

分治策略 (续) **Divide and Conquer Cont'd**

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne. Thanks for their supports! We also use some materials from stanford-cs161.

钮鑫涛 Nanjing University 2023 Fall

The recursion-tree method

- A great tool for solving divide-andconquer recurrences.
 - Simple, pictorial, yet general.
- A recursion tree is a rooted tree with one node for each recursive subproblem.
- The value of each node is the time spent on that subproblem excluding recursive calls.
- The **sum of all values** is the runtime of the algorithm.

A recursion tree for the recurrence T(n) = rT(n/c) + f(n)

The recurrence-tree method

- Typical divide-and-conquer approach:
 - Divide a size n problem into r subproblems each of size n/c, the cost for "divide" and "combine" is f(n)
 - ► Solve problem directly if $n \le n_0$ for some small constant n_0 .

•
$$T(n) = r \cdot T(n/c) + f(n), T(n_0) = c_0$$

• $T(n) = r \cdot T(n/c) + f(n), T(1) = f(1)$

we can choose whatever value of n_0 is most convenient for our analysis

A recursion tree for the recurrence T(n) = rT(n/c) + f(n)

• What if subproblems are of different sizes?

- - Leads to the cost of leaves to b
 - $O(n \lg n) + O(n^{1.71}) = O(n^{1.71}) \rightarrow \text{not tight!}$
- Can we get a more accurate number of leaves?
 - Guess, e.g., the leaves are also $O(n \lg n)$?

• Since the height (max lengths from root to leaf) $h = \lfloor \log_{3/2}(n/n_0) \rfloor + 1$, then the size of leaves will is smaller than $2^h = 2^{\lfloor \log_{3/2} n \rfloor + 1} \leq 2n^{\log_{3/2} 2}$?

be
$$O(n^{\log_{3/2} 2}) \sim O(n^{1.71})$$

- Guess and verify
 - Let L(n) be the number of leaves in the recursion tree for T(n)

$$L(n) = \begin{cases} 1 & \text{if } n < L(n/3) + L(2n/3) & \text{if } n < L(n/3) \end{cases}$$

- Inductive hypothesis: $L(n) \leq d \cdot n \lg(n+1)$, for all values less than n
- Base case: $L(1) \le d \cdot \lg 2$, which is very easy to be satisfied by choosing proper d
- Inductive step: $L(n) = L(n/3) + L(2n/3) \le d \cdot n/3 \lg(n/3 + 1) + d \cdot 2n/3 \lg(2n/3 + 1)$ $< d \cdot n \log(2n/3 + 1) < d \cdot n \log(n + 1)$

$$< n_{0}$$

 $\geq n_0$

The cost of all leaves is: $O(n \lg n)$

• What if subproblems are of different sizes?

Naster Nethod

Simple version of Master Theorem

and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = a \cdot T(n/b) + \Theta(n^d)$$

Then T(n) has the following asymptotic bounds:

$$T(n) = \begin{cases} \Theta(n^d \lg n) & \text{if } a = b^d \\ \Theta(n^d) & \text{if } a < b^d \\ \Theta(n^{\log_b a}) & \text{if } a > b^d \end{cases}$$

a: number of subproblems

- b : factor by which input size shrinks
- d : need to do n^d work to create all the subproblems and combine their solutions

Theorem (Master theorem, 主定理) Let $a \ge 1$ and b > 1, and d be constants (independent of n),

Interpret n/b to either $\lfloor n/b \rfloor$ or $\lfloor n/b \rfloor$, and the theorem is still true

Applications of master theorem $T(n) = a \cdot T(n/b) + \Theta(n^d)$

- Karatsuba integer multiplication
 - $T(n) = 3T(n/2) + \Theta(n) \rightarrow a = 3, b = 2, d = 1$, leading to $a > b^d$
 - $T(n) = \Theta(n^{\log_2 3}) \sim \Theta(n^{1.6})$
- MergeSort
 - $T(n) = 2T(n/2) + \Theta(n) \rightarrow a = 2, b = 2, d = 1$, leading to $a = b^d$
 - $T(n) = \Theta(n \lg n)$
- Consider the following:
 - $T(n) = T(n/2) + \Theta(n) \rightarrow a = 1, b = 2, d = 1$, leading to $a < b^d$

•
$$T(n) = \Theta(n)$$

 $T(n) = \begin{cases} \Theta(n^d \lg n) & \text{if } a = b^d \\ \Theta(n^d) & \text{if } a < b^d \\ \Theta(n^{\log_b a}) & \text{if } a > b^d \end{cases}$

Proof of the master theorem

• Suppose $T(n) = a \cdot T(n/b) + c \cdot n^d$

Now let's check all the cases

• Case 1: $a = b^d$

$$T(n) = cn^d \sum_{t=0}^{\log_b n} (a/b^d)^t$$

$$= cn^d \sum_{t=0}^{\log_b n} 1$$

$$= cn^d (\log_b n + 1)$$

 $= cn^d (\lg n / \lg b + 1)$

 $= \Theta(n^d \lg n)$

$$T(n) = \begin{cases} \Theta(n^d \lg n) & \text{if } a = \\ \Theta(n^d) & \text{if } a < \\ \Theta(n^{\log_b a}) & \text{if } a > \end{cases}$$

Now let's check all the cases

• Case 2: $a < b^d$

 $\log_b n$ $T(n) = cn^d \sum_{i=1}^{d} (a/b^d)^t$ t=0

$$T(n) = \begin{cases} \Theta(n^d \lg n) & \text{if } a = \\ \Theta(n^d) & \text{if } a < \\ \Theta(n^{\log_b a}) & \text{if } a > \end{cases}$$

Geometric sums

• If x = 1, all terms are the same

If
$$x > 1$$
, $x^N \le \frac{x^{N+1} - 1}{x - 1} \le x^N \cdot \left(\frac{x}{x}\right)$
is $\Theta(x^N)$

Now let's check all the cases

• Case 2: $a < b^d$

$$\int T(n) = cn^d \sum_{t=0}^{\log_b n} (a/b^d)^t$$

 $= cn^d \cdot [\text{some constant}]$

$$= \Theta(n^d)$$

$$T(n) = \begin{cases} \Theta(n^d \lg n) & \text{if } a = \\ \Theta(n^d) & \text{if } a < \\ \Theta(n^{\log_b a}) & \text{if } a > \end{cases}$$

Now let's check all the cases

• Case 3: $a > b^d$

$$\int T(n) = cn^d \sum_{t=0}^{\log_b n} (a/b^d)^t$$

 $= \Theta(n^d(a/b^d)^{\log_b n})$

 $= \Theta(n^{\log_b a})$

$$T(n) = \begin{cases} \Theta(n^d \lg n) & \text{if } a = \\ \Theta(n^d) & \text{if } a < \\ \Theta(n^{\log_b a}) & \text{if } a > \end{cases}$$

Understanding the master theorem

$$T(n) = a \cdot T(n/b) + \Theta(n^d)$$

$$T(n) = \begin{cases} \Theta(n^d \lg n) & \text{if } a = b^d \\ \Theta(n^d) & \text{if } a < b^d \\ \Theta(n^{\log_b a}) & \text{if } a > b^d \end{cases}$$

- Branching causes the number of problems to explode! The most work is at the bottom of the tree!
- The problems lower in the tree are smaller! The most work is at the top of the tree!

- *a*: number of subproblems
- *b* : factor by which input size shrinks
- d : need to do n^d work to create all the subproblems and combine their solutions

General Master Theorem

Theorem (Master theorem, 主定理) Let $a \ge 1$ and b > 1 be constants, and let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = a \cdot T(n/b) + f(n)$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $a \cdot f(n/b) \le c \cdot f(n)$ for some c < 1 and all sufficiently large *n*, then $T(n) = \Theta(f(n))$.

where we interpret n/b to either $\lfloor n/b \rfloor$ or $\lfloor n/b \rfloor$. Then T(n) has the following asymptotic bounds:

General Master Theorem

integers by the recurrence

$$T(n) = a \cdot T(n/b) + f(n)$$

where we interpret n/b to either $\lfloor n/b \rfloor$ or $\lfloor n/b \rfloor$. Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.

3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $a \cdot f(n/b) \le c \cdot f(n)$ for some c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

- The Master Theorem does not cover all cases!
- For example to $f(n) = O(n^{\log_b a \epsilon})$
 - If a = b = 2 and $f(n) = n/\lg n$, case one does not apply

Theorem (Master theorem, 主定理) Let $a \ge 1$ and b > 1 be constants, and let f(n) be a function, and let T(n) be defined on the nonnegative

When master theorem does not apply, we need to use substitution approach and recursion tree method.

Ignoring Floors and Ceilings is Okay

- When consider the **recurrence (递归式)** of MergeSort, i.e., $T(n) = 2 \cdot T(n/2) + \Theta(n)$
 - What if the given *n* is odd? What it is mean sort an array of size $\frac{13}{2}$?
- Actually, the actual recurrence of MergeSort is $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n)$
- How can we get the real time complexity of this recurrence?

Domain transformation

- We can transform the recurrence into a more familiar form, by defining a new function in terms of the one we want to solve, e.g.
 - First, let's overestimate the time bound, we have the following relation to eliminate the ceiling: $T(n) \le 2 \cdot T([n/2]) + \Theta(n) \le 2 \cdot T(n/2 + 1) + \Theta(n)$
 - Define a new function $S(n) = T(n + \alpha)$, choosing the constant α so that S(n) satisfies the simpler recurrence $S(n) \leq 2S(n/2) + \Theta(n)$

$$-S(n) = T(n + \alpha) \le 2 \cdot T(n/2)$$

- $+\alpha/2 + 1) + \Theta(n + \alpha)$
- $= 2 \cdot S(n/2 + \alpha/2 + 1 \alpha) + \Theta(n + \alpha)$
- Setting $\alpha = 2$ simplifies this recurrence, i.e., $S(n) \leq S(n/2) + \Theta(n)$

Domain transformation

- $T(n) \le 2 \cdot T(\lceil n/2 \rceil) + \Theta(n) \le 2 \cdot T(n/2 + 1) + \Theta(n)$
- S(n) = T(n+2)
- $S(n) \le S(n/2) + \Theta(n) \rightarrow S(n) = O(n \log n)$
- We have $T(n) = S(n-2) = O((n-2)\log(n-2)) = O(n\log n)$
- A similar argument implies the matching lower bound $T(n) = \Omega(n \log n)$
- Therefore, $T(n) = \Theta(n \log n)$

Domain transformation

- Similar domain transformations can be used to remove floors, ceilings, and even lower order terms from any divide and conquer recurrence
- But now that we realize this, we don't need to bother grinding through the details ever again!

A simple quiz

- Consider the recurrence:
 - $T(n) = 2 \cdot T(n/2 + 17) + \Theta(n)$
- Can you get its time complexity?

Summary until now

- Divide, Conquer (recursively or directly), and Combine.
- Same problem can be divided in different ways, leading to different algorithms with different performances!
 - MergeSort uses half-and-half split, how about 1-and-(n 1) split?
- Correctness of divide-and-conquer algorithms:
 - Use mathematical induction
- Time complexity of divide-and-conquer algorithms:
 - Recursion-tree method, substitution method (Guess and Verify), Master method

Reduce-and-Conquer

Reduce and Conquer

- We might not need to consider all subproblems.
 - In fact, sometimes only need to consider one subproblem.
- The "combine" step will also be easier, or simply trivial...
- It is also called decrease and conquer

The Search Problem

- Input: an array A containing n elements, and an element x.
- Output: index of x if it's in A, otherwise return "no".

returns "4"

- Simple solution: sequential scan.
- Worst-case runtime is $\Theta(n)$, but inevitable...
- What if the input array is sorted?

2 4 4 5 6 7	8	9
-------------	---	---

9	3	7	1	5	6	8
---	---	---	---	---	---	---

returns "no"

2	4	4	5	6	7	8	9	
---	---	---	---	---	---	---	---	--

- Find the middle element: 7.
- Compare 17 to the middle element: 7 < 17.
- Reduce the array to one of the two splits: the right half.
- **Recurse!**

- Find the middle element: **11**.
- Compare 17 to the middle element: 11 < 17.
- Reduce the array to one of the two splits: the right half.
- **Recurse!**

2 4 4 5 6 7 8 9)
-----------------	---

- Find the middle element: 23.
- Compare 17 to the middle element: 23 > 17.
- Reduce the array to one of the two splits: the left half.
- **Recurse!**

- Find the middle element: 23.
- Compare 17 to the middle element: 17 = 17.
- We have found the element, and we are done!

7

Reduce-and-Conquer:

- Start with a problem of size *n*.
- Compare the middle element to the specified element.
- Either we are done or have reduced the problem to size n/2.
 - Only consider one of the two subproblems. (REDUCE!)
- Repeat. \bullet

BinarySearch(A, x): *left* := 1, *right* := *n* while *true* middle := (left+right)/2floor or ceil? if A[middle] = xreturn *middle* else if A[middle] < xleft := middle + 1else right := middle - 1

- At the beginning of each iteration, $A[left] \le x \le A[right]$. (Use induction.)
- At the beginning of some iteration, it must be *left* = *right*.
- In that iteration, it must be A[left] = A[right] = x, and we are done!

• Does it solve the search problem, given the input array is sorted?

► No! (E.g., when x is not in A.)

• Does it solve the search problem, given the input is sorted and $x \in A$?

Yes?

 $\leq x \leq A[right]$. (Use induction.) Is the *left* = *right*. [t] = x, and we are done!

<u>BinarySearch(A, x):</u> *left* := 1, *right* := *n* while *left* <= *right* middle := (left+right)/2if A[middle] = xreturn *middle* else if A[middle] < xleft := middle + 1else right := middle - 1

Time complexity of BinarySearch?

- Why this algorithm works?
- if $x \in A$ previous argument still holds.
- if $x \notin A$, then
 - After each iteration, we reduce input size by at least half.
 - At some iteration, left = right.
 - After that iteration, *left > right*.

- **Input**: an array *A* of *n* elements.
- Output: a local maximum; i.e., a peak.
 - An element A[i] is a peak if it is no smaller than its adjacent elements.
 - Every non-empty A has at least one peak. (Why?)

Local vs Global Maximum

- Global max is better, but finding it takes more time... \bullet
 - Sequential scan needs O(n) time, and it's inevitable.
- Sometimes a peak is "good enough".
- Finding a peak costs much less time!

2	4	9	2	5	6	23	4	6	8	17	5
---	---	---	---	---	---	----	---	---	---	----	---

- Find middle element: 6.
- Compare middle element to its adjacent elements:
 - Middle element \geq its left neighbor? Yes.
 - Middle element \geq its right neighbor? No!
- containing the large neighbor! [WHY?])
- Recurse!

• Reduce the array to one of the two splits: the right half. (There must exist a peak in the part

2	4	9	2	5	6	23	4	6	8	17	5
---	---	---	---	---	---	----	---	---	---	----	---

- Find middle element: 6.
- Compare middle element to its adjacent elements:
 - Middle element \geq its left neighbor? Yes.
 - Middle element \geq its right neighbor? No!
- containing the large neighbor! [WHY?])
- Recurse!

• Reduce the array to one of the two splits: the right half. (There must exist a peak in the part

2	4	9	2	5	6	23	4	6	8	17	5
---	---	---	---	---	---	----	---	---	---	----	---

- Find middle element: **17**.
- Compare middle element to its adjacent elements:
 - Middle element \geq its left neighbor? Yes.
 - Middle element \geq its right neighbor? Yes, We are done!

PeakFinding(A): *left* := 1, *right* := *n* while left <= right</pre> middle := (left+right)/2if middle > left and A[middle - 1] > A[middle] right := middle - 1else if middle < right and A[middle + 1] > A[middle] left := middle + 1else

return *A*[*middle*]

Why this algorithm is correct?

1. It always terminates. (WHY?)

PeakFinding(A): left := 1, right := n while left <= right middle := (left+right)/2 if middle > left and A[middle - 1] > A[middle] right := middle - 1 else if middle < right and A[middle + 1] > A[middle] left := middle + 1 else

return A[middle]

Why this algorithm is correct?

2. It always returns a right answer. (WHY?)

PeakFinding(A): left := 1, right := n while left <= right middle := (left+right)/2 if middle > left and A[middle - 1] > A[middle] right := middle - 1 else if middle < right and A[middle + 1] > A[middle] left := middle + 1 else

return A[middle]

Runtime of this algorithm?

O(log n) Finding local max is faster!

Peak finding, now in 2D!

- Input: a 2D array A of $n \times n = n^2$ elements.
- **Output**: a *local* maximum; i.e., a *peak*.
 - An element A[i][j] is a peak if it's no smaller than its four adjacent elements.

10	8	5	2
3	2	1	5
17	5	9	2
7	9	4	6
6	1	4	6

- Every non-empty A has at least one peak. (WHY?)
 - Proof: Start from a node, follow an "increasing path", eventually must reach a peak.

	_
1	
7	
5	
8	
8	
	•

- "Compress" each column into one element, resulting an 1D array.
 - Use max of each column to represent that column.
 - Run previous algorithm on the 1D array and return a peak.

- "Compress" each column into one element, resulting an 1D array.
 - Use max of each column to represent that column.
 - Run previous algorithm on the 1D array and return a peak.

Correctness?												
	a											
С	т	d										
m_i	b	m_j										

 $m \ge a, m \ge b$ $m \ge m_i \ge c, m \ge m_j \ge d$

Complexity

 $O(n^2) + O(\log n) = O(n^2)$

too slow...

- Scan the middle column and find the max element m.
- If *m* is a peak then return it, and we are done.
- Otherwise, left or right neighbor of m is bigger than m.
- Recurse into that part.

10	2	8	5	1	5	1
3	3	2	1	7	7	2
5	6	7	2	5	3	5
7	3	11	9	8	6	7
6	5	21	4	8	4	2
2	4	1	4	3	5	3
1	2	3	5	8	3	9

10	2	8	5	1	5	1
3	3	2	1	7	7	2
5	6	7	2	5	3	5
7	3	11	9	8	6	7
6	5	21	4	8	4	2
2	4	1	4	3	5	3
1	2	3	5	8	3	9

10	2	8	5	1	5	1
3	3	2	1	7	7	2
5	6	7	2	5	3	5
7	3	11	9	8	6	7
6	5	21	4	8	4	2
2	4	1	4	3	5	3
1	2	3	5	8	3	9

A divide (reduce) and conquer algorithm!

10	2	8	5	1	5	1
3	3	2	1	7	7	2
5	6	7	2	5	3	5
7	3	11	9	8	6	7
6	5	21	4	8	4	2
2	4	1	4	3	5	3
1	2	3	5	8	3	9

				-
10	2	8	5	1
3	3	2	1	7
5	6	7	2	5
7	3	11	9	8
6	5	21	4	8
2	4	1	4	3
1	2	3	5	8

- Scan the middle column and find the max element m.
- If m is a peak then return it, and we are done.
- Otherwise, left or right neighbor of m is bigger than m, then recurse into that part.

Correctness?

- Max of middle column is a peak; or a peak exists in the part containing the large neighbor, and that peak is the max of its column.
- A peak (found by the algorithm) in the part containing the large neighbor is also a peak in the original matrix.
- The algorithm eventually returns a peak of some (sub)matrix.

- Scan the middle column and find the max element m.
- If m is a peak then return it, and we are done.
- Otherwise, left or right neighbor of m is bigger than m, then recurse into that part.

Runtime of this algorithm?

• $T(n) \leq T(n/2) + \Theta(n)$ implying T(n) = O(n)

- $T(n, n') \leq T(n/2, n') + O(n')$
- $T(n, n') \le (\lg n) \cdot O(n') = O(n' \lg n) = O(n \lg n)$

Much faster than the $O(n^2)$ algorithm, but can we do better?

Not correct! 2D!

Peak finding in 2D

- When considering the "reducing", the smaller the size of the subproblem is, the better the performance is the algorithm
- Algorithm II reduce the problem into halve size, can it be smaller?

- Scan the "cross" and find max element m.
- ► If *m* is a peak then return it, and we are done.
- Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

10	8	5	2	1
3	2	T	5	7
5	11	9	2	5
7	21	4	6	8
6	1	4	6	8

10	8	5	2
3	2	1	5
5	11	9	2
7	21	4	6
6	1	4	6

1
7
5
8
8

10	8	5	2	1
3	2	1	5	7
5	11	9	2	5
7	21	4	6	8
6	1	4	6	8

10	8	5	2
3	2	1	5
5	11	9	2
7	21	4	6
6	1	4	6

- ► Scan the "**cross**" and find max element *m*.
- ► If *m* is a peak then return it, and we are done.
- Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

Correctness?

- Max in the cross is a peak; or a peak exists in the quadrant containing the large neighbor, and that peak is the max of some cross.
- A peak (found by the algorithm) in the quadrant containing the large neighbor is also a peak in the original matrix.
- The algorithm eventually returns a peak of some (sub)matrix.

- Scan the "cross" and find max element m.
- If m is a peak then return it, and we are done.
- Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

False Claim: A peak (found by the algorithm) in the quadrant containing the large neighbor is also a peak in the original matrix.

			4							4							4							4							4	
			4							4							4							4							4	
			4							4							4							4							4	
4	4	4	4	4	4	5	4	4	4	4	4	4	5	4	4	4	4	4	4	5	4	4	4	4	4	4	5	4	4	4	4	4
			4		1	6				4		1	6				4		1	6				4		1	6				4	
			4	1	1	1				4	1	1	1				4	1	1	1				4	1	1	1				4	1
			4	3	2					4	3	2					4	3	2					4	3	2					4	3

Not a peak!

- Scan the "cross" and find max element m.
- If m is a peak then return it, and we are done.
- Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

a peak in the original matrix.

the original matrix!

Not a peak!

- False Claim: A peak (found by the algorithm) in the quadrant containing the large neighbor is also
 - If the peak found in the quadrant is on the boundary of the quadrant, then it may be smaller than its neighbor that is in

- Scan the "cross" and find max element m.
- If m is a peak then return it, and we are done.
- Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

Peak finding in 2D, Algorithm III

- Scan the "cross" and find max element m.
- If m is a peak then return it, and we are done.
- Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

Peak finding in 2D, Algorithm III

h	
r g	

- Scan the "cross" and find max element m.
- If m is a peak then return it, and we are done.
- Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

Claim: A peak (found by the algorithm) in the quadrant containing the large neighbor is also a peak in the original matrix. **Proof:**

- original matrix.

Peak finding in 2D, Algorithm III

• If the peak found by the algorithm in the quadrant is not on the boundary of the quadrant, then clearly it's a peak in the

• Otherwise, the peak found by the algorithm in the quadrant is on the boundary of the quadrant (say g); and it's also a peak in

the original matrix (since $g \ge h \ge m \ge r$).

- Scan the "cross" and find max element m.
- If m is a peak then return it, and we are done.
- Otherwise, some neighbor of m is bigger than m. Recurse into that quadrant.

Peak finding in 2D, Algorithm III

Runtime of this algorithm

- $T(n,n) \le T(n/2, n/2) + \Theta(n)$
- T(n,n) = O(n)

Further reading

- [CLRS] Ch.2 (2.3), Ch.4
- [Erickson] Ch.1 (excluding 1.5 and 1.8)

