## 分治策略 Divide and Conquer

钮崟涛<br>Nanjing University<br>2023 Fall

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne．Thanks for their supports！We also use some materials from stanford－cs161．

## The Divide－and－Conquer Approach

－Divide the given problem into a number of subproblems that are smaller instances of the same problem．
－Conquer the subproblems by solving them recursively．
－Or，use brute－force if a subproblem is small enough．
－Combine the solutions for the subproblems to obtain the solution for the original problem．

## Described in pseudocode

```
Solve (I):
    if I is small enough:
        solution := DirectSolve(I)
        Direct solve the basic case, or use brute-
        force if (sub)problem is simple
    else
        <I I, I2,\ldots,I I}>>:= DivideProblem(I) \longleftarrow~Divide the problem into smaller subproblems
        for j:= 1 to k
        solution}\mp@subsup{j}{j}{}=\operatorname{Solve}(\mp@subsup{I}{j}{})\longleftarrow\mathrm{ _Recursively solve subproblems.
        solution = Combine(solution},\ldots,\ldots,\mp@subsup{\mathrm{ solution }}{k}{}
return solution
```

Combine solutions of subproblems to get solution for original problem.

\section*{知

## 知 <br> Correctness of Divide－and－Conquer

－How to prove the correctness of a divide－and－conquer algorithm？
－Use（strong）mathematical induction，proceeding by induction on the＂size＂ of the inputs．
－Induction basis：prove the algorithm can correctly solve small problem instances．
－Prove DirectSolve is correct if $|I| \leq c$ ．
－Induction hypothesis：the algorithm can correctly solve any problem instance of size at most，say，$n$ ．
－Solve is correct if $|I| \leq n$ ．
－Inductive step：assuming induction hypothesis，prove the algorithm can correctly solve problem instance of size $n+1$ ．
－Assume Solve is correct if $|I| \leq n$ ，Prove Solve is correct if $|I|=n+1$

```
Solve (I):
    if I is small enough:
        solution := DirectSolve(I)
    else
        \(<I_{1}, I_{2}, \ldots, I_{k}>:=\) DivideProblem \((I)\)
        for \(j:=1\) to \(k\)
        solution \(_{j}=\operatorname{Solve}\left(I_{j}\right)\)
    solution \(=\) Combine \(\left(\right.\) solution \(_{1}, \ldots\), solution \(\left._{k}\right)\)
return solution
```


## Partial or Total Correctness？

Termination and partial correctness can be encapsulated！

## Merge Sort



## MergeSort

－An efficient divide－and－conquer algorithm for sorting．
－Invented by John von Neumann in the 1940s．


## MergeSort

## Divide－and－Conquer Template

## Solve（I）：

if I is small enough：
solution ：＝DirectSolve（I）
else
$\left.<I_{1}, I_{2}, \ldots, I_{k}\right\rangle:=$ DivideProblem（ $I$ ）
for $j:=1$ to $k$
solution $_{j}=\operatorname{Solve}\left(I_{j}\right)$
solution $=$ Combine $\left(\right.$ solution $_{1}, \ldots$, Solution $\left._{k}\right)$

```
return solution
```


## MergeSort（ $A[1 \ldots n]$ ）：

if $n=1$
$\operatorname{sol}[1 \ldots n]:=[1 \ldots n]$
else
$\operatorname{solLeft}[1 \ldots(n / 2)]:=\operatorname{MergeSort}(A[1 \ldots(n / 2)])$
solRright［1．．．（n／2）］：＝MergeSort（A［（n／2＋1）．．．n］）
$\operatorname{sol}[1 \ldots n]:=\operatorname{Merge}(\operatorname{solLeft}[1 \ldots(n / 2)]$ ，solRight $[1 \ldots(n / 2)])$
return $\operatorname{sol}[1 \ldots n]$

## Merge（ $A[1 \ldots n], B[1 \ldots m]$ ： <br> Aindex $:=1$, Bindex $:=1$, Result $:=[]$

$/ / \operatorname{Scan} A$ and $B$ from left to right，
／／Append the currently smallest to the result array while Aindex $\leq$ A．length and Bindex $\leq$ B．length
if $A[$ Aindex $] \leq B[$ Aindex $]$
Result．AddLast（A［Aindex］）
Aindex ：＝Aindex +1
else
Result．AddLast（B［Bindex］）
Bindex ：＝Bindex +1
／／Copy the remaining elements of $A$ and $B$ while Aindex $\leq$ A．length

Result．AddLast（A［Aindex］）
Aindex ：＝Aindex +1 while Bindex $\leq$ B．length

Result．AddLast（B［Bindex］）
Bindex ：＝Bindex +1
return Result

## The Merge Subroutine

```
Merge ( }A[1\ldotsn],B[1\ldotsm])
    Aindex := 1,Bindex := 1, Result }:=[
// Scan A and B from left to right,
// Append the currently smallest to the result array
    while Aindex }\leq\mathrm{ A.length and Bindex }\leq\mathrm{ B.length
    if A[Aindex ] \leqB[Aindex]
            Result.AddLast(A[Aindex])
            Aindex := Aindex + 1
        else
            Result.AddLast(B[Bindex])
            Bindex := Bindex + 1
// Copy the remaining elements of A and B
    while Aindex }\leq\mathrm{ A.length
        Result.AddLast(A[Aindex])
        Aindex := Aindex + 1
        while Bindex }\leq\mathrm{ B.length
            Result.AddLast(B[Bindex])
            Bindex:= Bindex + 1
        return Result
```



## The Merge Subroutine

```
Merge (A[1..n], B[1...m]):
    Aindex := 1, Bindex := 1, Result := []
// Scan A and B from left to right,
// Append the currently smallest to the result array
    while Aindex }\leq\mathrm{ A.length and Bindex }\leq\mathrm{ B.length
    if A[Aindex ] \leqB[Aindex]
            Result.AddLast(A[Aindex])
            Aindex := Aindex + 1
        else
            Result.AddLast(B[Bindex])
            Bindex := Bindex + 1
// Copy the remaining elements of A and B
    while Aindex }\leq\mathrm{ A.length
            Result.AddLast(A[Aindex])
            Aindex := Aindex + 1
        while Bindex }\leq\mathrm{ B.length
            Result.AddLast(B[Bindex])
            Bindex:= Bindex + 1
        return Result
```



R: | 1 | 2 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- |

Aindex

R: | 1 | 2 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- |



## 智能软件与工程学院

## Sample execution of MergeSort

## MergeSort（ $A[1 \ldots n]$ ）

$$
\text { if } n=1 \text { : }
$$

$$
\operatorname{sol}[1 \ldots n]:=[1 \ldots n]
$$

else
$\operatorname{solLeft}[1 \ldots(n / 2)]:=\operatorname{MergeSort}(A[1 \ldots(n / 2)])$
$\operatorname{solRright}[1 \ldots(n / 2)]:=\operatorname{MergeSort}(A[(n / 2+1) \ldots \mathrm{n}])$
$\operatorname{sol}[1 \ldots n]:=\operatorname{Merge}(\operatorname{solLeft}[1 \ldots(n / 2)]$, solRight $[1 \ldots(n / 2)])$


## 智能软件与工程学院

## Sample execution of MergeSort

## MergeSort（ $A[1 \ldots n]$ ）

$$
\text { if } n=1 \text { : }
$$

$$
\operatorname{sol}[1 \ldots n]:=[1 \ldots n]
$$

else
$\operatorname{solLeft}[1 \ldots(n / 2)]:=\operatorname{MergeSort}(A[1 \ldots(n / 2)])$
$\operatorname{solRright}[1 \ldots(n / 2)]:=\operatorname{MergeSort}(A[(n / 2+1) \ldots \mathrm{n}])$
$\operatorname{sol}[1 \ldots n]:=\operatorname{Merge}(\operatorname{solLeft}[1 \ldots(n / 2)]$, solRight $[1 \ldots(n / 2)])$


## 智能软件与工程学院

## Sample execution of MergeSort

## MergeSort（ $A[1 \ldots n]$ ）

$$
\text { if } n=1 \text { : }
$$

$$
\operatorname{sol}[1 \ldots n]:=[1 \ldots n]
$$

else
$\operatorname{solLeft}[1 \ldots(n / 2)]:=\operatorname{MergeSort}(A[1 \ldots(n / 2)])$
$\operatorname{solRright}[1 \ldots(n / 2)]:=\operatorname{MergeSort}(A[(n / 2+1) \ldots \mathrm{n}])$
$\operatorname{sol}[1 \ldots n]:=\operatorname{Merge}(\operatorname{solLeft}[1 \ldots(n / 2)]$, solRight $[1 \ldots(n / 2)])$


## 智能软件与工程学院

## Sample execution of MergeSort

## MergeSort（ $A[1 \ldots n]$ ）

$$
\text { if } n=1 \text { : }
$$

$$
\operatorname{sol}[1 \ldots n]:=[1 \ldots n]
$$

else
$\operatorname{solLeft}[1 \ldots(n / 2)]:=\operatorname{MergeSort}(A[1 \ldots(n / 2)])$
$\operatorname{solRright}[1 \ldots(n / 2)]:=\operatorname{MergeSort}(A[(n / 2+1) \ldots \mathrm{n}])$
$\operatorname{sol}[1 \ldots n]:=\operatorname{Merge}(\operatorname{solLeft}[1 \ldots(n / 2)]$, solRight $[1 \ldots(n / 2)])$
return sol[1...n]


## 智能软件与工程学院

## Sample execution of MergeSort

## MergeSort（A［1 ．n］

## if $n=1$ ：

$\operatorname{sol}[1 \ldots n]:=[1 . . . n]$
else
$\operatorname{solLeft}[1 \ldots(n / 2)]:=\operatorname{MergeSort}(A[1 \ldots(n / 2)])$
$\operatorname{solRright}[1 \ldots(n / 2)]:=\operatorname{MergeSort}(A[(n / 2+1) \ldots \mathrm{n}])$ $\operatorname{sol}[1 \ldots n]:=\operatorname{Merge}(\operatorname{solLeft}[1 \ldots(n / 2)]$ ，solRight $[1 \ldots(n / 2)])$ return sol［1．．．n］

## 智能软件与工程学院

## Sample execution of MergeSort

## MergeSort（ $A[1 \ldots n]$ ）

## if $n=1$ ：

$\operatorname{sol}[1 \ldots n]:=[1 . . . n]$
else
$\operatorname{solLeft}[1 \ldots(n / 2)]:=\operatorname{MergeSort}(A[1 \ldots(n / 2)])$
$\operatorname{solRright}[1 \ldots(n / 2)]:=\operatorname{MergeSort}(A[(n / 2+1) \ldots \mathrm{n}])$ $\operatorname{sol}[1 \ldots n]:=\operatorname{Merge}(\operatorname{solLeft}[1 \ldots(n / 2)]$ ，solRight $[1 \ldots(n / 2)])$ return sol［1．．．n］

## 智能软件与工程学院

## Sample execution of MergeSort

## MergeSort（ $A[1 \ldots n]$ ）

## if $n=1$ ：

$\operatorname{sol}[1 \ldots n]:=[1 . . . n]$
else
$\operatorname{solLeft}[1 \ldots(n / 2)]:=\operatorname{MergeSort}(A[1 \ldots(n / 2)])$
$\operatorname{solRright}[1 \ldots(n / 2)]:=\operatorname{MergeSort}(A[(n / 2+1) \ldots \mathrm{n}])$ $\operatorname{sol}[1 \ldots n]:=\operatorname{Merge}(\operatorname{solLeft}[1 \ldots(n / 2)]$ ，solRight $[1 \ldots(n / 2)])$ return sol［1．．．n］


## 智能软件与工程学院

## Sample execution of MergeSort

## MergeSort（ $A[1 \ldots n]$ ）

## if $n=1$ ：

$\operatorname{sol}[1 \ldots n]:=[1 . . . n]$
else
$\operatorname{solLeft}[1 \ldots(n / 2)]:=\operatorname{MergeSort}(A[1 \ldots(n / 2)])$
$\operatorname{solRright}[1 \ldots(n / 2)]:=\operatorname{MergeSort}(A[(n / 2+1) \ldots \mathrm{n}])$ $\operatorname{sol}[1 \ldots n]:=\operatorname{Merge}(\operatorname{solLeft}[1 \ldots(n / 2)]$ ，solRight $[1 \ldots(n / 2)])$ return $\operatorname{sol}[1 \ldots n]$

## 智能软件与工程学院

## Sample execution of MergeSort

## MergeSort（ $A[1 \ldots n]$ ）

## if $n=1$ ：

$\operatorname{sol}[1 \ldots n]:=[1 . . . n]$

## else

$\operatorname{solLeft}[1 \ldots(n / 2)]:=\operatorname{MergeSort}(A[1 \ldots(n / 2)])$
$\operatorname{solRright}[1 \ldots(n / 2)]:=\operatorname{MergeSort}(A[(n / 2+1) \ldots \mathrm{n}])$
$\operatorname{sol}[1 \ldots n]:=\operatorname{Merge}(\operatorname{solLeft}[1 \ldots(n / 2)]$ ，solRight $[1 \ldots(n / 2)])$ return $\operatorname{sol}[1 \ldots n]$


## Sample execution of MergeSort

## MergeSort（A［1．．n］）：

## if $n=1$ ：

$\operatorname{sol}[1 \ldots n]:=[1 . . . n]$
else
$\operatorname{solLeft}[1 \ldots(n / 2)]:=\operatorname{MergeSort}(A[1 \ldots(n / 2)])$
$\operatorname{solRright}[1 \ldots(n / 2)]:=\operatorname{MergeSort}(A[(n / 2+1) \ldots \mathrm{n}])$
$\operatorname{sol}[1 \ldots n]:=\operatorname{Merge}(\operatorname{solLeft}[1 \ldots(n / 2)]$ ，solRight $[1 \ldots(n / 2)])$
return $\operatorname{sol}[1 \ldots n]$

## Correctness of MergeSort

```
MergeSort (A[1...n]):
if n=1:
    sol[1..n] := [1...n]
else
    solLeft[1...(n/2)]:= MergeSort(A[1...(n/2)])
    solRright[1...(n/2)]:= MergeSort(A[(n/2+1)...n])
    sol[1..n]:= Merge(solLeft[[\ldots(n/2)], solRight[1...(n/2)])
return sol[1...n]
```

－Induction basis：MergeSort is correct when $n=1$ ．
－Induction hypothesis：Assume MergeSort is correct if $n \leq n^{\prime}$
－Inductive step：MergeSort is correct when $n=n^{\prime}+1$

## How to prove the correctness of the subroutine?

- Correctness of this routine?
- Find proper loop invariant!
- What is it?

```
Merge ( }A[1\ldotsn],B[1\ldotsm])
    Aindex := 1,Bindex := 1, Result := []
// Scan A and B from left to right,
// Append the currently smallest to the result array
    while Aindex \leqA.length and Bindex \leq B.length
    if A[Aindex] \leqB[Aindex]
        Result.AddLast(A[Aindex])
        Aindex := Aindex + 1
    else
        Result.AddLast(B[Bindex])
        Bindex := Bindex + 1
// Copy the remaining elements of A and B
    while Aindex }\leq\mathrm{ A.length
        Result.AddLast(A[Aindex])
        Aindex:= Aindex + 1
    while Bindex \leq B.length
            Result.AddLast(B[Bindex])
            Bindex:= Bindex + 1
        return Result
```


## 智能软件与工程学院

## Time complexity of MergeSort

## MergeSort（ $A[1 \ldots n]$ ）：

if $n=1$ ：
$\operatorname{sol}[1 \ldots n]:=[1 . . . n]$
else

$$
\operatorname{solLeft}[1 \ldots(n / 2)]:=\operatorname{MergeSort}(A[1 \ldots(n / 2)])
$$

$$
\operatorname{solRright}[1 \ldots(n / 2)]:=\operatorname{MergeSort}(A[(n / 2+1) \ldots \mathrm{n}])
$$

$$
\operatorname{sol}[1 \ldots n]:=\operatorname{Merge}(\operatorname{solLeft}[1 \ldots(n / 2)], \operatorname{solRight}[1 \ldots(n / 2)])
$$

return sol[1...n]
－For Subroutine Merge，the four＂while＂processes involves scanning all the elements in $A$ and $B$ ．
－The＂if＂processes has fewer comparisons than＂while＂ processes
－Therefore，the time complexity of Subroutine Merge is $\Theta(n)$ ， where $n$ is the sum of the elements of $A$ and $B$ ．

Merge（ $A[1 \ldots n], B[1 \ldots m]$ ）：
Aindex $:=1$, Bindex $:=1$, Result $:=[]$
／／Scan $A$ and $B$ from left to right，
／／Append the currently smallest to the result array while Aindex $\leq$ A．length and Bindex $\leq$ B．length
if $A[$ Aindex $] \leq B[$ Aindex $]$
Result．AddLast（A［Aindex］）
Aindex ：＝Aindex +1
else
Result．AddLast（B［Bindex］）
Bindex ：＝Bindex +1
／／Copy the remaining elements of $A$ and $B$ while Aindex $\leq$ A．length

Result．AddLast（A［Aindex］）
Aindex ：＝Aindex +1
while Bindex $\leq$ B．length
Result．AddLast（B［Bindex］）
Bindex ：＝Bindex +1

## Time complexity of MergeSort

```
MergeSort (A[1...n]):
if n=1:
    sol[1...n]:= [1...n]
else
    solLeft[1\ldots..(n/2)]:= MergeSort(A[1\ldots(n/2)])
    solRright[1\ldots(n/2)]:= MergeSort(A[(n/2+1)\ldotsn])
    sol[1\ldots.n]:= Merge(solLeft[1...(n/2)], solRight[1...(n/2)])
return sol[1...n]
```

－For the main procedure MergeSort：
－Let $T(n)$ be the runtime of MergeSort on instance of size $n$ ．
－Clearly，$T(1)=c_{1}=\Theta(1)$ for some constant $c_{1}$ ．
－For larger $n, T(n)=2 \cdot T(n / 2)+c_{2} \cdot n=2 T(n / 2)+\Theta(n)$ ．

## Time complexity of MergeSort

－A recurrence equation：
$\cdot\left\{\begin{array}{l}T(1)=c_{1} \\ T(n)=2 \cdot T(n / 2)+c_{2} \cdot n\end{array}\right.$

## Time complexity of MergeSort

－A recurrence equation：
－$\left\{\begin{array}{l}T(1)=c_{1} \\ T(n)=2 \cdot T(n / 2)+c_{2} \cdot n\end{array}\right.$


## Time complexity of MergeSort

－A recurrence equation：
$\cdot\left\{\begin{array}{l}T(1)=c_{1} \\ T(n)=2 \cdot T(n / 2)+c_{2} \cdot n\end{array}\right.$
$T(n / 4)$
$T(n / 4)$
$c_{2} \cdot n$

$$
n
$$

$n$

## Time complexity of MergeSort

－A recurrence equation：
$\cdot\left\{\begin{array}{l}T(1)=c_{1} \\ T(n)=2 \cdot T(n / 2)+c_{2} \cdot n\end{array}\right.$

## Time complexity of MergeSort

－A recurrence equation：
$\cdot\left\{\begin{array}{l}T(1)=c_{1} \\ T(n)=2 \cdot T(n / 2)+c_{2} \cdot n\end{array}\right.$

There are $\log _{2} n+1$ levels Each level incur $\Theta(n)$ Total cost is $\Theta\left(n \cdot \log _{2} n\right)$


## Iterative MergeSort

```
MergeSort (A[1...n]):
if }n=1\mathrm{ :
    sol[1...n]:= [1...n]
else
    solLeft[1\ldots..(n/2)]:= MergeSort(A[1\ldots(n/2)])
    solRright[1\ldots(n/2)]:= MergeSort(A[(n/2+1)\ldots.n])
    sol[1...n]:= Merge(solLeft[1...(n/2)], solRight[1...(n/2)])
return sol[1...n]
```

－Any recursive algorithm can be converted into an iterative one， we just simulate the call stack！

## Iterative MergeSort

IterMergeSort（ $A[1 \ldots n]$ ：

```
Deque }\mp@subsup{Q}{1}{},\mp@subsup{Q}{2}{
for i:= 1 ton
    Q .addLast(A[i])
while true
    while }\mp@subsup{Q}{1}{}.size()>
        L:= Q .removeFirst(), R:= Q .removeFirst()
        Q
        Q .AddLast( ( Q .removeFirst())
        Q}:=\mp@subsup{Q}{2}{
        if }\mp@subsup{Q}{1}{}.size()=
        break
return Q.removeFirst()
```



Do＂Merge＂operation layer by layer！

## Matrix

Multiplication

## Matrix Multiplication

－Suppose we want to multiply two $n \times n$ matrices $\mathbf{X}$ and $\mathbf{Y}$ ．
－The most straightforward method needs $\Theta\left(n^{3}\right)$ time．
－Matrix multiplication can be performed block－wise！
－$X=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ and $Y=\left[\begin{array}{ll}E & F \\ G & H\end{array}\right]$
．$X Y=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]\left[\begin{array}{ll}E & F \\ G & H\end{array}\right]=\left[\begin{array}{ll}A E+B G & A F+B H \\ C E+D G & C F+D H\end{array}\right]$

## Matrix Multiplication

. $X=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ and $Y=\left[\begin{array}{ll}E & F \\ G & H\end{array}\right]$
. $X Y=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]\left[\begin{array}{ll}E & F \\ G & H\end{array}\right]=\left[\begin{array}{ll}A E+B G & A F+B H \\ C E+D G & C F+D H\end{array}\right]$

- The recurrence equation is $T(n)=8 \cdot T(n / 2)+\Theta\left(n^{2}\right)$
- Thus, $T(n)=\Theta\left(n^{3}\right)$, which has no improvement...


## Strassen＇s algorithm for Matrix Multiplication

．$X=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ and $Y=\left[\begin{array}{ll}E & F \\ G & H\end{array}\right]$
．$X Y=\left[\begin{array}{cc}P_{5}+P_{4}-P_{2}+P_{6} & P_{1}+P_{2} \\ P_{3}+P_{4} & P_{1}+P_{5}-P_{3}-P_{7}\end{array}\right]$
－where：

$$
\begin{aligned}
& P_{1}=A(F-H), P_{2}=(A+B) H, P_{3}=(C+D) E, P_{4}=D(G-E) \\
& P_{5}=(A+D)(E+H), P_{6}=(B-D)(G+H), P_{7}=(A-C)(E+F)
\end{aligned}
$$

－Recurrence：$T(n)=7 \cdot T(n / 2)+\Theta\left(n^{2}\right)$


## Time complexity of Strassen＇s algorithm

－The substitution method（or，guess and verify）
－Guess the form of the solution；
－Use induction to find proper constants and prove the solution works

## Time complexity of Strassen＇s algorithm

－Recurrence：$T(n)=7 \cdot T(n / 2)+\Theta\left(n^{2}\right)$
－$T(n)=7 \cdot T(n / 2)+c n^{2}, T(1)=c$
－Let＇s guess $T(n) \leq d \cdot n^{\log _{2} 7}=O\left(n^{\log _{2} 7}\right)$
－Induction basis：
－$T(1)=c \leq d \cdot 1^{\log _{2} 7}$ ，as long as $d \geq c$
－Inductive step：
－$T(n)=7 \cdot T(n / 2)+c n^{2} \leq 7 d(n / 2)^{\log _{2} 7}+c n^{2}=d n^{\log _{2} 7}+c n^{2}$

## Time complexity of Strassen's algorithm

- $T(n)=7 \cdot T(n / 2)+c n^{2}, T(1)=c$
- The guess $T(n) \leq d \cdot n^{\log _{2} 7}=O\left(n^{\log _{2} 7}\right)$ does not work out...
- However, in fact, $O\left(n^{\log _{2} 7}\right)$ is the right answer...
- So we add some lower order term (such as $n^{2}$ ) to our guess?
- No, we should subtract some lower order term from our guess!
- Subtraction gives us stronger induction hypothesis to work with!


## Time complexity of Strassen's algorithm

- $T(n)=7 \cdot T(n / 2)+c n^{2}, T(1)=c$
- Guess $T(n) \leq d n^{\log _{2} 7}-d^{\prime} n^{2}=O\left(n^{\log _{2} 7}\right)$
- Induction basis:
- $T(1)=c \leq d \cdot 1^{\log _{2} 7}-d^{\prime} \cdot 1^{2}$, as long as $d-d^{\prime} \geq c$
- Inductive step:

$$
\begin{aligned}
-T(n) & =7 \cdot T(n / 2)+c n^{2} \leq 7 d(n / 2)^{\log _{2} 7}-7 d^{\prime}(n / 2)^{\log _{2} 7}+c n^{2} \\
& =d n^{\log _{2} 7}-\left(7 d^{\prime} / 4-c\right) n^{2} \leq d n^{\log _{2} 7}-d^{\prime} n^{2}, \text { as long as } 3 d^{\prime} / 4 \geq c
\end{aligned}
$$

## Making a good guess

- There is no general way to correctly guess the tightest asymptotic solution to an arbitrary recurrence.
- Making a good guess takes experience and, occasionally, creativity.
- Sometimes need to repeat the guessing process (first determine loose upper and lower bounds on the recurrence and then reduce your range of uncertainty)


## Further reading

- [CLRS] Ch. 2 (2.3), Ch. 4
- [Erickson] Ch. 1 (excluding 1.5 and 1.8)


