If m is a peak then return it, and we are done.


‣ Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

“cross and boundary” (i.e., a “window frame”)
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Peak finding in 2D, Algorithm III
‣ Scan the “cross” and find max element m.


‣ If m is a peak then return it, and we are done.


‣ Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

“cross and boundary” (i.e., a “window frame”)

m
h

r g

m
h

r g

g is peak in this window 
g is peak in the original matrix?
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Peak finding in 2D, Algorithm III
‣ Scan the “cross” and find max element m.


‣ If m is a peak then return it, and we are done.


‣ Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

“cross and boundary” (i.e., a “window frame”)

m
h

r g

Claim:  A peak (found by the algorithm) in the quadrant containing 
the large neighbor is also a peak in the original matrix. 
Proof:
• If the peak found by the algorithm in the quadrant is not on 

the boundary of the quadrant, then clearly it’s a peak in the 
original matrix.

• Otherwise, the peak found by the algorithm in the quadrant is 
on the boundary of the quadrant (say ); and it’s also a peak in 
the original matrix (since ).

g
g ≥ h ≥ m ≥ r



智能软件与⼯程学院

School of Intelligent Software and Engineering 

Peak finding in 2D, Algorithm III

• 


•

T(n, n) ≤ T(n/2, n/2) + Θ(n)

T(n, n) = O(n)

‣ Scan the “cross” and find max element m.


‣ If m is a peak then return it, and we are done.


‣ Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

“cross and boundary” (i.e., a “window frame”)

Runtime of this algorithm 

m
h

r g
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Further reading
• [CLRS] Ch.2 (2.3), Ch.4


• [Erickson] Ch.1 (excluding 1.5 and 1.8)


