
智能软件与⼯程学院 
School of Intelligent Software and Engineering 

分治策略 
Divide and Conquer

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne.Thanks for their supports! We also use some materials from stanford-cs161.

钮鑫涛 
Nanjing University  

2023 Fall



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

The Divide-and-Conquer Approach 

• Divide the given problem into a number of subproblems that are smaller 
instances of the same problem.


• Conquer the subproblems by solving them recursively.

‣ Or, use brute-force if a subproblem is small enough.


• Combine the solutions for the subproblems to obtain the solution for the 
original problem.



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Described in pseudocode
Solve ( I ): 
   if I is small enough: 
         solution  :=  DirectSolve(I)   
   else
        := DivideProblem(I)
        for  j := 1 to k
              solutionj = Solve(Ij)
         solution = Combine(solution1,…,solutionk)
return solution

< I1, I2, . . . , Ik >

Direct solve the basic case, or use brute-
force if (sub)problem is simple

Recursively solve subproblems.

Combine solutions of subproblems 
to get solution for original problem.

Divide the problem into smaller subproblems.



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Correctness of Divide-and-Conquer
• How to prove the correctness of a divide-and-conquer algorithm?

‣ Use (strong) mathematical induction, proceeding by induction on the “size” 
of the inputs.


• Induction basis: prove the algorithm can correctly solve small problem 
instances.

‣ Prove DirectSolve is correct if .

• Induction hypothesis: the algorithm can correctly solve any problem instance 
of size at most, say, .

‣ Solve is correct if .

• Inductive step: assuming induction hypothesis, prove the algorithm can 
correctly solve problem instance of size .

‣ Assume Solve is correct if , Prove Solve is correct if 

| I | ≤ c

n

| I | ≤ n

n + 1

| I | ≤ n | I | = n + 1

Solve ( I ): 
   if I is small enough: 
         solution  :=  DirectSolve(I)   
   else
        := DivideProblem(I)
        for  j := 1 to k
              solutionj = Solve(Ij)
         solution = Combine(solution1,…,solutionk)
return solution

< I1, I2, . . . , Ik >

Partial or Total Correctness?

Termination and partial correctness can 
be encapsulated !



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Merge Sort



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

MergeSort

• An efficient divide-and-conquer algorithm for sorting.

• Invented by John von Neumann in the 1940s.



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

MergeSort
Solve ( I ): 
   if I is small enough: 
         solution  :=  DirectSolve(I)   
   else
        := DivideProblem(I)
        for  j := 1 to k
              solutionj = Solve(Ij)
         solution = Combine(solution1,…,solutionk)
return solution

< I1, I2, . . . , Ik >

Divide-and-Conquer Template

MergeSort ( A[1…n]): 
   if  n = 1: 
         sol[1…n]  :=  [1…n]   
   else
        solLeft[1…(n/2)] := MergeSort(A[1…(n/2)]) 
        solRright[1…(n/2)] := MergeSort(A[(n/2+1)…n])
    sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)])  
   return sol[1…n]

Merge ( A[1…n], B[1…m]): 
   Aindex := 1, Bindex := 1,  Result := []
   
 // Scan A and B from left to right, 
 //  Append the currently smallest to the result array 
   while Aindex  A.length  and  Bindex  B.length 
       if A[Aindex]  B[Aindex]
            Result.AddLast(A[Aindex])
            Aindex := Aindex + 1
        else
            Result.AddLast(B[Bindex])
            Bindex := Bindex + 1

// Copy the remaining elements of  A and B
       while  Aindex  A.length
            Result.AddLast(A[Aindex])
            Aindex := Aindex + 1
       while  Bindex  B.length
            Result.AddLast(B[Bindex])
            Bindex := Bindex + 1
        return Result

≤ ≤
≤

≤

≤



智能软件与⼯程学院 
School of Intelligent Software and Engineering The Merge Subroutine 

Merge ( A[1…n], B[1…m]): 
   Aindex := 1, Bindex := 1,  Result := []
   
 // Scan A and B from left to right, 
 //  Append the currently smallest to the result array 
   while Aindex  A.length  and  Bindex  B.length 
       if A[Aindex]  B[Aindex]
            Result.AddLast(A[Aindex])
            Aindex := Aindex + 1
        else
            Result.AddLast(B[Bindex])
            Bindex := Bindex + 1

// Copy the remaining elements of  A and B
       while  Aindex  A.length
            Result.AddLast(A[Aindex])
            Aindex := Aindex + 1
       while  Bindex  B.length
            Result.AddLast(B[Bindex])
            Bindex := Bindex + 1
        return Result

≤ ≤
≤

≤

≤

2 4 6 7 1 5 8 9

Aindex Bindex

A: B: R:

12 4 6 7 1 5 8 9

Aindex Bindex

A: B: R:

12 4 6 7 1 5 8 9

Aindex Bindex

A: B: R: 2

12 4 6 7 1 5 8 9

Aindex Bindex

A: B: R: 2 4

12 4 6 7 1 5 8 9

Aindex Bindex

A: B: R: 2 4 5

12 4 6 7 1 5 8 9

Aindex Bindex

A: B: R: 2 4 5 6

12 4 6 7 1 5 8 9

Aindex Bindex

A: B: R: 2 4 5 6 7



智能软件与⼯程学院 
School of Intelligent Software and Engineering The Merge Subroutine 

Merge ( A[1…n], B[1…m]): 
   Aindex := 1, Bindex := 1,  Result := []
   
 // Scan A and B from left to right, 
 //  Append the currently smallest to the result array 
   while Aindex  A.length  and  Bindex  B.length 
       if A[Aindex]  B[Aindex]
            Result.AddLast(A[Aindex])
            Aindex := Aindex + 1
        else
            Result.AddLast(B[Bindex])
            Bindex := Bindex + 1

// Copy the remaining elements of  A and B
       while  Aindex  A.length
            Result.AddLast(A[Aindex])
            Aindex := Aindex + 1
       while  Bindex  B.length
            Result.AddLast(B[Bindex])
            Bindex := Bindex + 1
        return Result

≤ ≤
≤

≤

≤

12 4 6 7 1 5 8 9

Aindex Bindex

A: B: R: 2 4 5 6 7

12 4 6 7 1 5 8 9

Aindex Bindex

A: B: R: 2 4 5 6 7

12 4 6 7 1 5 8 9

Aindex Bindex

A: B: R: 2 4 5 6 7 8

12 4 6 7 1 5 8 9

Aindex Bindex

A: B: R: 2 4 5 6 7 8 9



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

SolLeft

Sample execution of MergeSort 

4 5 2 1

SolLeft

4 5

4

MergeSort ( A[1…n]): 
   if  n = 1: 
         sol[1…n]  :=  [1…n]   
   else
        solLeft[1…(n/2)] := MergeSort(A[1…(n/2)]) 
        solRright[1…(n/2)] := MergeSort(A[(n/2+1)…n])
     sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)])  
   return sol[1…n]



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

SolLeft

Sample execution of MergeSort 

4 5 2 1

SolLeft

4 5

Base case

4

SolRight

5

MergeSort ( A[1…n]): 
   if  n = 1: 
         sol[1…n]  :=  [1…n]   
   else
        solLeft[1…(n/2)] := MergeSort(A[1…(n/2)]) 
        solRright[1…(n/2)] := MergeSort(A[(n/2+1)…n])
     sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)])  
   return sol[1…n]



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

SolLeft

Sample execution of MergeSort 

4 5 2 1

SolLeft

4 5

Base case

4

SolRight
Base case

5

MergeSort ( A[1…n]): 
   if  n = 1: 
         sol[1…n]  :=  [1…n]   
   else
        solLeft[1…(n/2)] := MergeSort(A[1…(n/2)]) 
        solRright[1…(n/2)] := MergeSort(A[(n/2+1)…n])
     sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)])  
   return sol[1…n]



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

SolLeft

Sample execution of MergeSort 

4 5 2 1

SolLeft

4 5

Base case

4

SolRight
Base case

5
Merge

MergeSort ( A[1…n]): 
   if  n = 1: 
         sol[1…n]  :=  [1…n]   
   else
        solLeft[1…(n/2)] := MergeSort(A[1…(n/2)]) 
        solRright[1…(n/2)] := MergeSort(A[(n/2+1)…n])
     sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)])  
   return sol[1…n]



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

SolLeft

Sample execution of MergeSort 

4 5 2 1

4 5
SolRight

2 1

SolLeft

2

MergeSort ( A[1…n]): 
   if  n = 1: 
         sol[1…n]  :=  [1…n]   
   else
        solLeft[1…(n/2)] := MergeSort(A[1…(n/2)]) 
        solRright[1…(n/2)] := MergeSort(A[(n/2+1)…n])
     sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)])  
   return sol[1…n]



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

SolLeft

Sample execution of MergeSort 

4 5 2 1

4 5
SolRight

2 1

SolLeft

Base case

2

SolRight

1

MergeSort ( A[1…n]): 
   if  n = 1: 
         sol[1…n]  :=  [1…n]   
   else
        solLeft[1…(n/2)] := MergeSort(A[1…(n/2)]) 
        solRright[1…(n/2)] := MergeSort(A[(n/2+1)…n])
     sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)])  
   return sol[1…n]



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

SolLeft

Sample execution of MergeSort 

4 5 2 1

4 5
SolRight

2 1

SolLeft

Base case

2

SolRight

Base case

1

MergeSort ( A[1…n]): 
   if  n = 1: 
         sol[1…n]  :=  [1…n]   
   else
        solLeft[1…(n/2)] := MergeSort(A[1…(n/2)]) 
        solRright[1…(n/2)] := MergeSort(A[(n/2+1)…n])
     sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)])  
   return sol[1…n]



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

SolLeft

Sample execution of MergeSort 

4 5 2 1

4 5
SolRight

2 1

SolLeft

Base case

2

SolRight

Base case

1
Merge

MergeSort ( A[1…n]): 
   if  n = 1: 
         sol[1…n]  :=  [1…n]   
   else
        solLeft[1…(n/2)] := MergeSort(A[1…(n/2)]) 
        solRright[1…(n/2)] := MergeSort(A[(n/2+1)…n])
     sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)])  
   return sol[1…n]



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

SolLeft

Sample execution of MergeSort 

4 5 2 1

4 5
SolRight

1 2Merge

MergeSort ( A[1…n]): 
   if  n = 1: 
         sol[1…n]  :=  [1…n]   
   else
        solLeft[1…(n/2)] := MergeSort(A[1…(n/2)]) 
        solRright[1…(n/2)] := MergeSort(A[(n/2+1)…n])
     sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)])  
   return sol[1…n]



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Sample execution of MergeSort 

1 2 4 5

MergeSort ( A[1…n]): 
   if  n = 1: 
         sol[1…n]  :=  [1…n]   
   else
        solLeft[1…(n/2)] := MergeSort(A[1…(n/2)]) 
        solRright[1…(n/2)] := MergeSort(A[(n/2+1)…n])
     sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)])  
   return sol[1…n]



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Correctness of MergeSort 

• Induction basis: MergeSort is correct when .


• Induction hypothesis: Assume MergeSort is correct if 

• Inductive step: MergeSort is correct when 

n = 1

n ≤ n′ 

n = n′ + 1

MergeSort ( A[1…n]): 
   if  n = 1: 
         sol[1…n]  :=  [1…n]   
   else
        solLeft[1…(n/2)] := MergeSort(A[1…(n/2)]) 
        solRright[1…(n/2)] := MergeSort(A[(n/2+1)…n])
                   sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)]) 
   return sol[1…n]



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

How to prove the correctness of the subroutine?

• Correctness of this routine?


‣ Find proper loop invariant!


‣ What is it?

Merge ( A[1…n], B[1…m]): 
   Aindex := 1, Bindex := 1,  Result := []
   
 // Scan A and B from left to right, 
 //  Append the currently smallest to the result array 
   while Aindex  A.length  and  Bindex  B.length 
       if A[Aindex]  B[Aindex]
            Result.AddLast(A[Aindex])
            Aindex := Aindex + 1
        else
            Result.AddLast(B[Bindex])
            Bindex := Bindex + 1

// Copy the remaining elements of  A and B
       while  Aindex  A.length
            Result.AddLast(A[Aindex])
            Aindex := Aindex + 1
       while  Bindex  B.length
            Result.AddLast(B[Bindex])
            Bindex := Bindex + 1
        return Result

≤ ≤
≤

≤

≤



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Time complexity of MergeSort

• For Subroutine Merge,  the four “while” processes involves 
scanning all the elements in A and B.


• The “ if ” processes has fewer comparisons than “while” 
processes 


• Therefore, the time complexity of Subroutine Merge is , 
where  is the sum of the elements of A and B. 

Θ(n)
n

MergeSort ( A[1…n]): 
   if  n = 1: 
         sol[1…n]  :=  [1…n]   
   else
        solLeft[1…(n/2)] := MergeSort(A[1…(n/2)]) 
        solRright[1…(n/2)] := MergeSort(A[(n/2+1)…n])
     sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)])  
   return sol[1…n]

Merge ( A[1…n], B[1…m]): 
   Aindex := 1, Bindex := 1,  Result := []
   
 // Scan A and B from left to right, 
 //  Append the currently smallest to the result array 
   while Aindex  A.length  and  Bindex  B.length 
       if A[Aindex]  B[Aindex]
            Result.AddLast(A[Aindex])
            Aindex := Aindex + 1
        else
            Result.AddLast(B[Bindex])
            Bindex := Bindex + 1

// Copy the remaining elements of  A and B
       while  Aindex  A.length
            Result.AddLast(A[Aindex])
            Aindex := Aindex + 1
       while  Bindex  B.length
            Result.AddLast(B[Bindex])
            Bindex := Bindex + 1
        return Result

≤ ≤
≤

≤

≤



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Time complexity of MergeSort

• For the main procedure MergeSort:


‣ Let  be the runtime of MergeSort on instance of size .

‣ Clearly,  for some constant .

‣ For larger , 

T(n) n

T(1) = c1 = Θ(1) c1

n T(n) = 2 ⋅ T(n/2) + c2 ⋅ n = 2T(n/2) + Θ(n) .

MergeSort ( A[1…n]): 
   if  n = 1: 
         sol[1…n]  :=  [1…n]   
   else
        solLeft[1…(n/2)] := MergeSort(A[1…(n/2)]) 
        solRright[1…(n/2)] := MergeSort(A[(n/2+1)…n])
     sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)])  
   return sol[1…n]



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Time complexity of MergeSort
• A recurrence equation:


‣ {T(1) = c1

T(n) = 2 ⋅ T(n/2) + c2 ⋅ n

T(n)



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Time complexity of MergeSort
• A recurrence equation:


‣ {T(1) = c1

T(n) = 2 ⋅ T(n/2) + c2 ⋅ n

c2 ⋅ n

T(n/2) T(n/2)



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Time complexity of MergeSort
• A recurrence equation:


‣ {T(1) = c1

T(n) = 2 ⋅ T(n/2) + c2 ⋅ n

c2 ⋅ n

c2 ⋅ (n/2) c2 ⋅ (n/2)

T(n/4) T(n/4) T(n/4) T(n/4)



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Time complexity of MergeSort
• A recurrence equation:


‣ {T(1) = c1

T(n) = 2 ⋅ T(n/2) + c2 ⋅ n

c2 ⋅ n

c2 ⋅ (n/2) c2 ⋅ (n/2)

c2 ⋅ (n/4) c2 ⋅ (n/4) c2 ⋅ (n/4) c2 ⋅ (n/4)

…………



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Time complexity of MergeSort
• A recurrence equation:


‣ {T(1) = c1

T(n) = 2 ⋅ T(n/2) + c2 ⋅ n

c2 ⋅ n

c2 ⋅ (n/2) c2 ⋅ (n/2)

c2 ⋅ (n/4) c2 ⋅ (n/4) c2 ⋅ (n/4) c2 ⋅ (n/4)

c1 c1 c1 c1 c1 c1 c1 c1 c1 c1

…………

…………c1

There are  + 1 levels 
Each level incur  

Total cost is 

log2 n
Θ(n)

Θ(n ⋅ log2 n)

Recursion tree



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Iterative MergeSort

• Any recursive algorithm can be converted into an iterative one, 
we just simulate the call stack!

MergeSort ( A[1…n]): 
   if  n = 1: 
         sol[1…n]  :=  [1…n]   
   else
        solLeft[1…(n/2)] := MergeSort(A[1…(n/2)]) 
        solRright[1…(n/2)] := MergeSort(A[(n/2+1)…n])
     sol[1…n] :=  Merge(solLeft[1…(n/2)], solRight[1…(n/2)])  
   return sol[1…n]



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Iterative MergeSort
IterMergeSort ( A[1…n]): 
   Deque   
   for  i := 1 to n
         .addLast(A[i]) 
   while true

   while .size() > 1
        L := .removeFirst(),  R := .removeFirst()
        .AddLast(Merge(L, R))
    .AddLast( .removeFirst())
     := 
    if .size() = 1
         break 

   return Q.removeFirst()

Q1, Q2

Q1

Q1
Q1 Q1

Q2
Q2 Q1
Q1 Q2

Q1

Do “Merge” operation layer by layer! 

The time complexity is Θ(n ⋅ log n)



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Matrix  
Multiplication



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Matrix Multiplication
• Suppose we want to multiply two  matrices X and Y.

• The most straightforward method needs  time.

• Matrix multiplication can be performed block-wise!


‣  and 


‣

n × n

Θ(n3)

X = [A B
C D] Y = [E F

G H]

XY = [A B
C D] [E F

G H] = [AE + BG AF + BH
CE + DG CF + DH]



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Matrix Multiplication

•  and 


• 


• The recurrence equation is 


• Thus, , which has no improvement…

X = [A B
C D] Y = [E F

G H]

XY = [A B
C D] [E F

G H] = [AE + BG AF + BH
CE + DG CF + DH]

T(n) = 8 ⋅ T(n/2) + Θ(n2)

T(n) = Θ(n3)



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Strassen’s algorithm for Matrix Multiplication

•  and 


• 


‣ where:








• Recurrence: 

X = [A B
C D] Y = [E F

G H]

XY = [P5 + P4 − P2 + P6 P1 + P2
P3 + P4 P1 + P5 − P3 − P7]

P1 = A(F − H), P2 = (A + B)H, P3 = (C + D)E, P4 = D(G − E)

P5 = (A + D)(E + H), P6 = (B − D)(G + H), P7 = (A − C)(E + F)

T(n) = 7 ⋅ T(n/2) + Θ(n2) Invented by Volker Strassen at 1969 



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Time complexity of Strassen’s algorithm 

• The substitution method (or, guess and verify)


‣ Guess the form of the solution;


‣ Use induction to find proper constants and prove the solution works



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Time complexity of Strassen’s algorithm 
• Recurrence: 


• , 


• Let’s guess  


• Induction basis:


‣ , as long as 


• Inductive step:


‣

T(n) = 7 ⋅ T(n/2) + Θ(n2)

T(n) = 7 ⋅ T(n/2) + cn2 T(1) = c

T(n) ≤ d ⋅ nlog2 7 = O(nlog27)

T(1) = c ≤ d ⋅ 1log2 7 d ≥ c

T(n) = 7 ⋅ T(n/2) + cn2 ≤ 7d(n/2)log2 7 + cn2 = dnlog2 7 + cn2

Inconsistant!



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Time complexity of Strassen’s algorithm 

• , 


• The guess   does not work out…


• However, in fact,  is the right answer…

T(n) = 7 ⋅ T(n/2) + cn2 T(1) = c

T(n) ≤ d ⋅ nlog2 7 = O(nlog27)

O(nlog2 7)

‣ So we add some lower order term (such as ) to our guess?


‣ No, we should subtract some lower order term from our guess!

‣ Subtraction gives us stronger induction hypothesis to work with!

n2



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Time complexity of Strassen’s algorithm 
• , 


• Guess  


• Induction basis:


‣ , as long as 


• Inductive step:


‣ 


 ,   as long as 

T(n) = 7 ⋅ T(n/2) + cn2 T(1) = c

T(n) ≤ dnlog2 7 − d′ n2 = O(nlog2 7)

T(1) = c ≤ d ⋅ 1log2 7 − d′ ⋅ 12 d − d′ ≥ c

T(n) = 7 ⋅ T(n/2) + cn2 ≤ 7d(n/2)log2 7 − 7d′ (n/2)log2 7 + cn2

= dnlog2 7 − (7d′ /4 − c)n2 ≤ dnlog2 7 − d′ n2 3d′ /4 ≥ c



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Making a good guess

• There is no general way to correctly guess the tightest asymptotic solution 
to an arbitrary recurrence.


• Making a good guess takes experience and, occasionally, creativity.


• Sometimes need to repeat the guessing process (first determine loose 
upper and lower bounds on the recurrence and then reduce your range of 
uncertainty)



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Further reading
• [CLRS] Ch.2 (2.3), Ch.4


• [Erickson] Ch.1 (excluding 1.5 and 1.8)


