

分治策略 **Divide and Conquer**

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne. Thanks for their supports! We also use some materials from stanford-cs161.

钮鑫涛 Nanjing University 2023 Fall

The Divide-and-Conquer Approach

- **Divide** the given problem into a number of subproblems that are smaller instances of the same problem.
- Conquer the subproblems by solving them recursively.
 - Or, use brute-force if a subproblem is small enough.
- Combine the solutions for the subproblems to obtain the solution for the original problem.

Described in pseudocode

<u>Solve (I):</u>

if I is small enough: solution := DirectSolve(I) + else

 $\langle I_1, I_2, \ldots, I_k \rangle := DivideProblem(I)$ for j := 1 to k $solution_i = Solve(I_i) +$ $solution = Combine(solution_1, ..., solution_k)$ return solution

Correctness of Divide-and-Conquer

- How to prove the correctness of a divide-and-conquer algorithm?
 - Use (strong) mathematical induction, proceeding by induction on the "size" of the inputs.
- **Induction basis**: prove the algorithm can correctly solve small problem instances.
 - Prove DirectSolve is correct if $|I| \leq c$.
- Induction hypothesis: the algorithm can correctly solve any problem instance of size at most, say, n.
 - Solve is correct if $|I| \leq n$.
- **Inductive step:** assuming induction hypothesis, prove the algorithm can correctly solve problem instance of size n + 1.
 - Assume Solve is correct if $|I| \le n$, Prove Solve is correct if |I| = n + 1

Solve (*I*): if I is small enough: solution := DirectSolve(I) else $< I_1, I_2, \ldots, I_k > := DivideProblem(I)$ for j := 1 to k $solution_i = Solve(I_i)$ $solution = Combine(solution_1, ..., solution_k)$ return solution

Merge Sort

MergeSort

- An efficient divide-and-conquer algorithm for sorting.
- Invented by John von Neumann in the 1940s.

Divide-and-Conquer Template

<u>Solve (*I*):</u>

if I is small enough: solution := DirectSolve(I) else $\langle I_1, I_2, \ldots, I_k \rangle := DivideProblem(I)$ for j := 1 to k $solution_i = Solve(I_i)$ *solution* = *Combine*(*solution*₁,...,*solution*_k) return solution

<u>MergeSort (*A*[1...*n*]):</u>

if n = 1:

sol[1...n] := [1...n]

else

solLeft[1...(n/2)] := MergeSort(A[1...(n/2)])solRright[1...(n/2)] := MergeSort(A[(n/2+1)...n])sol[1...n] := Merge(solLeft[1...(n/2)], solRight[1...(n/2)])**return** *sol*[1...*n*]

MergeSort

<u>Merge (A[1...n], B[1...m])</u>:

Aindex := 1, Bindex := 1, Result := []

// Scan A and B from left to right, // Append the currently smallest to the result array while $Aindex \leq A.length$ and $Bindex \leq B.length$ if $A[Aindex] \leq B[Aindex]$ *Result*.*AddLast*(*A*[*Aindex*]) Aindex := Aindex + 1else *Result*.*AddLast*(*B*[*Bindex*])

Bindex := Bindex + 1

// Copy the remaining elements of A and B while $Aindex \leq A.length$ *Result*.*AddLast*(*A*[*Aindex*]) Aindex := Aindex + 1while $Bindex \leq B.length$ Result.AddLast(B[Bindex]) Bindex := Bindex + 1return Result

Merge (*A*[1...*n*], *B*[1...*m*]):

// Scan A and B from left to right, // Append the currently smallest to the result array while $Aindex \leq A.length$ and $Bindex \leq B.length$ if $A[Aindex] \leq B[Aindex]$ *Result*.*AddLast*(*A*[*Aindex*]) Aindex := Aindex + 1else *Result*.*AddLast*(*B*[*Bindex*]) Bindex := Bindex + 1

```
// Copy the remaining elements of A and B
    while Aindex \leq A.length
       Result.AddLast(A[Aindex])
       Aindex := Aindex + 1
    while Bindex \leq B.length
       Result.AddLast(B[Bindex])
       Bindex := Bindex + 1
     return Result
```


The Merge Subroutine

$\underline{\text{MergeSort}(A[1...n])}:$

if n = 1: sol[1...n] := [1...n]

else

$\underline{\text{MergeSort}(A[1...n])}:$

if n = 1: sol[1...n] := [1...n]

else

$\underline{\text{MergeSort}(A[1...n])}:$

if n = 1: sol[1...n] := [1...n]

else

$\underline{\text{MergeSort}(A[1...n])}:$

if n = 1: sol[1...n] := [1...n]

else

```
solLeft[1...(n/2)] := MergeSort(A[1...(n/2)])

solRright[1...(n/2)] := MergeSort(A[(n/2+1)...n])

sol[1...n] := Merge(solLeft[1...(n/2)], solRight[1...(n/2)])

return sol[1...n]
```


$\underline{\text{MergeSort}(A[1...n])}:$

if n = 1: sol[1...n] := [1...n]

else

solLeft[1...(n/2)] := MergeSort(A[1...(n/2)]) solRright[1...(n/2)] := MergeSort(A[(n/2+1)...n]) sol[1...n] := Merge(solLeft[1...(n/2)], solRight[1...(n/2)])return sol[1...n]

$\underline{\text{MergeSort}(A[1...n])}:$

if n = 1: sol[1...n] := [1...n]

else

solLeft[1...(n/2)] := MergeSort(A[1...(n/2)]) solRright[1...(n/2)] := MergeSort(A[(n/2+1)...n]) sol[1...n] := Merge(solLeft[1...(n/2)], solRight[1...(n/2)])return sol[1...n]

$\underline{\text{MergeSort}(A[1...n])}:$

if n = 1: sol[1...n] := [1...n]

else

solLeft[1...(n/2)] := MergeSort(A[1...(n/2)]) solRright[1...(n/2)] := MergeSort(A[(n/2+1)...n]) sol[1...n] := Merge(solLeft[1...(n/2)], solRight[1...(n/2)])return sol[1...n]

$\underline{\text{MergeSort}(A[1...n])}:$

if n = 1: sol[1...n] := [1...n]

else

solLeft[1...(n/2)] := MergeSort(A[1...(n/2)]) solRright[1...(n/2)] := MergeSort(A[(n/2+1)...n]) sol[1...n] := Merge(solLeft[1...(n/2)], solRight[1...(n/2)])return sol[1...n]

$\underline{\text{MergeSort}(A[1...n])}:$

if n = 1: sol[1...n] := [1...n]

else

solLeft[1...(n/2)] := MergeSort(A[1...(n/2)]) solRright[1...(n/2)] := MergeSort(A[(n/2+1)...n]) sol[1...n] := Merge(solLeft[1...(n/2)], solRight[1...(n/2)])return sol[1...n]

$\underline{\text{MergeSort}(A[1...n])}:$

```
if n = 1:
    sol[1...n] := [1...n]
else
```

```
solLeft[1...(n/2)] := MergeSort(A[1...(n/2)])

solRright[1...(n/2)] := MergeSort(A[(n/2+1)...n])

sol[1...n] := Merge(solLeft[1...(n/2)], solRight[1...(n/2)])

return sol[1...n]
```

1	2	4	5

Correctness of MergeSort

$\underline{MergeSort} (A[1...n]):$

if n = 1:

$$sol[1...n] := [1...n]$$

else

- **Induction basis:** MergeSort is correct when n = 1.
- **Induction hypothesis:** Assume MergeSort is correct if $n \leq n'$
- **Inductive step:** MergeSort is correct when n = n' + 1

How to prove the correctness of the subroutine?

- Correctness of this routine?
 - Find proper loop invariant!
 - What is it?

<u>Merge (A[1...n], B[1...m])</u>:

Aindex := 1, Bindex := 1, Result := []

// Scan A and B from left to right, // Append the currently smallest to the result array while $Aindex \leq A.length$ and $Bindex \leq B.length$ if $A[Aindex] \leq B[Aindex]$ *Result*.*AddLast*(*A*[*Aindex*]) Aindex := Aindex + 1else *Result*.*AddLast*(*B*[*Bindex*])

// Copy the remaining elements of A and B while $Aindex \leq A.length$ *Result*.*AddLast*(*A*[*Aindex*]) Aindex := Aindex + 1while $Bindex \leq B.length$ Result.AddLast(B[Bindex]) Bindex := Bindex + 1return Result

Bindex := Bindex + 1

<u>MergeSort (*A*[1...*n*]):</u>

```
if n = 1:
   sol[1...n] := [1...n]
else
   solLeft[1...(n/2)] := MergeSort(A[1...(n/2)])
   solRright[1...(n/2)] := MergeSort(A[(n/2+1)...n])
   sol[1...n] := Merge(solLeft[1...(n/2)], solRight[1...(n/2)])
return sol[1...n]
```

- For Subroutine *Merge*, the four "*while*" processes involves scanning all the elements in A and B.
- The "*if* " processes has fewer comparisons than "*while*" processes
- Therefore, the time complexity of Subroutine Merge is $\Theta(n)$, where *n* is the sum of the elements of *A* and *B*.

Merge (*A*[1...*n*], *B*[1...*m*]):

Aindex := 1, Bindex := 1, Result := []

// Scan A and B from left to right, // Append the currently smallest to the result array while $Aindex \leq A.length$ and $Bindex \leq B.length$ if $A[Aindex] \leq B[Aindex]$ *Result*.*AddLast*(*A*[*Aindex*]) Aindex := Aindex + 1else *Result*.*AddLast*(*B*[*Bindex*]) Bindex := Bindex + 1

// Copy the remaining elements of A and B while $Aindex \leq A.length$ *Result*.*AddLast*(*A*[*Aindex*]) Aindex := Aindex + 1while $Bindex \leq B.length$ Result.AddLast(B[Bindex]) Bindex := Bindex + 1return Result

<u>MergeSort (*A*[1...*n*]):</u>

- if n = 1: sol[1...n] := [1...n]else solLeft[1...(n/2)] := MergeSort(A[1...(n/2)])solRright[1...(n/2)] := MergeSort(A[(n/2+1)...n])sol[1...n] := Merge(solLeft[1...(n/2)], solRight[1...(n/2)])**return** *sol*[1...*n*]
 - For the main procedure MergeSort:
 - Let T(n) be the runtime of MergeSort on instance of size n.
 - Clearly, $T(1) = c_1 = \Theta(1)$ for some constant c_1 .
 - For larger n, $T(n) = 2 \cdot T(n/2) + c_2 \cdot n = 2T(n/2) + \Theta(n)$.

$$\int T(1) = c_1 T(n) = 2 \cdot T(n/2) + c_2 \cdot n$$

$$\int T(1) = c_1 T(n) = 2 \cdot T(n/2) + c_2 \cdot n$$

$$\int T(1) = c_1 T(n) = 2 \cdot T(n/2) + c_2 \cdot n$$

$$\int T(1) = c_1 T(n) = 2 \cdot T(n/2) + c_2 \cdot n$$

• A recurrence equation:

$$\int T(1) = c_1 T(n) = 2 \cdot T(n/2) + c_2 \cdot n$$

There are $\log_2 n + 1$ levels Each level incur $\Theta(n)$ Total cost is $\Theta(n \cdot \log_2 n)$

Recursion tree

<u>MergeSort (*A*[1...*n*]):</u>

if n = 1: sol[1...n] := [1...n]else

solLeft[1...(n/2)] := MergeSort(A[1...(n/2)])solRright[1...(n/2)] := MergeSort(A[(n/2+1)...n])sol[1...n] := Merge(solLeft[1...(n/2)], solRight[1...(n/2)])**return** *sol*[1...*n*]

> • Any recursive algorithm can be converted into an iterative one, we just simulate the call stack!

Iterative MergeSort

<u>IterMergeSort (*A*[1...*n*]):</u> Deque Q_1, Q_2 **for** i := 1 **to** *n* $Q_1.addLast(A[i])$ while true while Q_1 .size() > 1 $L := Q_1.removeFirst(), R := Q_1.removeFirst()$ Q_2 .AddLast(Merge(L, R)) Q_2 .AddLast(Q_1 .removeFirst()) $Q_1 := Q_2$ if Q_1 .size() = 1 break **return** *Q.removeFirst()*

Iterative MergeSort

Do "Merge" operation layer by layer!

The time complexity is $\Theta(n \cdot \log n)$

Matrix Multiplication

Matrix Multiplication

- Suppose we want to multiply two n × n matrices X and Y.
- The most straightforward method needs $\Theta(n^3)$ time.
- Matrix multiplication can be performed block-wise!

$$X = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \text{ and } Y = \begin{bmatrix} E & F \\ G & H \end{bmatrix}$$
$$XY = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} E & F \\ G & H \end{bmatrix} = \begin{bmatrix} A \\ C \end{bmatrix}$$

 $\begin{bmatrix} E + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix}$

Matrix Multiplication

• $X = \begin{vmatrix} A & B \\ C & D \end{vmatrix}$ and $Y = \begin{bmatrix} E & F \\ G & H \end{bmatrix}$ $XY = \begin{vmatrix} A & B \\ C & D \end{vmatrix} \begin{bmatrix} E & F \\ G & H \end{bmatrix} = \begin{vmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{vmatrix}$

- The recurrence equation is $T(n) = 8 \cdot T(n/2) + \Theta(n^2)$
- Thus, $T(n) = \Theta(n^3)$, which has no improvement...

Strassen's algorithm for Matrix Multiplication

•
$$X = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
 and $Y = \begin{bmatrix} E & F \\ G & H \end{bmatrix}$

•
$$XY = \begin{bmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_1 + P_5 - P_3 - P_7 \end{bmatrix}$$

where:

 $P_1 = A(F - H), P_2 = (A + B)H, P_3 = (C + B)H$ $P_5 = (A + D)(E + H), P_6 = (B - D)(G + H)$

• Recurrence: $T(n) = 7 \cdot T(n/2) + \Theta(n^2)$

$$(C + D)E, P_4 = D(G - E)$$

H), $P_7 = (A - C)(E + F)$

Invented by Volker Strassen at 1969

- The substitution method (or, guess and verify)
 - Guess the form of the solution;

Use induction to find proper constants and prove the solution works

- Recurrence: $T(n) = 7 \cdot T(n/2) + \Theta(n^2)$
- $T(n) = 7 \cdot T(n/2) + cn^2$, T(1) = c
- Let's guess $T(n) \leq d \cdot n^{\log_2 7} = O(n^{\log_2 7})$
- Induction basis:
 - $T(1) = c \le d \cdot 1^{\log_2 7}$, as long as $d \ge c$
- Inductive step:
 - $T(n) = 7 \cdot T(n/2) + cn^2 \le 7d(n/2)^{\log_2 7} + cn^2 = dn^{\log_2 7} + cn^2$

- $T(n) = 7 \cdot T(n/2) + cn^2$, T(1) = c
- The guess $T(n) \leq d \cdot n^{\log_2 7} = O(n^{\log_2 7})$ does not work out...
- However, in fact, $O(n^{\log_2 7})$ is the right answer...
 - So we add some lower order term (such as n^2) to our guess?
 - No, we should subtract some lower order term from our guess!
 - Subtraction gives us stronger induction hypothesis to work with!

- $T(n) = 7 \cdot T(n/2) + cn^2$, T(1) = c
- Guess $T(n) \le dn^{\log_2 7} d'n^2 = O(n^{\log_2 7})$
- Induction basis: \bullet
 - $T(1) = c \le d \cdot 1^{\log_2 7} d' \cdot 1^2$, as long as $d d' \ge c$
- Inductive step:
 - $T(n) = 7 \cdot T(n/2) + cn^2 \le 7d(n/2)$

$$(2)^{\log_2 7} - 7d'(n/2)^{\log_2 7} + cn^2$$

 $= dn^{\log_2 7} - (7d'/4 - c)n^2 \le dn^{\log_2 7} - d'n^2$, as long as $3d'/4 \ge c$

- to an arbitrary recurrence.
- uncertainty)

Making a good guess

• There is no general way to correctly guess the tightest asymptotic solution

Making a good guess takes experience and, occasionally, creativity.

 Sometimes need to repeat the guessing process (first determine loose) upper and lower bounds on the recurrence and then reduce your range of

Further reading

- [CLRS] Ch.2 (2.3), Ch.4
- [Erickson] Ch.1 (excluding 1.5 and 1.8)

