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The Divide-and-Conquer Approach 

• Divide the given problem into a number of subproblems that are smaller 
instances of the same problem.


• Conquer the subproblems by solving them recursively.

‣ Or, use brute-force if a subproblem is small enough.


• Combine the solutions for the subproblems to obtain the solution for the 
original problem.
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Described in pseudocode
Solve ( I ): 
   if I is small enough: 
         solution  :=  DirectSolve(I)   
   else
        := DivideProblem(I)
        for  j := 1 to k
              solutionj = Solve(Ij)
         solution = Combine(solution1,…,solutionk)
return solution

< I1, I2, . . . , Ik >

Direct solve the basic case, or use brute-
force if (sub)problem is simple

Recursively solve subproblems.

Combine solutions of subproblems 
to get solution for original problem.

Divide the problem into smaller subproblems.
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Correctness of Divide-and-Conquer
• How to prove the correctness of a divide-and-conquer algorithm?

‣ Use (strong) mathematical induction, proceeding by induction on the “size” 
of the inputs.


• Induction basis: prove the algorithm can correctly solve small problem 
instances.

‣ Prove DirectSolve is correct if .

• Induction hypothesis: the algorithm can correctly solve any problem instance 
of size at most, say, .

‣ Solve is correct if .

• Inductive step: assuming induction hypothesis, prove the algorithm can 
correctly solve problem instance of size .

‣ Assume Solve is correct if , Prove Solve is correct if 

| I | ≤ c

n

| I | ≤ n

n + 1

| I | ≤ n | I | = n + 1

Solve ( I ): 
   if I is small enough: 
         solution  :=  DirectSolve(I)   
   else
        := DivideProblem(I)
        for  j := 1 to k
              solutionj = Solve(Ij)
         solution = Combine(solution1,…,solutionk)
return solution

< I1, I2, . . . , Ik >

Partial or Total Correctness?

Termination and partial correctness can 
be encapsulated !
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Merge Sort



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

MergeSort

• An efficient divide-and-conquer algorithm for sorting.

• Invented by John von Neumann in the 1940s.
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MergeSort
Solve ( I ): 
   if I is small enough: 
         solution  :=  DirectSolve(I)   
   else
        := DivideProblem(I)
        for  j := 1 to k
              solutionj = Solve(Ij)
         solution = Combine(solution1,…,solutionk)
return solution

< I1, I2, . . . , Ik >

Divide-and-Conquer Template

MergeSort ( A[1…n]): 
   if  n = 1: 
         sol[1…n]  :=  [1…n]   
   else
        solLeft[1…(n/2)] := MergeSort(A[1…(n/2)]) 
        solRright[1…(n/2)] := MergeSort(A[(n/2+1)…n])
    sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)])  
   return sol[1…n]

Merge ( A[1…n], B[1…m]): 
   Aindex := 1, Bindex := 1,  Result := []
   
 // Scan A and B from left to right, 
 //  Append the currently smallest to the result array 
   while Aindex  A.length  and  Bindex  B.length 
       if A[Aindex]  B[Aindex]
            Result.AddLast(A[Aindex])
            Aindex := Aindex + 1
        else
            Result.AddLast(B[Bindex])
            Bindex := Bindex + 1

// Copy the remaining elements of  A and B
       while  Aindex  A.length
            Result.AddLast(A[Aindex])
            Aindex := Aindex + 1
       while  Bindex  B.length
            Result.AddLast(B[Bindex])
            Bindex := Bindex + 1
        return Result

≤ ≤
≤

≤

≤
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Merge ( A[1…n], B[1…m]): 
   Aindex := 1, Bindex := 1,  Result := []
   
 // Scan A and B from left to right, 
 //  Append the currently smallest to the result array 
   while Aindex  A.length  and  Bindex  B.length 
       if A[Aindex]  B[Aindex]
            Result.AddLast(A[Aindex])
            Aindex := Aindex + 1
        else
            Result.AddLast(B[Bindex])
            Bindex := Bindex + 1

// Copy the remaining elements of  A and B
       while  Aindex  A.length
            Result.AddLast(A[Aindex])
            Aindex := Aindex + 1
       while  Bindex  B.length
            Result.AddLast(B[Bindex])
            Bindex := Bindex + 1
        return Result

≤ ≤
≤

≤

≤

2 4 6 7 1 5 8 9

Aindex Bindex

A: B: R:

12 4 6 7 1 5 8 9

Aindex Bindex

A: B: R:
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Merge ( A[1…n], B[1…m]): 
   Aindex := 1, Bindex := 1,  Result := []
   
 // Scan A and B from left to right, 
 //  Append the currently smallest to the result array 
   while Aindex  A.length  and  Bindex  B.length 
       if A[Aindex]  B[Aindex]
            Result.AddLast(A[Aindex])
            Aindex := Aindex + 1
        else
            Result.AddLast(B[Bindex])
            Bindex := Bindex + 1

// Copy the remaining elements of  A and B
       while  Aindex  A.length
            Result.AddLast(A[Aindex])
            Aindex := Aindex + 1
       while  Bindex  B.length
            Result.AddLast(B[Bindex])
            Bindex := Bindex + 1
        return Result

≤ ≤
≤

≤

≤

12 4 6 7 1 5 8 9

Aindex Bindex

A: B: R: 2 4 5 6 7

12 4 6 7 1 5 8 9

Aindex Bindex
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A: B: R: 2 4 5 6 7 8 9
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SolLeft

Sample execution of MergeSort 

4 5 2 1

SolLeft

4 5

4

MergeSort ( A[1…n]): 
   if  n = 1: 
         sol[1…n]  :=  [1…n]   
   else
        solLeft[1…(n/2)] := MergeSort(A[1…(n/2)]) 
        solRright[1…(n/2)] := MergeSort(A[(n/2+1)…n])
     sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)])  
   return sol[1…n]
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Sample execution of MergeSort 
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MergeSort ( A[1…n]): 
   if  n = 1: 
         sol[1…n]  :=  [1…n]   
   else
        solLeft[1…(n/2)] := MergeSort(A[1…(n/2)]) 
        solRright[1…(n/2)] := MergeSort(A[(n/2+1)…n])
     sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)])  
   return sol[1…n]
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        solRright[1…(n/2)] := MergeSort(A[(n/2+1)…n])
     sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)])  
   return sol[1…n]
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SolLeft

Sample execution of MergeSort 
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MergeSort ( A[1…n]): 
   if  n = 1: 
         sol[1…n]  :=  [1…n]   
   else
        solLeft[1…(n/2)] := MergeSort(A[1…(n/2)]) 
        solRright[1…(n/2)] := MergeSort(A[(n/2+1)…n])
     sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)])  
   return sol[1…n]
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Sample execution of MergeSort 
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MergeSort ( A[1…n]): 
   if  n = 1: 
         sol[1…n]  :=  [1…n]   
   else
        solLeft[1…(n/2)] := MergeSort(A[1…(n/2)]) 
        solRright[1…(n/2)] := MergeSort(A[(n/2+1)…n])
     sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)])  
   return sol[1…n]
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     sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)])  
   return sol[1…n]
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MergeSort ( A[1…n]): 
   if  n = 1: 
         sol[1…n]  :=  [1…n]   
   else
        solLeft[1…(n/2)] := MergeSort(A[1…(n/2)]) 
        solRright[1…(n/2)] := MergeSort(A[(n/2+1)…n])
     sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)])  
   return sol[1…n]
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SolLeft

Sample execution of MergeSort 
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MergeSort ( A[1…n]): 
   if  n = 1: 
         sol[1…n]  :=  [1…n]   
   else
        solLeft[1…(n/2)] := MergeSort(A[1…(n/2)]) 
        solRright[1…(n/2)] := MergeSort(A[(n/2+1)…n])
     sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)])  
   return sol[1…n]
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Sample execution of MergeSort 

1 2 4 5

MergeSort ( A[1…n]): 
   if  n = 1: 
         sol[1…n]  :=  [1…n]   
   else
        solLeft[1…(n/2)] := MergeSort(A[1…(n/2)]) 
        solRright[1…(n/2)] := MergeSort(A[(n/2+1)…n])
     sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)])  
   return sol[1…n]
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Correctness of MergeSort 

• Induction basis: MergeSort is correct when .


• Induction hypothesis: Assume MergeSort is correct if 

• Inductive step: MergeSort is correct when 

n = 1

n ≤ n′ 

n = n′ + 1

MergeSort ( A[1…n]): 
   if  n = 1: 
         sol[1…n]  :=  [1…n]   
   else
        solLeft[1…(n/2)] := MergeSort(A[1…(n/2)]) 
        solRright[1…(n/2)] := MergeSort(A[(n/2+1)…n])
                   sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)]) 
   return sol[1…n]
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How to prove the correctness of the subroutine?

• Correctness of this routine?


‣ Find proper loop invariant!


‣ What is it?

Merge ( A[1…n], B[1…m]): 
   Aindex := 1, Bindex := 1,  Result := []
   
 // Scan A and B from left to right, 
 //  Append the currently smallest to the result array 
   while Aindex  A.length  and  Bindex  B.length 
       if A[Aindex]  B[Aindex]
            Result.AddLast(A[Aindex])
            Aindex := Aindex + 1
        else
            Result.AddLast(B[Bindex])
            Bindex := Bindex + 1

// Copy the remaining elements of  A and B
       while  Aindex  A.length
            Result.AddLast(A[Aindex])
            Aindex := Aindex + 1
       while  Bindex  B.length
            Result.AddLast(B[Bindex])
            Bindex := Bindex + 1
        return Result

≤ ≤
≤

≤

≤
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Time complexity of MergeSort

• For Subroutine Merge,  the four “while” processes involves 
scanning all the elements in A and B.


• The “ if ” processes has fewer comparisons than “while” 
processes 


• Therefore, the time complexity of Subroutine Merge is , 
where  is the sum of the elements of A and B. 

Θ(n)
n

MergeSort ( A[1…n]): 
   if  n = 1: 
         sol[1…n]  :=  [1…n]   
   else
        solLeft[1…(n/2)] := MergeSort(A[1…(n/2)]) 
        solRright[1…(n/2)] := MergeSort(A[(n/2+1)…n])
     sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)])  
   return sol[1…n]

Merge ( A[1…n], B[1…m]): 
   Aindex := 1, Bindex := 1,  Result := []
   
 // Scan A and B from left to right, 
 //  Append the currently smallest to the result array 
   while Aindex  A.length  and  Bindex  B.length 
       if A[Aindex]  B[Aindex]
            Result.AddLast(A[Aindex])
            Aindex := Aindex + 1
        else
            Result.AddLast(B[Bindex])
            Bindex := Bindex + 1

// Copy the remaining elements of  A and B
       while  Aindex  A.length
            Result.AddLast(A[Aindex])
            Aindex := Aindex + 1
       while  Bindex  B.length
            Result.AddLast(B[Bindex])
            Bindex := Bindex + 1
        return Result

≤ ≤
≤

≤

≤
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Time complexity of MergeSort

• For the main procedure MergeSort:


‣ Let  be the runtime of MergeSort on instance of size .

‣ Clearly,  for some constant .

‣ For larger , 

T(n) n

T(1) = c1 = Θ(1) c1

n T(n) = 2 ⋅ T(n/2) + c2 ⋅ n = 2T(n/2) + Θ(n) .

MergeSort ( A[1…n]): 
   if  n = 1: 
         sol[1…n]  :=  [1…n]   
   else
        solLeft[1…(n/2)] := MergeSort(A[1…(n/2)]) 
        solRright[1…(n/2)] := MergeSort(A[(n/2+1)…n])
     sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)])  
   return sol[1…n]
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Time complexity of MergeSort
• A recurrence equation:


‣ {T(1) = c1

T(n) = 2 ⋅ T(n/2) + c2 ⋅ n

T(n)
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Time complexity of MergeSort
• A recurrence equation:


‣ {T(1) = c1

T(n) = 2 ⋅ T(n/2) + c2 ⋅ n

c2 ⋅ n

T(n/2) T(n/2)
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Time complexity of MergeSort
• A recurrence equation:


‣ {T(1) = c1

T(n) = 2 ⋅ T(n/2) + c2 ⋅ n

c2 ⋅ n

c2 ⋅ (n/2) c2 ⋅ (n/2)

T(n/4) T(n/4) T(n/4) T(n/4)
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Time complexity of MergeSort
• A recurrence equation:


‣ {T(1) = c1

T(n) = 2 ⋅ T(n/2) + c2 ⋅ n

c2 ⋅ n

c2 ⋅ (n/2) c2 ⋅ (n/2)

c2 ⋅ (n/4) c2 ⋅ (n/4) c2 ⋅ (n/4) c2 ⋅ (n/4)

…………
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Time complexity of MergeSort
• A recurrence equation:


‣ {T(1) = c1

T(n) = 2 ⋅ T(n/2) + c2 ⋅ n

c2 ⋅ n

c2 ⋅ (n/2) c2 ⋅ (n/2)

c2 ⋅ (n/4) c2 ⋅ (n/4) c2 ⋅ (n/4) c2 ⋅ (n/4)

c1 c1 c1 c1 c1 c1 c1 c1 c1 c1

…………

…………c1

There are  + 1 levels 
Each level incur  

Total cost is 

log2 n
Θ(n)

Θ(n ⋅ log2 n)

Recursion tree
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Iterative MergeSort

• Any recursive algorithm can be converted into an iterative one, 
we just simulate the call stack!

MergeSort ( A[1…n]): 
   if  n = 1: 
         sol[1…n]  :=  [1…n]   
   else
        solLeft[1…(n/2)] := MergeSort(A[1…(n/2)]) 
        solRright[1…(n/2)] := MergeSort(A[(n/2+1)…n])
     sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)])  
   return sol[1…n]
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Iterative MergeSort
IterMergeSort ( A[1…n]): 
   Deque   
   for  i := 1 to n
         .addLast(A[i]) 
   while true

   while .size() > 1
        L := .removeFirst(),  R := .removeFirst()
        .AddLast(Merge(L, R))
    .AddLast( .removeFirst())
     := 
    if .size() = 1
         break 

   return Q.removeFirst()

Q1, Q2

Q1

Q1
Q1 Q1

Q2
Q2 Q1
Q1 Q2

Q1

Do “Merge” operation layer by layer! 

The time complexity is Θ(n ⋅ log n)
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Matrix  
Multiplication
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Matrix Multiplication
• Suppose we want to multiply two  matrices X and Y.

• The most straightforward method needs  time.

• Matrix multiplication can be performed block-wise!


‣  and 


‣

n × n

Θ(n3)

X = [A B
C D] Y = [E F

G H]

XY = [A B
C D] [E F

G H] = [AE + BG AF + BH
CE + DG CF + DH]
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Matrix Multiplication

•  and 


• 


• The recurrence equation is 


• Thus, , which has no improvement…

X = [A B
C D] Y = [E F

G H]

XY = [A B
C D] [E F

G H] = [AE + BG AF + BH
CE + DG CF + DH]

T(n) = 8 ⋅ T(n/2) + Θ(n2)

T(n) = Θ(n3)
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Strassen’s algorithm for Matrix Multiplication

•  and 


• 


‣ where:








• Recurrence: 

X = [A B
C D] Y = [E F

G H]

XY = [P5 + P4 − P2 + P6 P1 + P2
P3 + P4 P1 + P5 − P3 − P7]

P1 = A(F − H), P2 = (A + B)H, P3 = (C + D)E, P4 = D(G − E)

P5 = (A + D)(E + H), P6 = (B − D)(G + H), P7 = (A − C)(E + F)

T(n) = 7 ⋅ T(n/2) + Θ(n2) Invented by Volker Strassen at 1969 
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Time complexity of Strassen’s algorithm 

• The substitution method (or, guess and verify)


‣ Guess the form of the solution;


‣ Use induction to find proper constants and prove the solution works
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Time complexity of Strassen’s algorithm 
• Recurrence: 


• , 


• Let’s guess  


• Induction basis:


‣ , as long as 


• Inductive step:


‣

T(n) = 7 ⋅ T(n/2) + Θ(n2)

T(n) = 7 ⋅ T(n/2) + cn2 T(1) = c

T(n) ≤ d ⋅ nlog2 7 = O(nlog27)

T(1) = c ≤ d ⋅ 1log2 7 d ≥ c

T(n) = 7 ⋅ T(n/2) + cn2 ≤ 7d(n/2)log2 7 + cn2 = dnlog2 7 + cn2

Inconsistant!
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Time complexity of Strassen’s algorithm 

• , 


• The guess   does not work out…


• However, in fact,  is the right answer…

T(n) = 7 ⋅ T(n/2) + cn2 T(1) = c

T(n) ≤ d ⋅ nlog2 7 = O(nlog27)

O(nlog2 7)

‣ So we add some lower order term (such as ) to our guess?


‣ No, we should subtract some lower order term from our guess!

‣ Subtraction gives us stronger induction hypothesis to work with!

n2
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Time complexity of Strassen’s algorithm 
• , 


• Guess  


• Induction basis:


‣ , as long as 


• Inductive step:


‣ 


 ,   as long as 

T(n) = 7 ⋅ T(n/2) + cn2 T(1) = c

T(n) ≤ dnlog2 7 − d′ n2 = O(nlog2 7)

T(1) = c ≤ d ⋅ 1log2 7 − d′ ⋅ 12 d − d′ ≥ c

T(n) = 7 ⋅ T(n/2) + cn2 ≤ 7d(n/2)log2 7 − 7d′ (n/2)log2 7 + cn2

= dnlog2 7 − (7d′ /4 − c)n2 ≤ dnlog2 7 − d′ n2 3d′ /4 ≥ c
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Making a good guess

• There is no general way to correctly guess the tightest asymptotic solution 
to an arbitrary recurrence.


• Making a good guess takes experience and, occasionally, creativity.


• Sometimes need to repeat the guessing process (first determine loose 
upper and lower bounds on the recurrence and then reduce your range of 
uncertainty)
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Further reading
• [CLRS] Ch.2 (2.3), Ch.4


• [Erickson] Ch.1 (excluding 1.5 and 1.8)


