
智能软件与⼯程学院

School of Intelligent Software and Engineering

分治策略 (续)

Divide and Conquer Cont'd

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne.Thanks for their supports! We also use some materials from stanford-cs161.

钮鑫涛

Nanjing University

2023 Fall

智能软件与⼯程学院

School of Intelligent Software and Engineering

The recursion-tree method
• A great tool for solving divide-and-

conquer recurrences.

‣ Simple, pictorial, yet general.

• A recursion tree is a rooted tree with
one node for each recursive subproblem.

• The value of each node is the time
spent on that subproblem excluding
recursive calls.

• The sum of all values is the runtime of
the algorithm.

A recursion tree for the recurrence T(n) = rT(n/c) + f(n)

智能软件与⼯程学院

School of Intelligent Software and Engineering

The recurrence-tree method
• Typical divide-and-conquer approach:

‣ Divide a size n problem into r subproblems
each of size , the cost for “divide” and
“combine” is

‣ Solve problem directly if for some
small constant .

‣

n/c
f(n)

n ≤ n0
n0

T(n) = r ⋅ T(n/c) + f(n), T(n0) = c0

A recursion tree for the recurrence T(n) = rT(n/c) + f(n)
‣ T(n) = r ⋅ T(n/c) + f(n), T(1) = f(1)

we can choose whatever value of is
most convenient for our analysis

n0 Total cost is , where
L

∑
i=0

ri ⋅ f(n/ci) L = logc n

智能软件与⼯程学院

School of Intelligent Software and Engineering

Combine recursion tree and substitution
• What if subproblems are of different sizes?

‣ E.g., T(n) = T(n/3) + T(2n/3) + Θ(n)
cn

c(
n
3

) c(
2n
3

)

c(
n
9

) c(
2n
9

) c(
4n
9

)c(
2n
9

)

Θ(1) Θ(1)
Θ(1) Θ(1) Θ(1) Θ(1)

Θ(1) Θ(1) Θ(1)
Θ(1)When the problem size ≤ n0

Unbalanced, different root-to-leaf
having different lengths

智能软件与⼯程学院

School of Intelligent Software and Engineering

Combine recursion tree and substitution
• What if subproblems are of different sizes?

‣ E.g., T(n) = T(n/3) + T(2n/3) + Θ(n)
cn

c(
n
3

) c(
2n
3

)

c(
n
9

) c(
2n
9

) c(
4n
9

)c(
2n
9

)

Θ(1) Θ(1)
Θ(1) Θ(1) Θ(1) Θ(1)

Θ(1) Θ(1) Θ(1)
Θ(1)When the problem size ≤ n0

Height: ⌊log3/2(n/n0)⌋ + 1

level cost: cn

level cost: cn

The cost of all
internal nodes is:

O(n lg n)

level cost: cn

don’t care about
base constant

factors

智能软件与⼯程学院

School of Intelligent Software and Engineering

Combine recursion tree and substitution
• What if subproblems are of different sizes?

‣ E.g., T(n) = T(n/3) + T(2n/3) + Θ(n)
cn

c(
n
3

) c(
2n
3

)

c(
n
9

) c(
2n
9

) c(
4n
9

)c(
2n
9

)

Θ(1) Θ(1)
Θ(1) Θ(1) Θ(1) Θ(1)

Θ(1) Θ(1) Θ(1)
Θ(1)When the problem size ≤ n0

level cost: cn

level cost: cn

level cost: cn

How many leaves?

Height: ⌊log3/2(n/n0)⌋ + 1

智能软件与⼯程学院

School of Intelligent Software and Engineering

Combine recursion tree and substitution

• Since the height (max lengths from root to leaf) = ,
then the size of leaves will is smaller than ?

‣ Leads to the cost of leaves to be

‣ not tight!

• Can we get a more accurate number of leaves?

‣ Guess, e.g., the leaves are also ?

h ⌊log3/2(n/n0)⌋ + 1
2h = 2⌊log3/2 n⌋+1 ≤ 2nlog3/2 2

O(nlog3/2 2) ∼ O(n1.71)

O(n lg n) + O(n1.71) = O(n1.71) →

O(n lg n)

智能软件与⼯程学院

School of Intelligent Software and Engineering

Combine recursion tree and substitution
• Guess and verify

‣ Let be the number of leaves in the recursion tree for

‣

‣ Inductive hypothesis: , for all values less than

‣ Base case: , which is very easy to be satisfied by choosing proper

‣ Inductive step:

L(n) T(n)

L(n) = {1 if n < n0

L(n/3) + L(2n/3) if n ≥ n0

L(n) ≤ d ⋅ n lg(n + 1) n

L(1) ≤ d ⋅ lg 2 d

L(n) = L(n/3) + L(2n/3) ≤ d ⋅ n/3 lg(n/3 + 1) + d ⋅ 2n/3 lg(2n/3 + 1)
< d ⋅ n lg(2n/3 + 1) < d ⋅ n lg(n + 1) The cost of all

leaves is:

O(n lg n)

智能软件与⼯程学院

School of Intelligent Software and Engineering

Combine recursion tree and substitution
• What if subproblems are of different sizes?

‣ E.g., T(n) = T(n/3) + T(2n/3) + Θ(n)
cn

c(
n
3

) c(
2n
3

)

c(
n
9

) c(
2n
9

) c(
4n
9

)c(
2n
9

)

Θ(1) Θ(1)
Θ(1) Θ(1) Θ(1) Θ(1)

Θ(1) Θ(1) Θ(1)
Θ(1)When the problem size ≤ n0

Complexity: O(n lg n)

智能软件与⼯程学院

School of Intelligent Software and Engineering

Master

Method

智能软件与⼯程学院

School of Intelligent Software and Engineering

Simple version of Master Theorem
Theorem (Master theorem, 主定理) Let and , and be constants (independent of),
and let be defined on the nonnegative integers by the recurrence

Then has the following asymptotic bounds:

a ≥ 1 b > 1 d n
T(n)

T(n) = a ⋅ T(n/b) + Θ(nd)

T(n)

T(n) =
Θ(nd lg n) if a = bd

Θ(nd) if a < bd

Θ(nlogb a) if a > bd

: number of subproblems
 : factor by which input size shrinks
 : need to do work to create all the subproblems and combine their solutions

a
b
d nd

Interpret to either or , and the theorem is still truen/b ⌊n/b⌋ ⌈n/b⌉

智能软件与⼯程学院

School of Intelligent Software and Engineering

Applications of master theorem
• Karatsuba integer multiplication

‣ , leading to

‣

• MergeSort

‣ , leading to

‣

• Consider the following:

‣ , leading to

‣

T(n) = 3T(n/2) + Θ(n) → a = 3, b = 2, d = 1 a > bd

T(n) = Θ(nlog2 3) ∼ Θ(n1.6)

T(n) = 2T(n/2) + Θ(n) → a = 2, b = 2, d = 1 a = bd

T(n) = Θ(n lg n)

T(n) = T(n/2) + Θ(n) → a = 1, b = 2, d = 1 a < bd

T(n) = Θ(n)

T(n) = a ⋅ T(n/b) + Θ(nd)

T(n) =
Θ(nd lg n) if a = bd

Θ(nd) if a < bd

Θ(nlogb a) if a > bd

智能软件与⼯程学院

School of Intelligent Software and Engineering

Proof of the master theorem
• Suppose T(n) = a ⋅ T(n/b) + c ⋅ nd

Total cost is c ⋅ nd ⋅
logb n

∑
i=0

(a/bd)t

cnd

c(
n
b

) c(
n
b

)

c(
n
b2

)

level cost: cnd

level cost: a ⋅ c(n/b)dc(
n
b

) c(
n
b

)
a

c(
n
b2

) c(
n
b2

) c(
n
b2

)

a

c(
n
b2

)c(
n
b2

) c(
n
b2

) c(
n
b2

)

a

c(
n
b2

) c(
n
b2

) c(
n
b2

) c(
n
b2

)

a

c(
n
b2

) c(
n
b2

) c(
n
b2

) c(
n
b2

)

a

………….

level cost: a2 ⋅ c(n/b2)d

level cost: at ⋅ c(n/bt)d

………….
level cost: alogb n ⋅ cΘ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)………….

Let for convenience Θ(1) = c

智能软件与⼯程学院

School of Intelligent Software and Engineering

Now let’s check all the cases
• Case 1:

‣

a = bd

T(n) = cnd
logb n

∑
t=0

(a/bd)t

= cnd
logb n

∑
t=0

1

= cnd(logb n + 1)

= cnd(lg n/lg b + 1)

= Θ(nd lg n)

T(n) =
Θ(nd lg n) if a = bd

Θ(nd) if a < bd

Θ(nlogb a) if a > bd

智能软件与⼯程学院

School of Intelligent Software and Engineering

Now let’s check all the cases

• Case 2:

‣

a < bd

T(n) = cnd
logb n

∑
t=0

(a/bd)t

T(n) =
Θ(nd lg n) if a = bd

Θ(nd) if a < bd

Θ(nlogb a) if a > bd

智能软件与⼯程学院

School of Intelligent Software and Engineering

Geometric sums

• = for

‣ If , , with N growing and x being constant,

it is

‣ If x = 1, all terms are the same

‣ If x > 1, , with N growing and x being constant, it

is

N

∑
t=0

xt xN+1 − 1
x − 1

x ≠ 1

0 < x < 1 1 ≤
xN+1 − 1

x − 1
≤

1
1 − x

Θ(1)

xN ≤
xN+1 − 1

x − 1
≤ xN ⋅ (

x
x − 1

)

Θ(xN)

智能软件与⼯程学院

School of Intelligent Software and Engineering

Now let’s check all the cases

• Case 2:

‣

a < bd

T(n) = cnd
logb n

∑
t=0

(a/bd)t

= cnd ⋅ [some constant]

= Θ(nd)

T(n) =
Θ(nd lg n) if a = bd

Θ(nd) if a < bd

Θ(nlogb a) if a > bd

智能软件与⼯程学院

School of Intelligent Software and Engineering

Now let’s check all the cases

• Case 3:

‣

a > bd

T(n) = cnd
logb n

∑
t=0

(a/bd)t

= Θ(nd(a/bd)logb n)

= Θ(nlogb a)

T(n) =
Θ(nd lg n) if a = bd

Θ(nd) if a < bd

Θ(nlogb a) if a > bd

智能软件与⼯程学院

School of Intelligent Software and Engineering

Understanding the master theorem

• Branching causes the number of problems to explode! The most work is
at the bottom of the tree!

• The problems lower in the tree are smaller! The most work is at the top of
the tree!

T(n) = a ⋅ T(n/b) + Θ(nd)

T(n) =
Θ(nd lg n) if a = bd

Θ(nd) if a < bd

Θ(nlogb a) if a > bd

: number of subproblems
 : factor by which input size shrinks
 : need to do work to create all the

subproblems and combine their solutions

a
b
d nd

智能软件与⼯程学院

School of Intelligent Software and Engineering

General Master Theorem
Theorem (Master theorem, 主定理) Let and be constants, and let be a
function, and let be defined on the nonnegative integers by the recurrence

where we interpret to either or . Then has the following asymptotic bounds:

1. If for some constant , then = .

2. If , then = .

3. If for some constant , and if for some and
all sufficiently large , then = .

a ≥ 1 b > 1 f(n)
T(n)

T(n) = a ⋅ T(n/b) + f(n)

n/b ⌊n/b⌋ ⌈n/b⌉ T(n)

f(n) = O(nlogb a−ϵ) ϵ > 0 T(n) Θ(nlogb a)

f(n) = Θ(nlogb a) T(n) Θ(nlogb a lg n)

f(n) = Ω(nlogb a+ϵ) ϵ > 0 a ⋅ f(n/b) ≤ c ⋅ f(n) c < 1
n T(n) Θ(f(n))

智能软件与⼯程学院

School of Intelligent Software and Engineering

General Master Theorem

• The Master Theorem does not cover all cases!

• For example to

‣ If and , case one does not apply

• When master theorem does not apply, we need to use substitution approach and recursion tree method.

f(n) = O(nlogb a−ϵ)

a = b = 2 f(n) = n/lg n

Theorem (Master theorem, 主定理) Let and be constants, and let be a function, and let be defined on the nonnegative
integers by the recurrence

where we interpret to either or . Then has the following asymptotic bounds:

1. If for some constant , then = .

2. If , then = .

3. If for some constant , and if for some and all sufficiently large , then = .

a ≥ 1 b > 1 f(n) T(n)

T(n) = a ⋅ T(n/b) + f(n)

n/b ⌊n/b⌋ ⌈n/b⌉ T(n)

f(n) = O(nlogb a−ϵ) ϵ > 0 T(n) Θ(nlogb a)

f(n) = Θ(nlogb a) T(n) Θ(nlogb a lg n)

f(n) = Ω(nlogb a+ϵ) ϵ > 0 a ⋅ f(n/b) ≤ c ⋅ f(n) c < 1 n T(n) Θ(f(n))

智能软件与⼯程学院

School of Intelligent Software and Engineering

Ignoring Floors and Ceilings is Okay

• When consider the recurrence (递归式) of MergeSort, i.e.,

‣ What if the given is odd? What it is mean sort an array of size ?

• Actually, the actual recurrence of MergeSort is

• How can we get the real time complexity of this recurrence?

T(n) = 2 ⋅ T(n/2) + Θ(n)

n 13
2

T(n) = T(⌈n/2⌉) + T(⌊n/2⌋) + Θ(n)

智能软件与⼯程学院

School of Intelligent Software and Engineering

Domain transformation
• We can transform the recurrence into a more familiar form, by defining a new

function in terms of the one we want to solve, e.g:

‣ First, let’s overestimate the time bound, we have the following relation to
eliminate the ceiling:

‣ Define a new function , choosing the constant so that
 satisfies the simpler recurrence

-

T(n) ≤ 2 ⋅ T(⌈n/2⌉) + Θ(n) ≤ 2 ⋅ T(n/2 + 1) + Θ(n)

S(n) = T(n + α) α
S(n) S(n) ≤ 2S(n/2) + Θ(n)

S(n) = T(n + α) ≤ 2 ⋅ T(n/2 + α/2 + 1) + Θ(n + α)
= 2 ⋅ S(n/2 + α/2 + 1 − α) + Θ(n + α)

- Setting simplifies this recurrence, i.e., α = 2 S(n) ≤ S(n/2) + Θ(n)

智能软件与⼯程学院

School of Intelligent Software and Engineering

Domain transformation
•

•

•

• We have

• A similar argument implies the matching lower bound

• Therefore,

T(n) ≤ 2 ⋅ T(⌈n/2⌉) + Θ(n) ≤ 2 ⋅ T(n/2 + 1) + Θ(n)

S(n) = T(n + 2)

S(n) ≤ S(n/2) + Θ(n) → S(n) = O(n log n)

T(n) = S(n − 2) = O((n − 2)log(n − 2)) = O(n log n)

T(n) = Ω(n log n)

T(n) = Θ(n log n)

智能软件与⼯程学院

School of Intelligent Software and Engineering

Domain transformation

• Similar domain transformations can be used to remove floors, ceilings,
and even lower order terms from any divide and conquer recurrence

• But now that we realize this, we don’t need to bother grinding through the
details ever again!

智能软件与⼯程学院

School of Intelligent Software and Engineering

A simple quiz

• Consider the recurrence:

‣

• Can you get its time complexity?

T(n) = 2 ⋅ T(n/2 + 17) + Θ(n)

智能软件与⼯程学院

School of Intelligent Software and Engineering

Summary until now
• Divide, Conquer (recursively or directly), and Combine.

• Same problem can be divided in different ways, leading to different algorithms with
different performances!

‣ MergeSort uses half-and-half split, how about 1-and-(- 1) split?

• Correctness of divide-and-conquer algorithms:

‣ Use mathematical induction

• Time complexity of divide-and-conquer algorithms:

‣ Recursion-tree method, substitution method (Guess and Verify), Master method

n

智能软件与⼯程学院

School of Intelligent Software and Engineering

Reduce-and-Conquer

智能软件与⼯程学院

School of Intelligent Software and Engineering

Reduce and Conquer

• We might not need to consider all subproblems.

‣ In fact, sometimes only need to consider one subproblem.

• The “combine” step will also be easier, or simply trivial…

• It is also called decrease and conquer

智能软件与⼯程学院

School of Intelligent Software and Engineering

The Search Problem
• Input: an array containing elements, and an element .

• Output: index of if it’s in , otherwise return “no”.

A n x

x A

9 3 7 1 5 6

• Simple solution: sequential scan.

• Worst-case runtime is , but inevitable…

• What if the input array is sorted?

Θ(n)

9 3 7 1 5 61

returns “4” returns “no”

8

2 4 4 5 6 7 8 9 11 17 23 28 17

智能软件与⼯程学院

School of Intelligent Software and Engineering

Binary Search

• Find the middle element: 7.

• Compare 17 to the middle element: 7 < 17.

• Reduce the array to one of the two splits: the right half.

• Recurse!

2 4 4 5 6 7 8 9 11 17 23 28 17

智能软件与⼯程学院

School of Intelligent Software and Engineering

Binary Search

• Find the middle element: 11.

• Compare 17 to the middle element: 11 < 17.

• Reduce the array to one of the two splits: the right half.

• Recurse!

2 4 4 5 6 7 8 9 11 17 23 28 17

智能软件与⼯程学院

School of Intelligent Software and Engineering

Binary Search

• Find the middle element: 23.

• Compare 17 to the middle element: 23 > 17.

• Reduce the array to one of the two splits: the left half.

• Recurse!

2 4 4 5 6 7 8 9 11 17 23 28 17

智能软件与⼯程学院

School of Intelligent Software and Engineering

Binary Search

• Find the middle element: 23.

• Compare 17 to the middle element: 17 = 17.

• We have found the element, and we are done!

2 4 4 5 6 7 8 9 11 17 23 28 17

智能软件与⼯程学院

School of Intelligent Software and Engineering

Binary Search

Reduce-and-Conquer:

• Start with a problem of size .

• Compare the middle element to the specified element.

• Either we are done or have reduced the problem to size .

‣ Only consider one of the two subproblems. (REDUCE!)

• Repeat.

n

n/2

2 4 4 5 6 7 8 9 11 17 23 28 17

智能软件与⼯程学院

School of Intelligent Software and Engineering

Binary Search
BinarySearch(A, x):
left := 1, right := n
while true
 middle := (left+right)/2
 if A[middle] = x
 return middle

 else if A[middle] < x
 left := middle + 1

 else
 right := middle - 1

• Does it solve the search problem, 
given the input array is sorted?

‣ No! (E.g., when x is not in A.)

• Does it solve the search problem, 
given the input is sorted and ?

‣ Yes?

x ∈ A

• At the beginning of each iteration, A[left] ≤ x ≤ A[right]. (Use induction.)

• At the beginning of some iteration, it must be left = right.

• In that iteration, it must be A[left] = A[right] = x, and we are done!

floor or ceil?

智能软件与⼯程学院

School of Intelligent Software and Engineering

Binary Search
BinarySearch(A, x):
left := 1, right := n
while left <= right
 middle := (left+right)/2
 if A[middle] = x
 return middle

 else if A[middle] < x
 left := middle + 1

 else
 right := middle - 1

• Why this algorithm works?

‣ if previous argument still holds.

‣ if , then

‣ After each iteration, we reduce input size by at least half.

‣ At some iteration, left = right.

‣ After that iteration, left > right.

‣

x ∈ A

x ∉ A

Time complexity of BinarySearch? T(n) ≤ T(n/2) + Θ(1) T(n) = O(log n)

智能软件与⼯程学院

School of Intelligent Software and Engineering

Peak finding
• Input: an array A of n elements.

• Output: a local maximum; i.e., a peak.

‣ An element A[i] is a peak if it is no smaller than its adjacent elements.

‣ Every non-empty A has at least one peak. (Why?)

智能软件与⼯程学院

School of Intelligent Software and Engineering

Local vs Global Maximum

• Global max is better, but finding it takes more time…

‣ Sequential scan needs time, and it’s inevitable.

• Sometimes a peak is “good enough”.

• Finding a peak costs much less time!

O(n)

智能软件与⼯程学院

School of Intelligent Software and Engineering

Peak finding

• Find middle element: 6.

• Compare middle element to its adjacent elements:

‣ Middle element ≥ its left neighbor? Yes.

‣ Middle element ≥ its right neighbor? No!

• Reduce the array to one of the two splits: the right half. (There must exist a peak in the part
containing the large neighbor! [WHY?])

• Recurse!

2 4 9 2 5 6 23 4 6 8 17 5

智能软件与⼯程学院

School of Intelligent Software and Engineering

Peak finding

• Find middle element: 6.

• Compare middle element to its adjacent elements:

‣ Middle element ≥ its left neighbor? Yes.

‣ Middle element ≥ its right neighbor? No!

• Reduce the array to one of the two splits: the right half. (There must exist a peak in the part
containing the large neighbor! [WHY?])

• Recurse!

2 4 9 2 5 6 23 4 6 8 17 5

智能软件与⼯程学院

School of Intelligent Software and Engineering

Peak finding

• Find middle element: 17.

• Compare middle element to its adjacent elements:

‣ Middle element ≥ its left neighbor? Yes.

‣ Middle element ≥ its right neighbor? Yes, We are done!

2 4 9 2 5 6 23 4 6 8 17 5

智能软件与⼯程学院

School of Intelligent Software and Engineering

Peak finding
PeakFinding(A):
left := 1, right := n
while left <= right
 middle := (left+right)/2
 if middle > left and A[middle - 1] > A[middle]
 right := middle - 1

 else if middle < right and A[middle + 1] > A[middle]
 left := middle + 1

 else
 return A[middle]

Current array is not empty.

Get the middle element.

If middle < left neighbor  
(if there is such neighbor),  
recurse into left part.

If middle < right neighbor  
(if there is such neighbor),  
recurse into right part.

We find a peak!

Why this algorithm is correct? 1. It always terminates. (WHY?)

智能软件与⼯程学院

School of Intelligent Software and Engineering

Peak finding
PeakFinding(A):
left := 1, right := n
while left <= right
 middle := (left+right)/2
 if middle > left and A[middle - 1] > A[middle]
 right := middle - 1

 else if middle < right and A[middle + 1] > A[middle]
 left := middle + 1

 else
 return A[middle]

Current array is not empty.

Get the middle element.

If middle < left neighbor  
(if there is such neighbor),  
recurse into left part.

If middle < right neighbor  
(if there is such neighbor),  
recurse into right part.

We find a peak!

Why this algorithm is correct? 2. It always returns a right answer. (WHY?)

智能软件与⼯程学院

School of Intelligent Software and Engineering

Peak finding
PeakFinding(A):
left := 1, right := n
while left <= right
 middle := (left+right)/2
 if middle > left and A[middle - 1] > A[middle]
 right := middle - 1

 else if middle < right and A[middle + 1] > A[middle]
 left := middle + 1

 else
 return A[middle]

Current array is not empty.

Get the middle element.

If middle < left neighbor  
(if there is such neighbor),  
recurse into left part.

If middle < right neighbor  
(if there is such neighbor),  
recurse into right part.

We find a peak!

Runtime of this algorithm? O(log n) Finding local max is faster!

智能软件与⼯程学院

School of Intelligent Software and Engineering

Peak finding, now in 2D！
• Input: a 2D array A of elements.

• Output: a local maximum; i.e., a peak.

‣ An element A[i][j] is a peak if it’s no smaller than its four adjacent
elements.

n × n = n2

10 8 5 2 1
3 2 1 5 7

17 5 9 2 5
7 9 4 6 8
6 1 4 6 8

‣ Every non-empty A has at least one peak. (WHY?)

- Proof: Start from a node, follow an “increasing path”, eventually must
reach a peak.

智能软件与⼯程学院

School of Intelligent Software and Engineering

Peak finding in 2D, Algorithm I
• “Compress” each column into one element, resulting an 1D array.

‣ Use max of each column to represent that column.

‣ Run previous algorithm on the 1D array and return a peak.

10 8 5 2 1
3 2 1 5 7

17 5 9 2 5
7 9 4 6 8
6 1 4 6 8

17 9 9 6 8

智能软件与⼯程学院

School of Intelligent Software and Engineering

Peak finding in 2D, Algorithm I
• “Compress” each column into one element, resulting an 1D array.

‣ Use max of each column to represent that column.

‣ Run previous algorithm on the 1D array and return a peak.

a
c m d
mi b mj

Correctness? Complexity

 m ≥ a, m ≥ b
m ≥ mi ≥ c, m ≥ mj ≥ d

O(n2) + O(log n) = O(n2)

too slow…

智能软件与⼯程学院

School of Intelligent Software and Engineering

Peak finding in 2D, Algorithm II
• Scan the middle column and find the max element m.

• If m is a peak then return it, and we are done.

• Otherwise, left or right neighbor of m is bigger than m.

• Recurse into that part. A divide (reduce) and conquer algorithm!

10 2 8 5 1 5 1
3 3 2 1 7 7 2
5 6 7 2 5 3 5
7 3 11 9 8 6 7
6 5 21 4 8 4 2
2 4 1 4 3 5 3
1 2 3 5 8 3 9

10 2 8 5 1 5 1
3 3 2 1 7 7 2
5 6 7 2 5 3 5
7 3 11 9 8 6 7
6 5 21 4 8 4 2
2 4 1 4 3 5 3
1 2 3 5 8 3 9

10 2 8 5 1 5 1
3 3 2 1 7 7 2
5 6 7 2 5 3 5
7 3 11 9 8 6 7
6 5 21 4 8 4 2
2 4 1 4 3 5 3
1 2 3 5 8 3 9

10 2 8 5 1 5 1
3 3 2 1 7 7 2
5 6 7 2 5 3 5
7 3 11 9 8 6 7
6 5 21 4 8 4 2
2 4 1 4 3 5 3
1 2 3 5 8 3 9

10 2 8 5 1 5 1
3 3 2 1 7 7 2
5 6 7 2 5 3 5
7 3 11 9 8 6 7
6 5 21 4 8 4 2
2 4 1 4 3 5 3
1 2 3 5 8 3 9

智能软件与⼯程学院

School of Intelligent Software and Engineering

Peak finding in 2D, Algorithm II
‣ Scan the middle column and find the max element m.

‣ If m is a peak then return it, and we are done.

‣ Otherwise, left or right neighbor of m is bigger than m, then recurse into that part.

Correctness?

• Max of middle column is a peak; or a peak exists in the part containing the
large neighbor, and that peak is the max of its column.

• A peak (found by the algorithm) in the part containing the large neighbor is also
a peak in the original matrix.

• The algorithm eventually returns a peak of some (sub)matrix.

智能软件与⼯程学院

School of Intelligent Software and Engineering

Peak finding in 2D, Algorithm II
‣ Scan the middle column and find the max element m.

‣ If m is a peak then return it, and we are done.

‣ Otherwise, left or right neighbor of m is bigger than m, then recurse into that part.

Runtime of this algorithm?

• implying

•

•

T(n) ≤ T(n/2) + Θ(n) T(n) = O(n)

T(n, n′￼) ≤ T(n/2, n′￼) + O(n′￼)

T(n, n′￼) ≤ (lg n) ⋅ O(n′￼) = O(n′￼lg n) = O(n lg n)

Much faster than the algorithm, but can we do better?O(n2)

Not correct! 2D!

智能软件与⼯程学院

School of Intelligent Software and Engineering

Peak finding in 2D

• When considering the “reducing”, the smaller the size of the subproblem
is, the better the performance is the algorithm

• Algorithm II reduce the problem into halve size, can it be smaller?

智能软件与⼯程学院

School of Intelligent Software and Engineering

Peak finding in 2D, Algorithm III
‣ Scan the “cross” and find max element m.

‣ If m is a peak then return it, and we are done.

‣ Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

10 8 5 2 1
3 2 1 5 7
5 11 9 2 5
7 21 4 6 8
6 1 4 6 8

10 8 5 2 1
3 2 1 5 7
5 11 9 2 5
7 21 4 6 8
6 1 4 6 8

10 8 5 2 1
3 2 1 5 7
5 11 9 2 5
7 21 4 6 8
6 1 4 6 8

10 8 5 2 1
3 2 1 5 7
5 11 9 2 5
7 21 4 6 8
6 1 4 6 8

智能软件与⼯程学院

School of Intelligent Software and Engineering

Peak finding in 2D, Algorithm III

• Max in the cross is a peak; or a peak exists in the quadrant containing the large
neighbor, and that peak is the max of some cross.

• A peak (found by the algorithm) in the quadrant containing the large neighbor is
also a peak in the original matrix.

• The algorithm eventually returns a peak of some (sub)matrix.

‣ Scan the “cross” and find max element m.

‣ If m is a peak then return it, and we are done.

‣ Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

Correctness?

智能软件与⼯程学院

School of Intelligent Software and Engineering

Peak finding in 2D, Algorithm III
‣ Scan the “cross” and find max element m.

‣ If m is a peak then return it, and we are done.

‣ Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

False Claim: A peak (found by the algorithm) in the quadrant containing the large neighbor is also
a peak in the original matrix.

4
4
4

4 4 4 4 4 4 5
4 1 6
4 1 1 1
4 3 2

4
4
4

4 4 4 4 4 4 5
4 1 6
4 1 1 1
4 3 2

4
4
4

4 4 4 4 4 4 5
4 1 6
4 1 1 1
4 3 2

4
4
4

4 4 4 4 4 4 5
4 1 6
4 1 1 1
4 3 2

4
4
4

4 4 4 4 4 4 5
4 1 6
4 1 1 1
4 3 2

Not a peak!

智能软件与⼯程学院

School of Intelligent Software and Engineering

Peak finding in 2D, Algorithm III
‣ Scan the “cross” and find max element m.

‣ If m is a peak then return it, and we are done.

‣ Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

False Claim: A peak (found by the algorithm) in the quadrant containing the large neighbor is also
a peak in the original matrix.

Not a peak!

4
4
4

4 4 4 4 4 4 5
4 1 6
4 1 1 1
4 3 2

If the peak found in the quadrant is on the boundary of the
quadrant, then it may be smaller than its neighbor that is in
the original matrix!

How to fix it?

智能软件与⼯程学院

School of Intelligent Software and Engineering

Peak finding in 2D, Algorithm III
‣ Scan the “cross” and find max element m.

‣ If m is a peak then return it, and we are done.

‣ Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

“cross and boundary” (i.e., a “window frame”)

智能软件与⼯程学院

School of Intelligent Software and Engineering

Peak finding in 2D, Algorithm III
‣ Scan the “cross” and find max element m.

‣ If m is a peak then return it, and we are done.

‣ Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

“cross and boundary” (i.e., a “window frame”)

m
h

r g

m
h

r g

g is peak in this window
g is peak in the original matrix?

智能软件与⼯程学院

School of Intelligent Software and Engineering

Peak finding in 2D, Algorithm III
‣ Scan the “cross” and find max element m.

‣ If m is a peak then return it, and we are done.

‣ Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

“cross and boundary” (i.e., a “window frame”)

m
h

r g

Claim: A peak (found by the algorithm) in the quadrant containing
the large neighbor is also a peak in the original matrix.
Proof:
• If the peak found by the algorithm in the quadrant is not on

the boundary of the quadrant, then clearly it’s a peak in the
original matrix.

• Otherwise, the peak found by the algorithm in the quadrant is
on the boundary of the quadrant (say); and it’s also a peak in
the original matrix (since).

g
g ≥ h ≥ m ≥ r

智能软件与⼯程学院

School of Intelligent Software and Engineering

Peak finding in 2D, Algorithm III

•

•

T(n, n) ≤ T(n/2, n/2) + Θ(n)

T(n, n) = O(n)

‣ Scan the “cross” and find max element m.

‣ If m is a peak then return it, and we are done.

‣ Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

“cross and boundary” (i.e., a “window frame”)

Runtime of this algorithm

m
h

r g

智能软件与⼯程学院

School of Intelligent Software and Engineering

Further reading
• [CLRS] Ch.2 (2.3), Ch.4

• [Erickson] Ch.1 (excluding 1.5 and 1.8)

