

Heaps

钮鑫涛 Nanjing University 2023 Fall

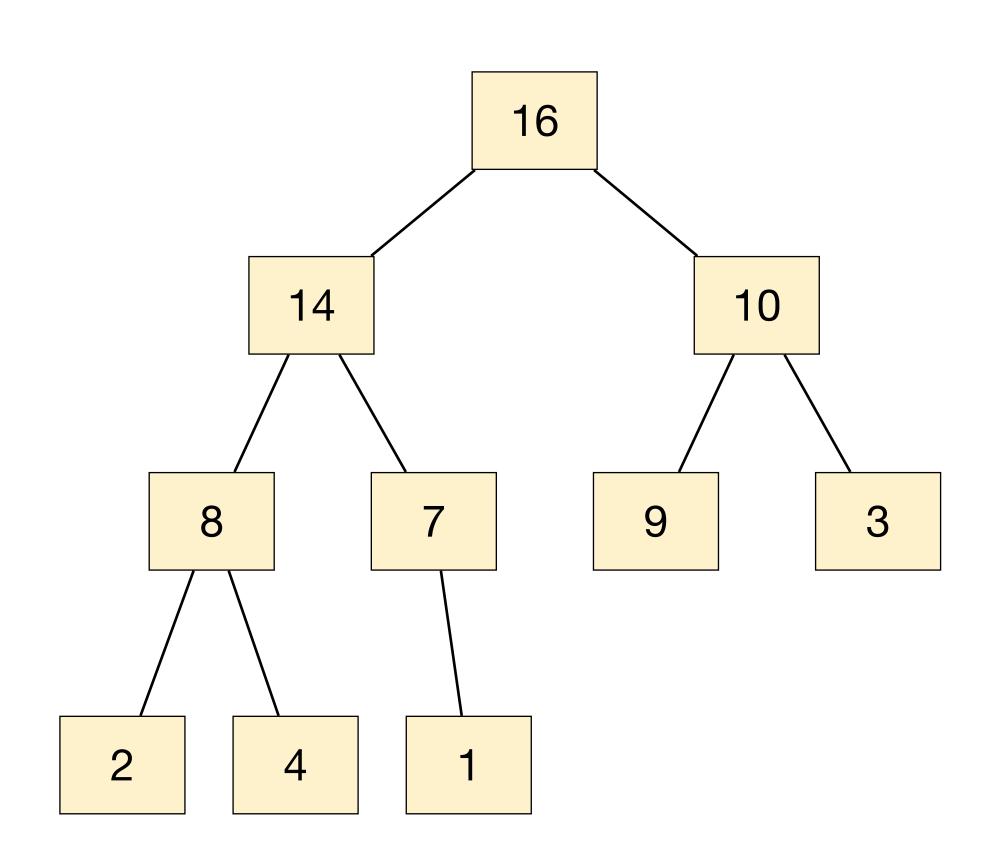
The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne. Thanks for their supports!

Heap

- In computer science, a *heap* is data structure which means "a disorganized pile."
 - In fact, this word has other meanings in computer science, which refers to *heap memory* used for dynamic memory allocation. This topic, however, is **unrelated** to the data structure in this course!

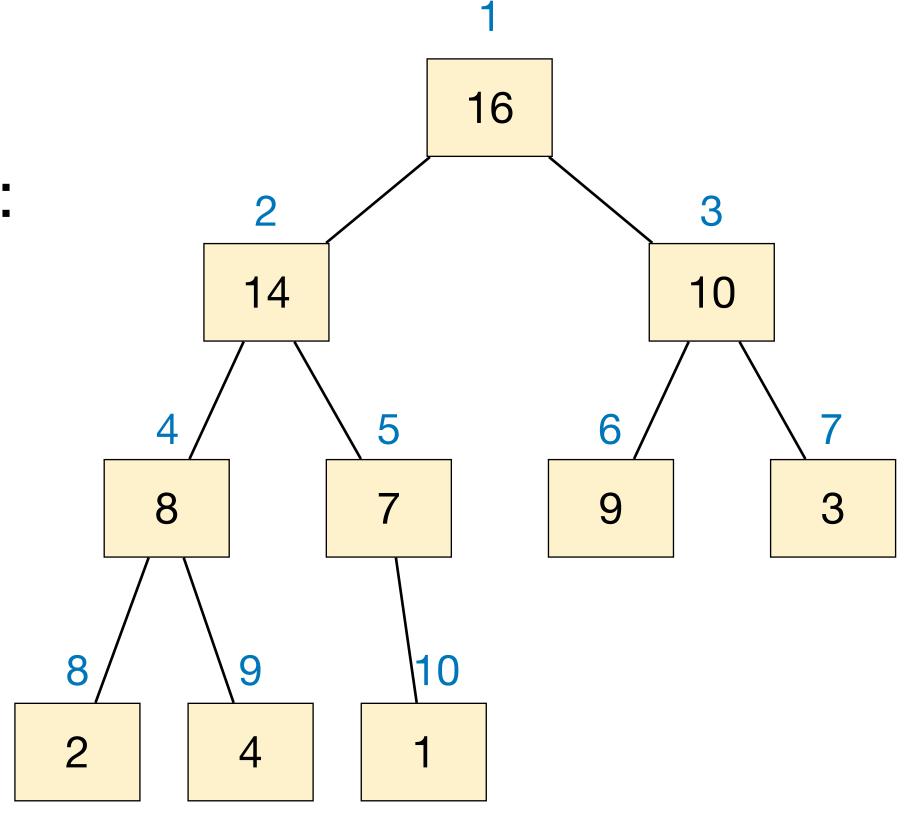
Binary Heap

- A binary heap is a complete binary tree, in which each node represents an item.
 - A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible.
 - Values in the nodes satisfy heap-property.
 - Max-heap: for each node except root,
 value of that node ≤ value of its parent.
 - Min-heap: for each node except root,
 value of that node ≥ value of its parent.



Binary Heap

- We can use an array to represent a binary heap. Obtaining parent and children are easy:
 - Parent of node u : $\lfloor idx_u/2 \rfloor$
 - Left child of $u: 2 \cdot idx_u$
 - Right child of $u: 2 \cdot idx_u + 1$
 - All in O(1) time!



1	2	3	4	5	6	7	8	9	10
16	14	10	8	7	9	3	2	4	1

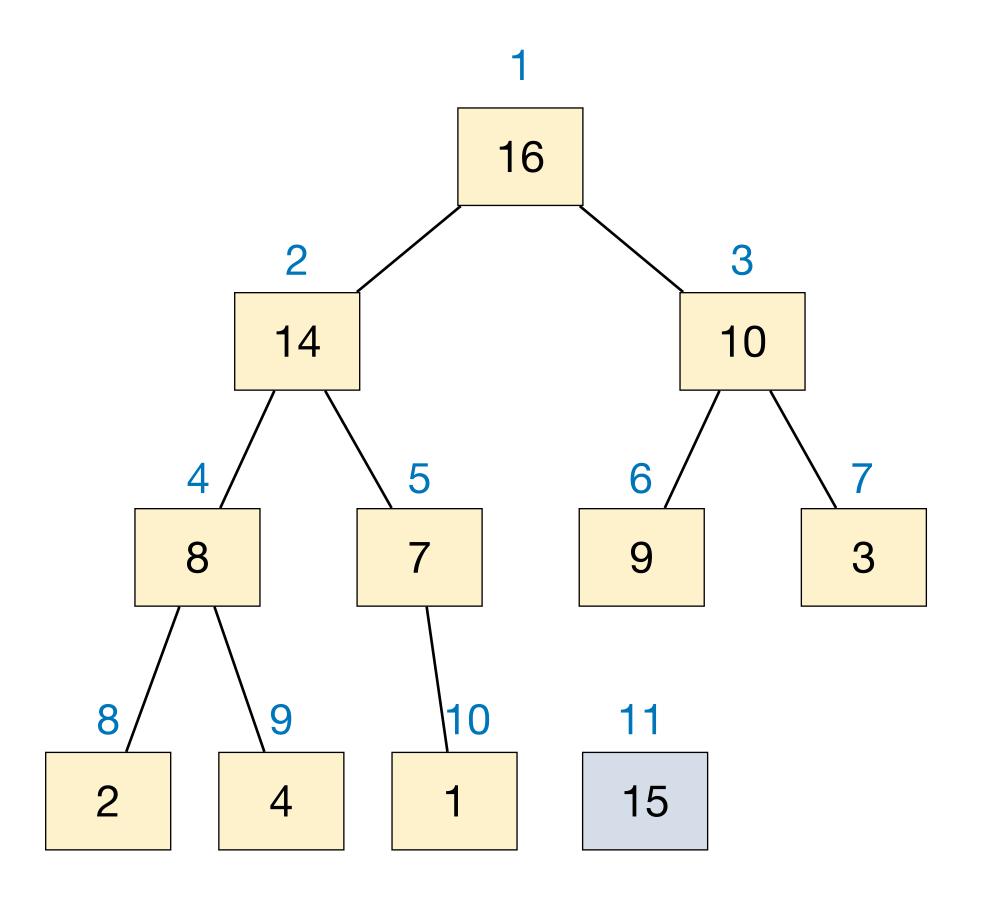
Common operations of Binary Max-Heap

- Consider max-heap as an example. (Min-heap is similar.)
- Most common operations:
 - HeapInsert: insert an element into the heap.
 - ► HeapGetMax: return the item with maximum value.

Runtime is O(1)

- HeapExtractMax: remove the item with maximum value from the heap and return it.
- Other operations (which we'll see later)...

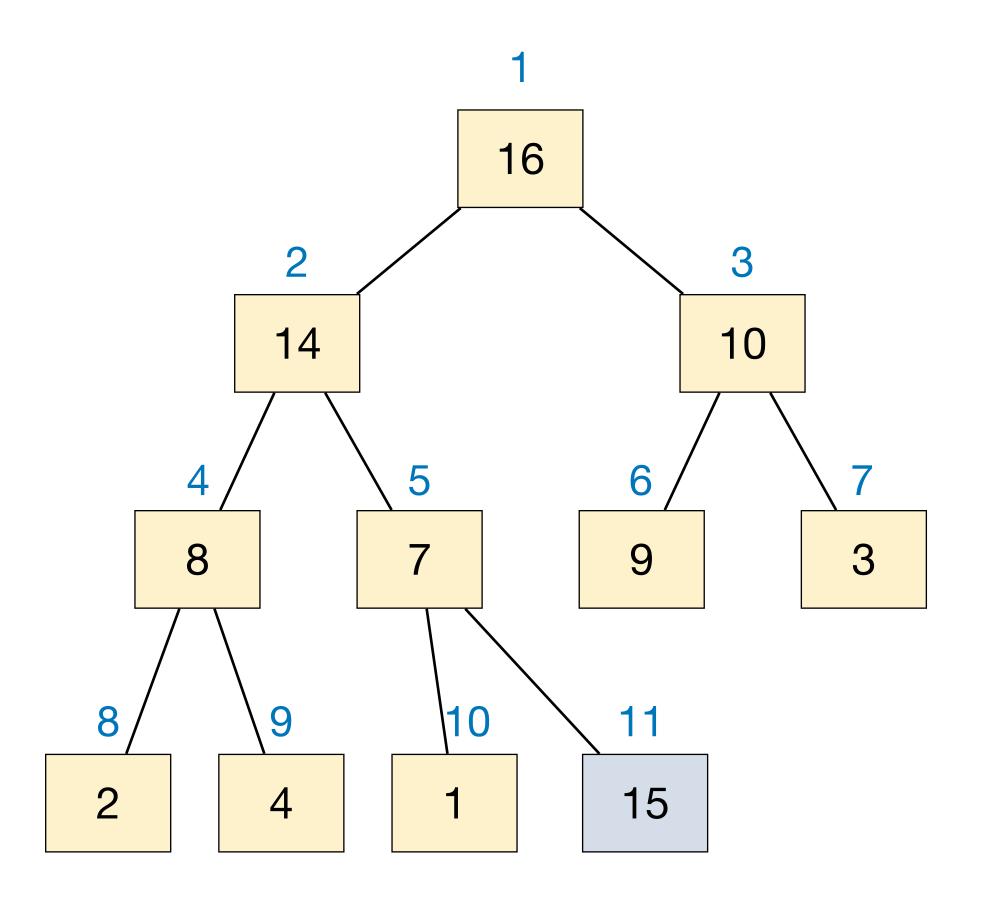
- Insert an item into a binary maxheap represented by an array.
 - Simply put the item to the end of the array.



1	2	3	4	5	6	7	8	9	10
16	14	10	8	7	9	3	2	4	1

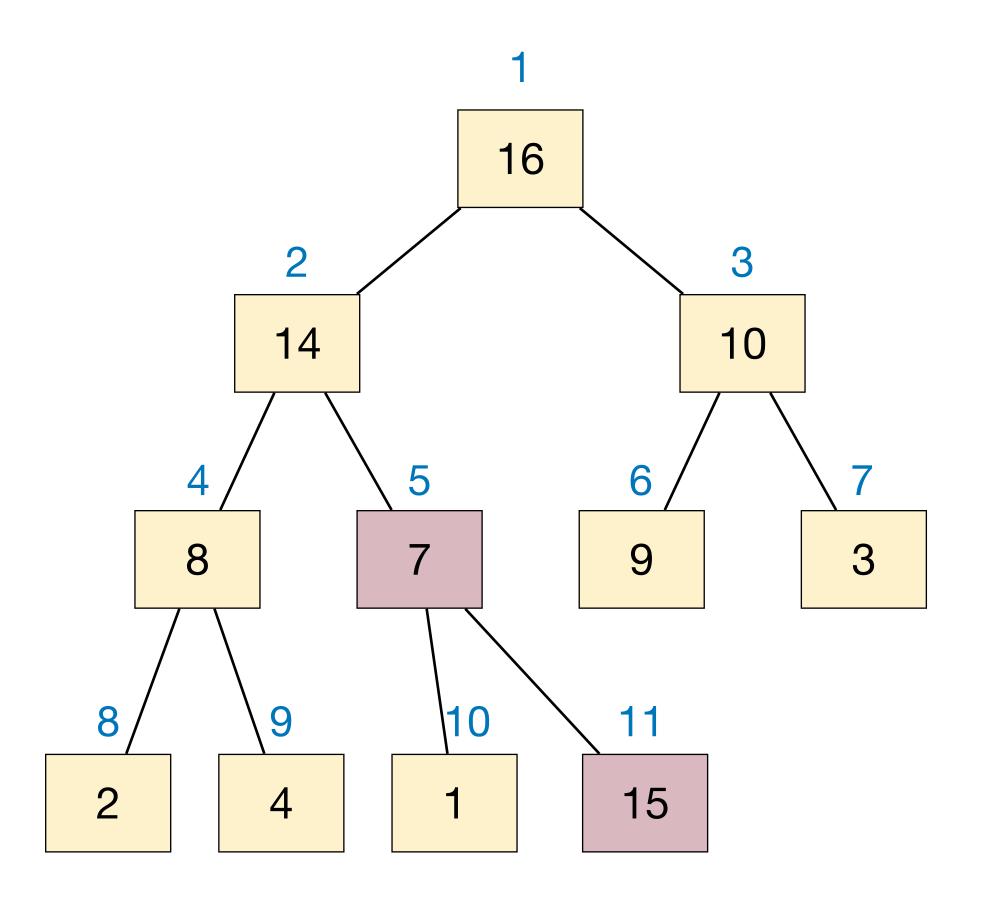
1

- Insert an item into a binary maxheap represented by an array.
 - Simply put the item to the end of the array.
 - We need to maintain heap property after insertion: along the path to root, compare and swap. (Why?)



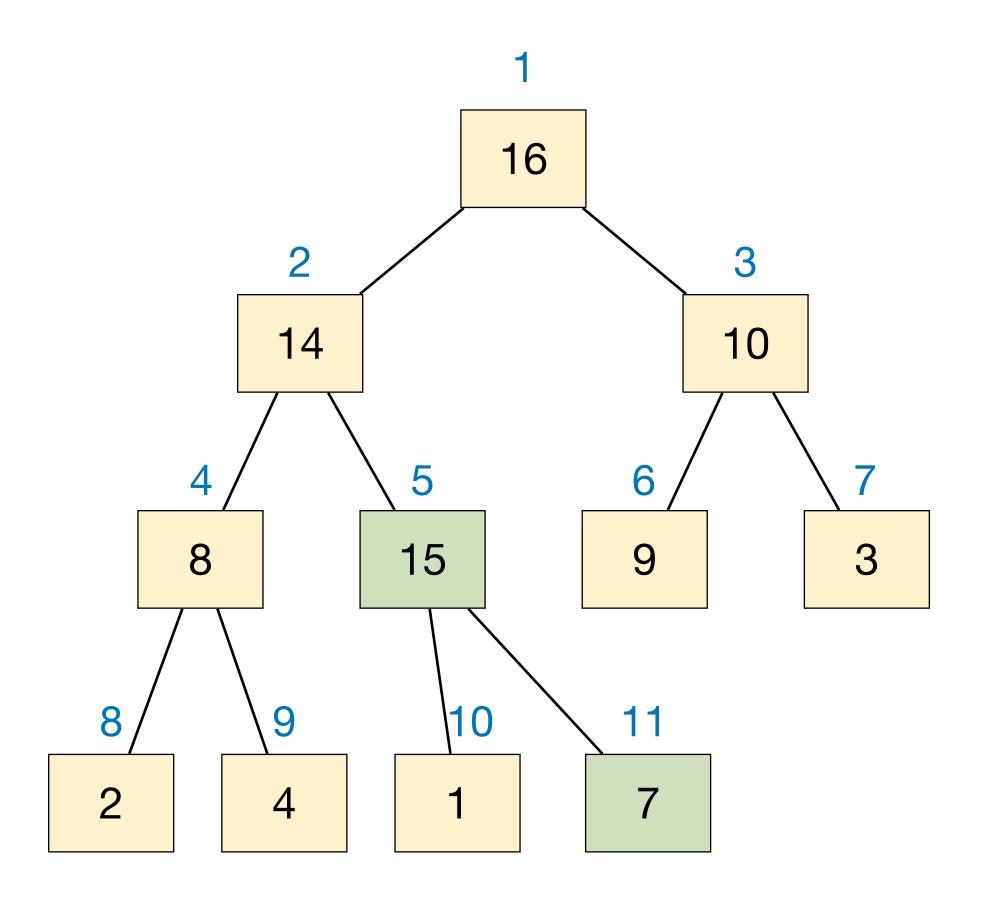
1	2	3	4	5	6	7	8	9	10	11
16	14	10	8	7	9	3	2	4	1	15

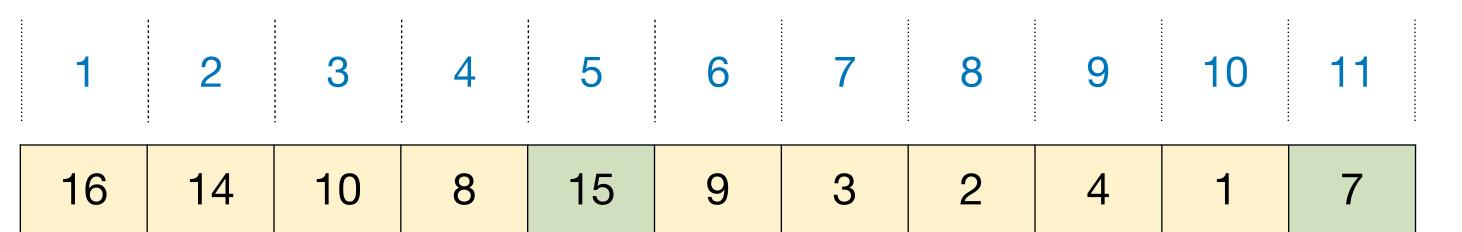
- Insert an item into a binary maxheap represented by an array.
 - Simply put the item to the end of the array.
 - We need to maintain heap property after insertion: along the path to root, compare and swap. (Why?)



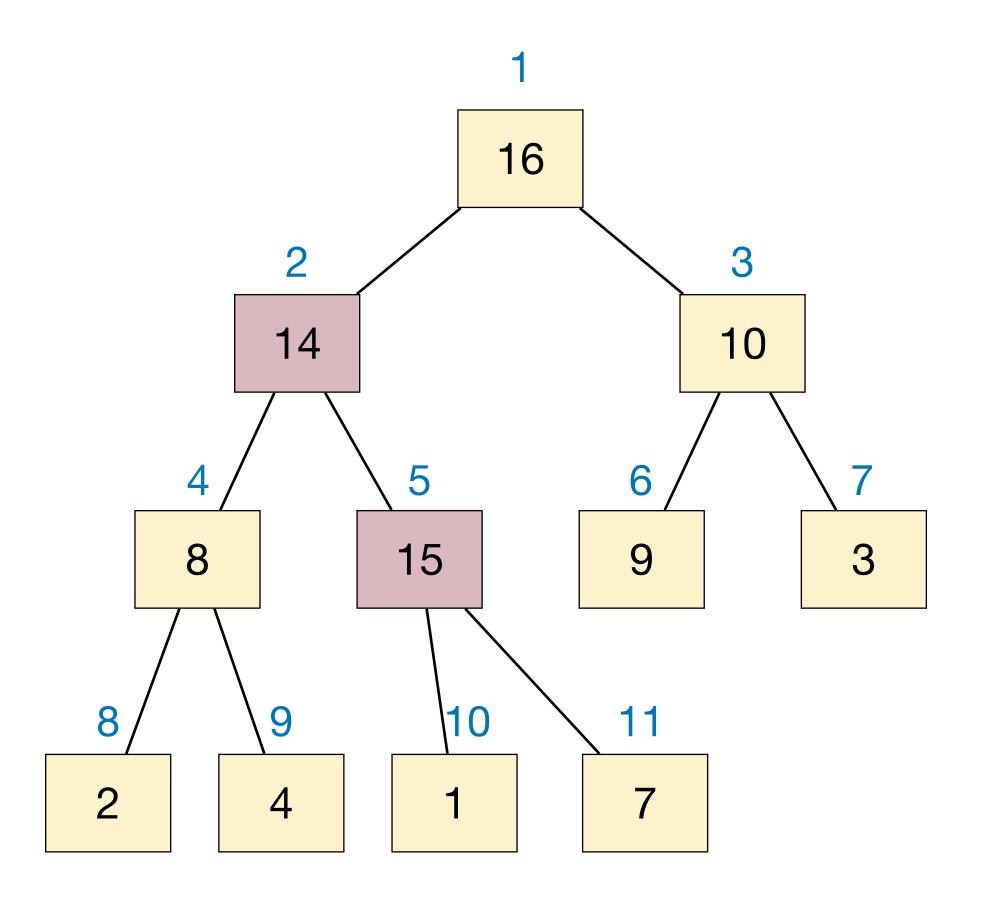
1	2	3	4	5	6	7	8	9	10	11
16	14	10	8	7	9	3	2	4	1	15

- Insert an item into a binary maxheap represented by an array.
 - Simply put the item to the end of the array.
 - We need to maintain heap property after insertion: along the path to root, compare and swap. (Why?)



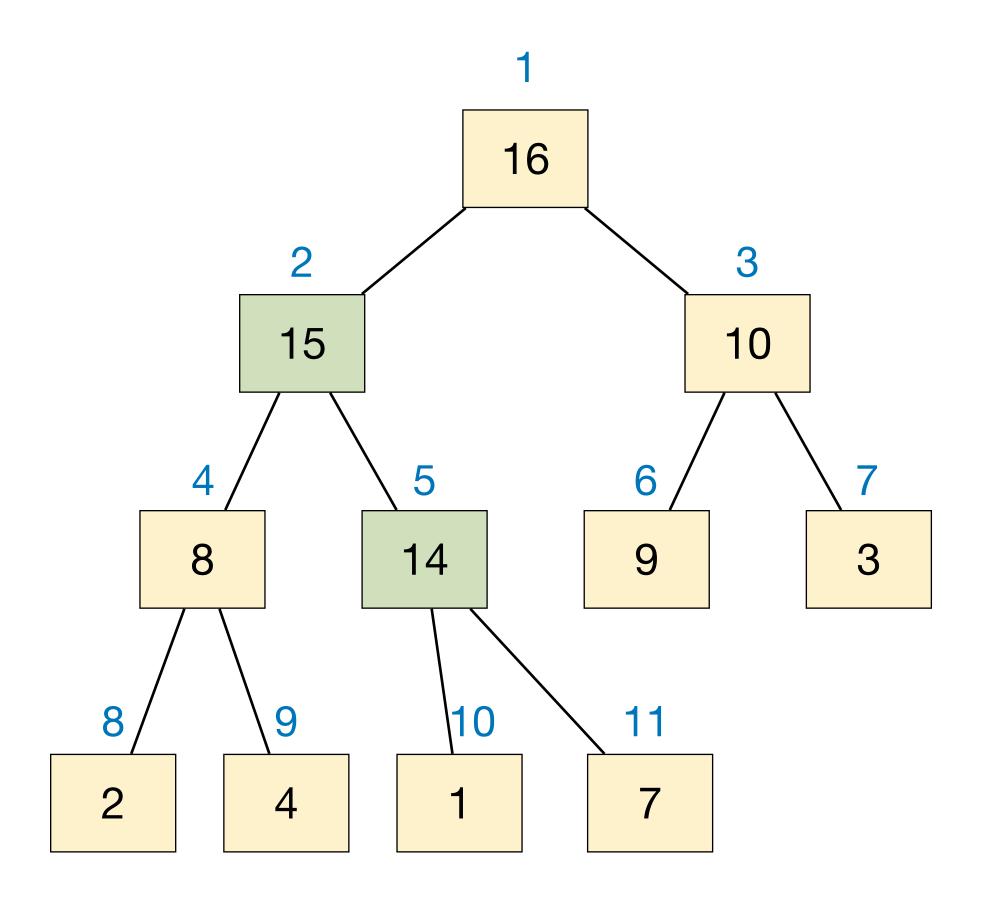


- Insert an item into a binary maxheap represented by an array.
 - Simply put the item to the end of the array.
 - We need to maintain heap property after insertion: along the path to root, compare and swap. (Why?)



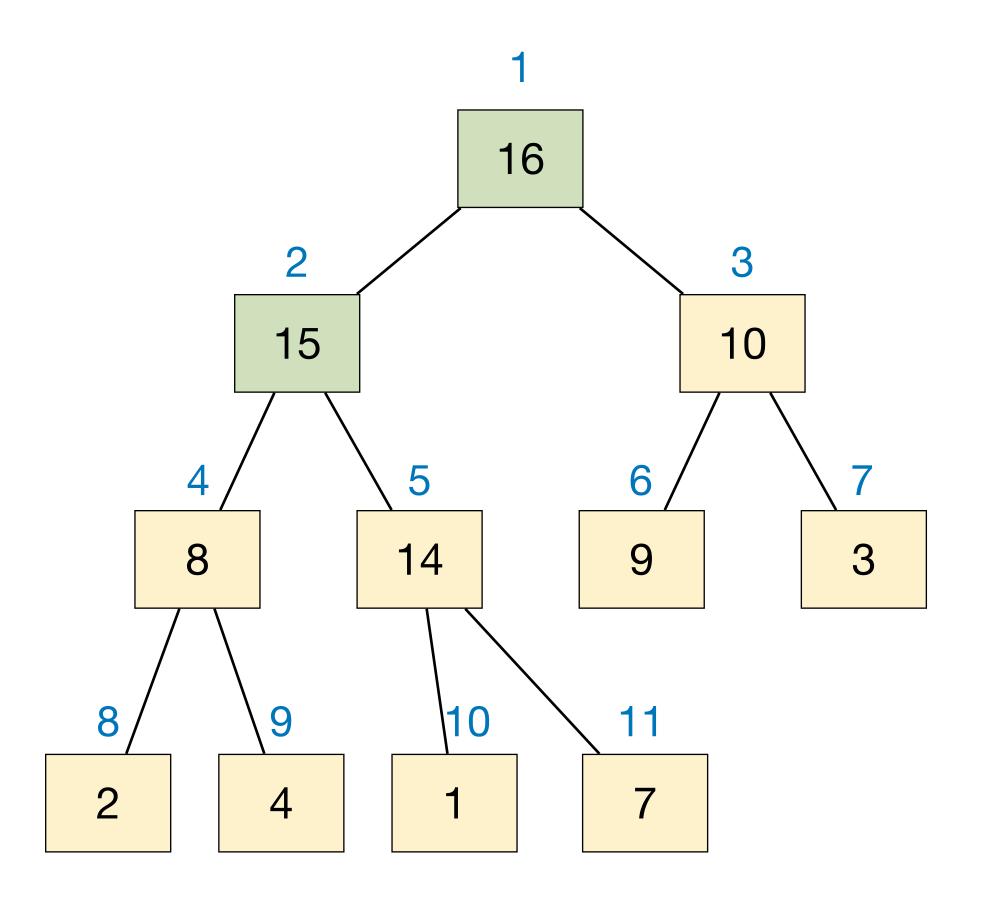
1	2	3	4	5	6	7	8	9	10	11	
16	14	10	8	15	9	3	2	4	1	7	

- Insert an item into a binary maxheap represented by an array.
 - Simply put the item to the end of the array.
 - We need to maintain heap property after insertion: along the path to root, compare and swap. (Why?)



1	2	3	4	5	6	7	8	9	10	11
16	15	10	8	14	9	3	2	4	1	7

- Insert an item into a binary maxheap represented by an array.
 - Simply put the item to the end of the array.
 - We need to maintain heap property after insertion: along the path to root, compare and swap. (Why?)



1	2	3	4	5	6	7	8	9	10	11
16	15	10	8	14	9	3	2	4	1	7

HeapInsert(A, x):

```
heap\_size += 1
```

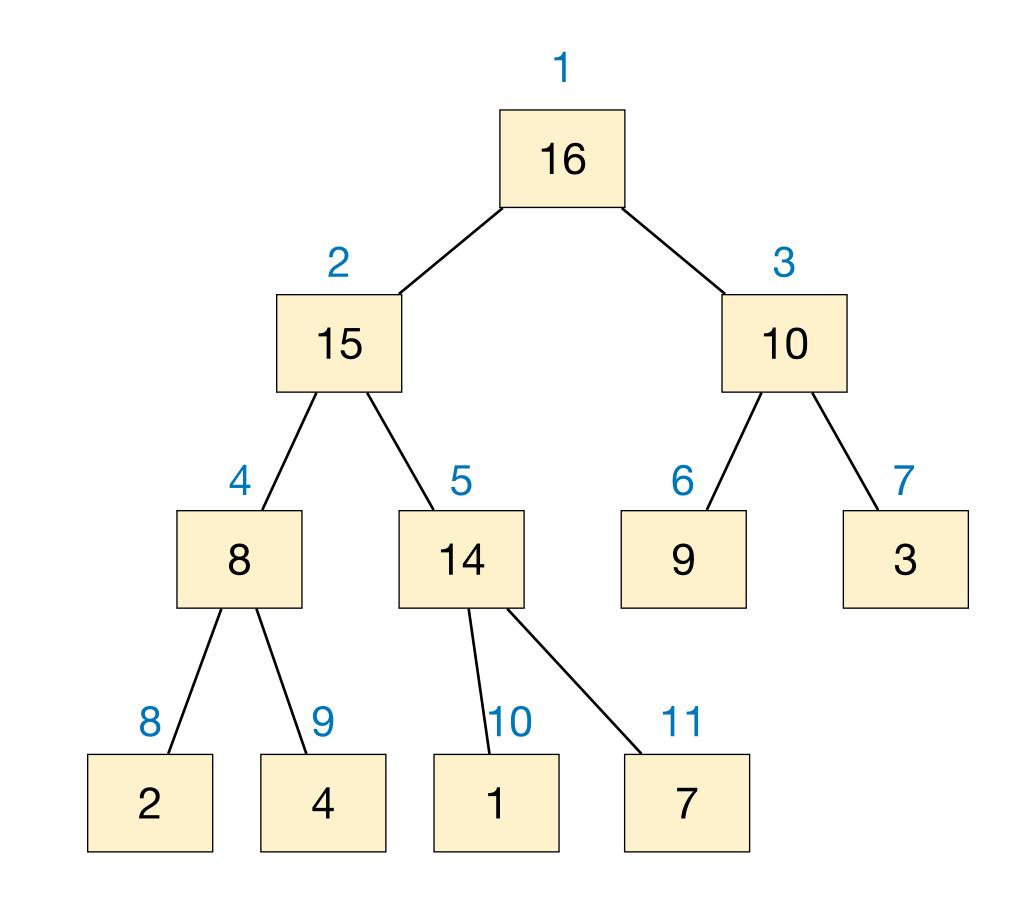
 $A[heap_size] := x$

 $idx := heap_size$

while idx > 1 and A[Floor(idx/2)] < A[idx]

Swap (A[Floor(idx/2)], A[idx])

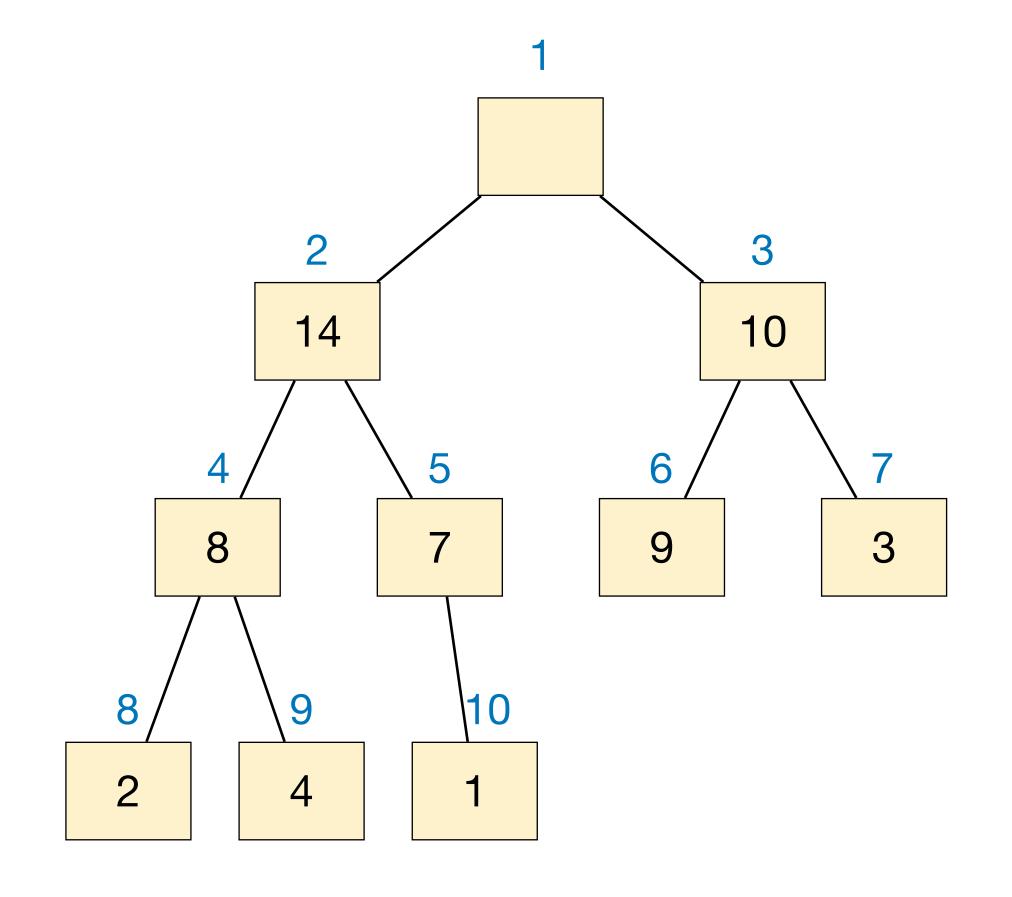
idx := Floor (idx / 2)



Runtime is $O(\lg n)$

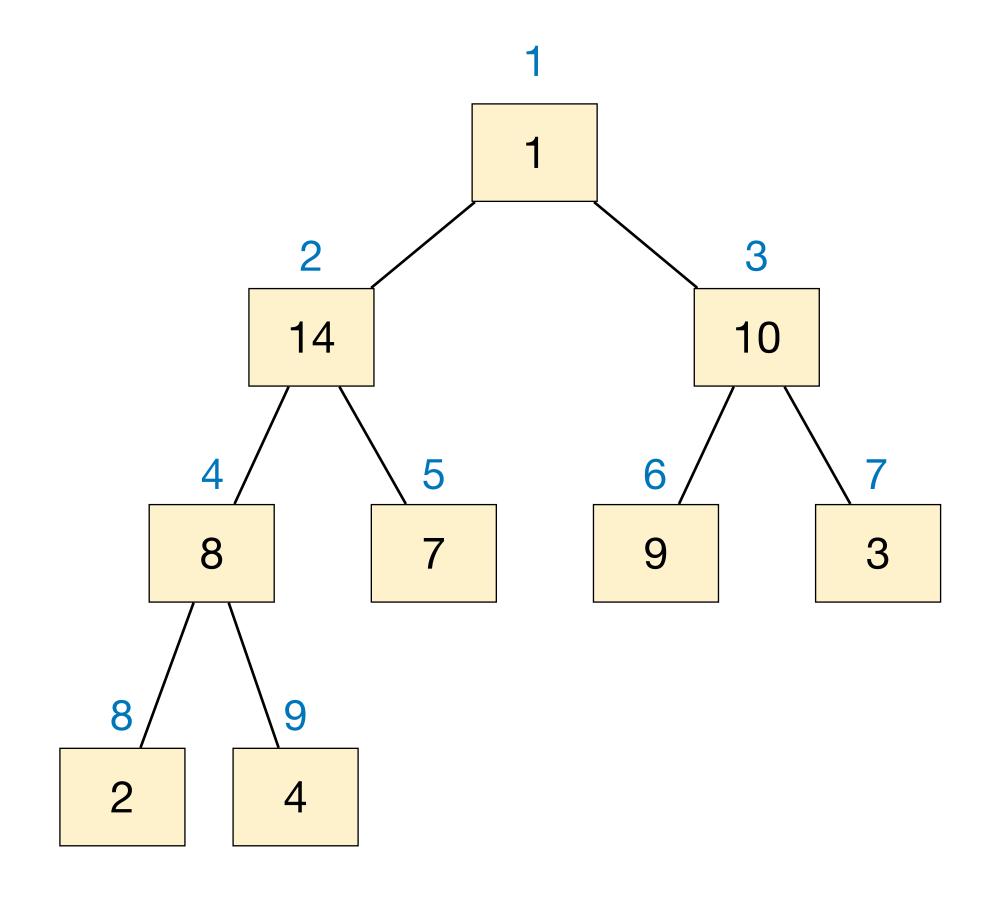
1	2	3	4	5	6	7	8	9	10	11
16	15	10	8	14	9	3	2	4	1	7

- Remove the maximum item from the heap and return it.
 - Remove and return root is simple, but then what to do?



1	2	3	4	5	6	7	8	9	10
	14	10	8	7	9	3	2	4	1

- Remove the maximum item from the heap and return it.
 - Remove and return root is simple, but then what to do?
 - Move the last item to the root!



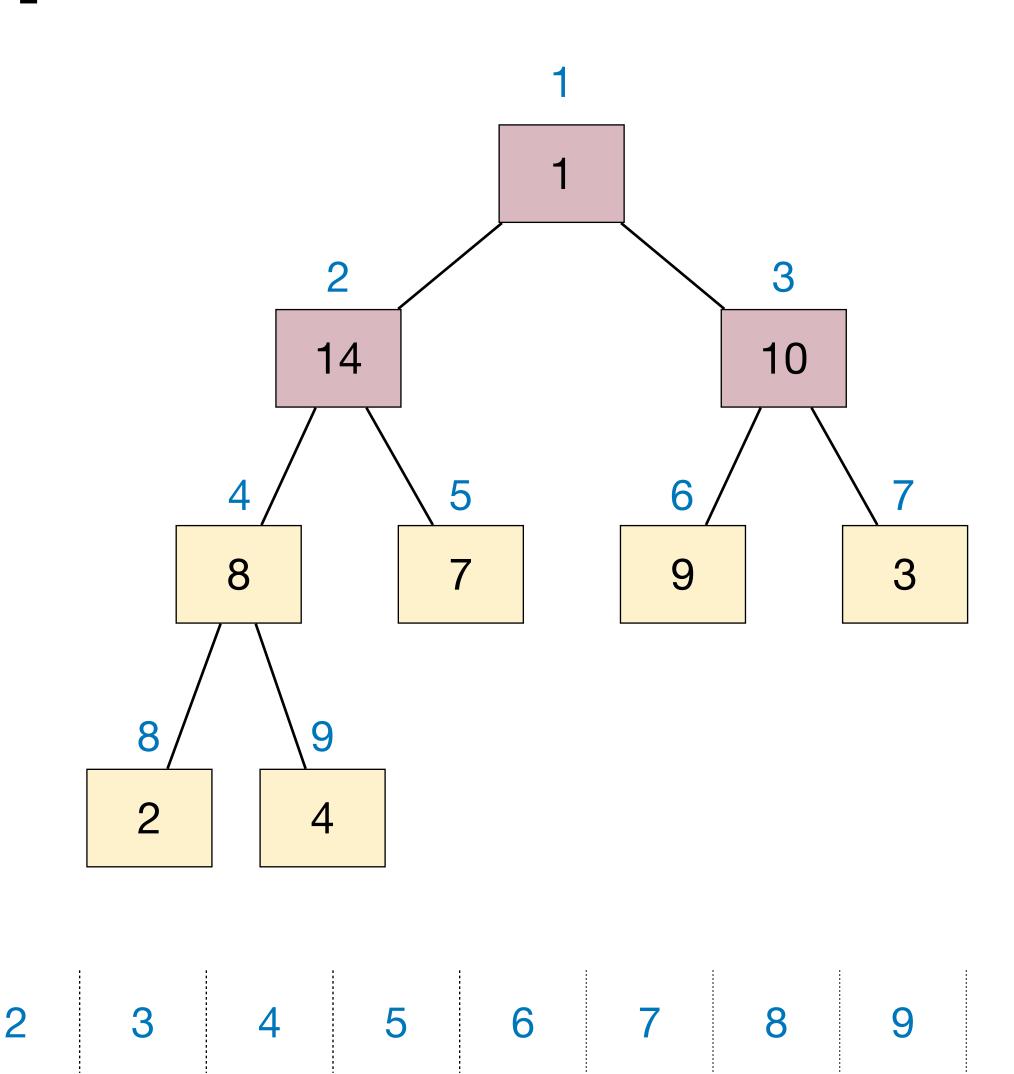
1	2	3	4	5	6	7	8	9
1	14	10	8	7	9	3	2	4

14

10

8

- Remove the maximum item from the heap and return it.
 - Remove and return root is simple, but then what to do?
 - Move the last item to the root!
 - Again, we need to maintain the heap property: compare with children, swap with bigger one; do this recursively



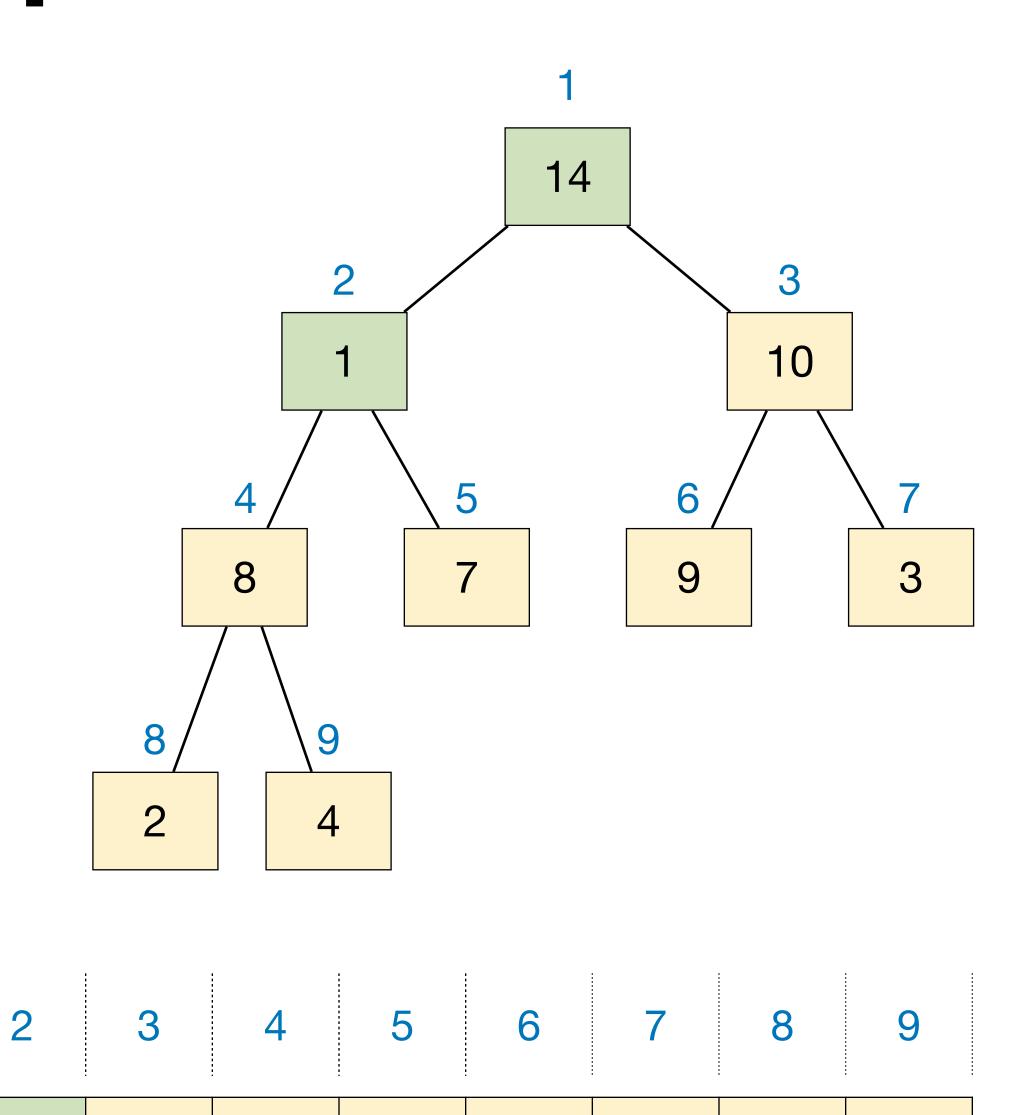
9

14

10

8

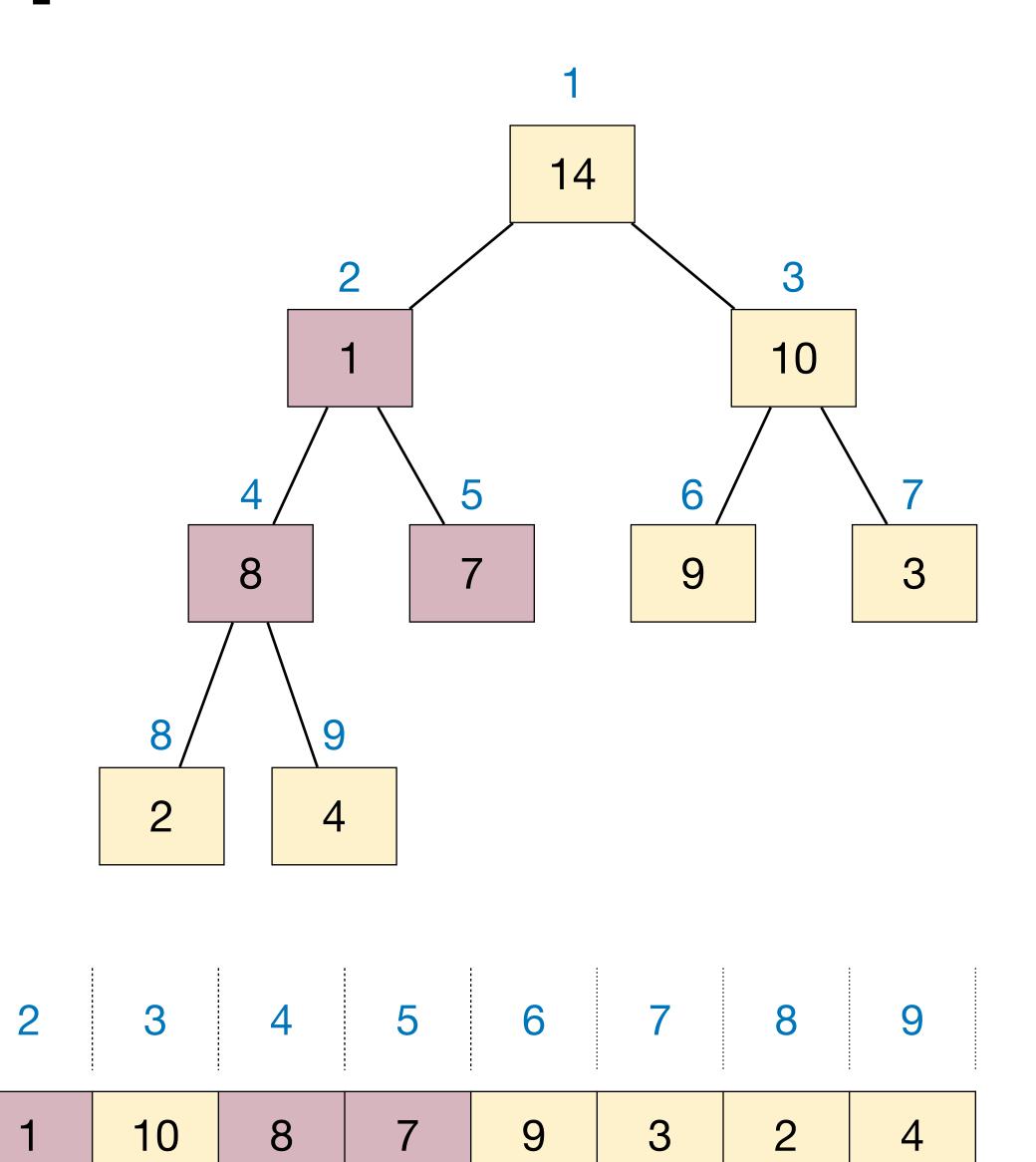
- Remove the maximum item from the heap and return it.
 - Remove and return root is simple, but then what to do?
 - Move the last item to the root!
 - Again, we need to maintain the heap property: compare with children, swap with bigger one; do this recursively



9

2

- Remove the maximum item from the heap and return it.
 - Remove and return root is simple, but then what to do?
 - Move the last item to the root!
 - Again, we need to maintain the heap property: compare with children, swap with bigger one; do this recursively

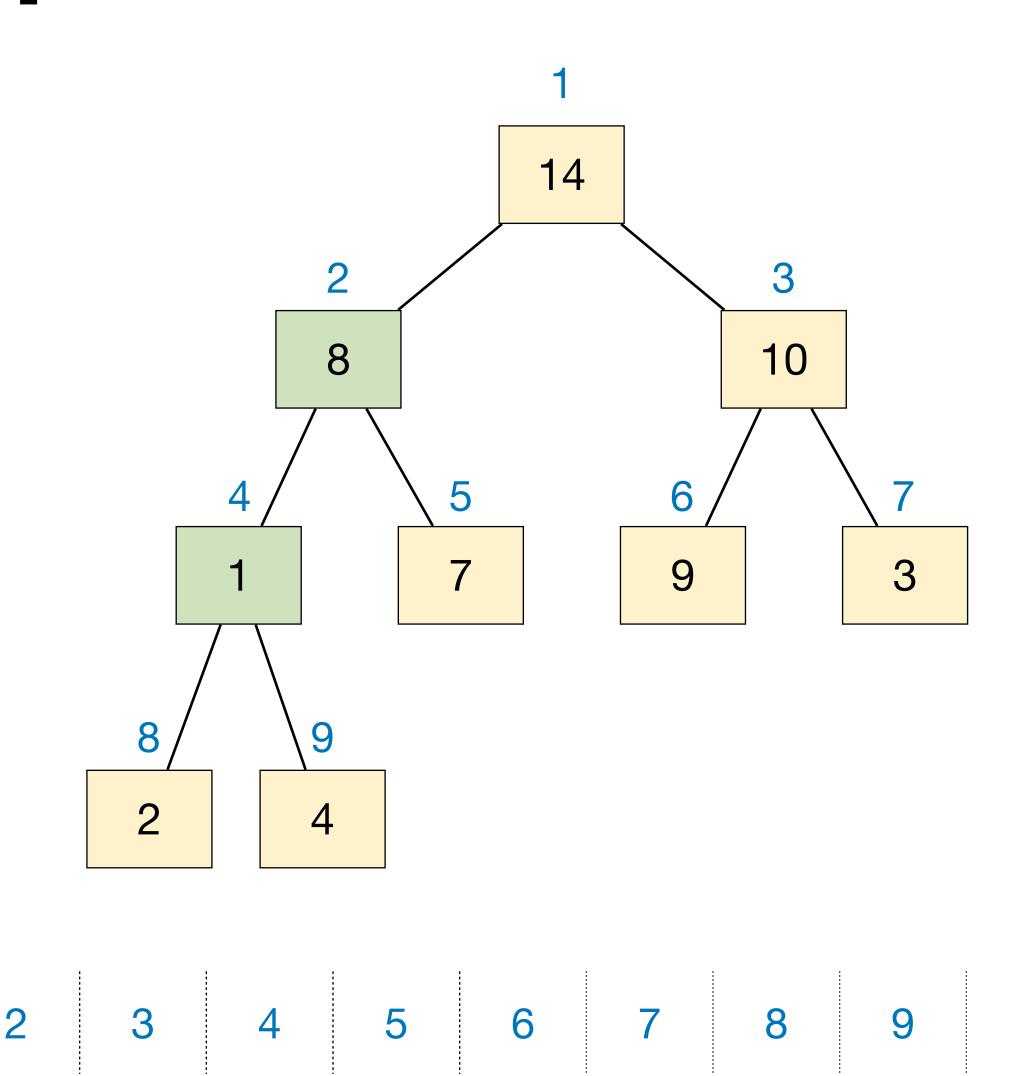


14

8

10

- Remove the maximum item from the heap and return it.
 - Remove and return root is simple, but then what to do?
 - Move the last item to the root!
 - Again, we need to maintain the heap property: compare with children, swap with bigger one; do this recursively



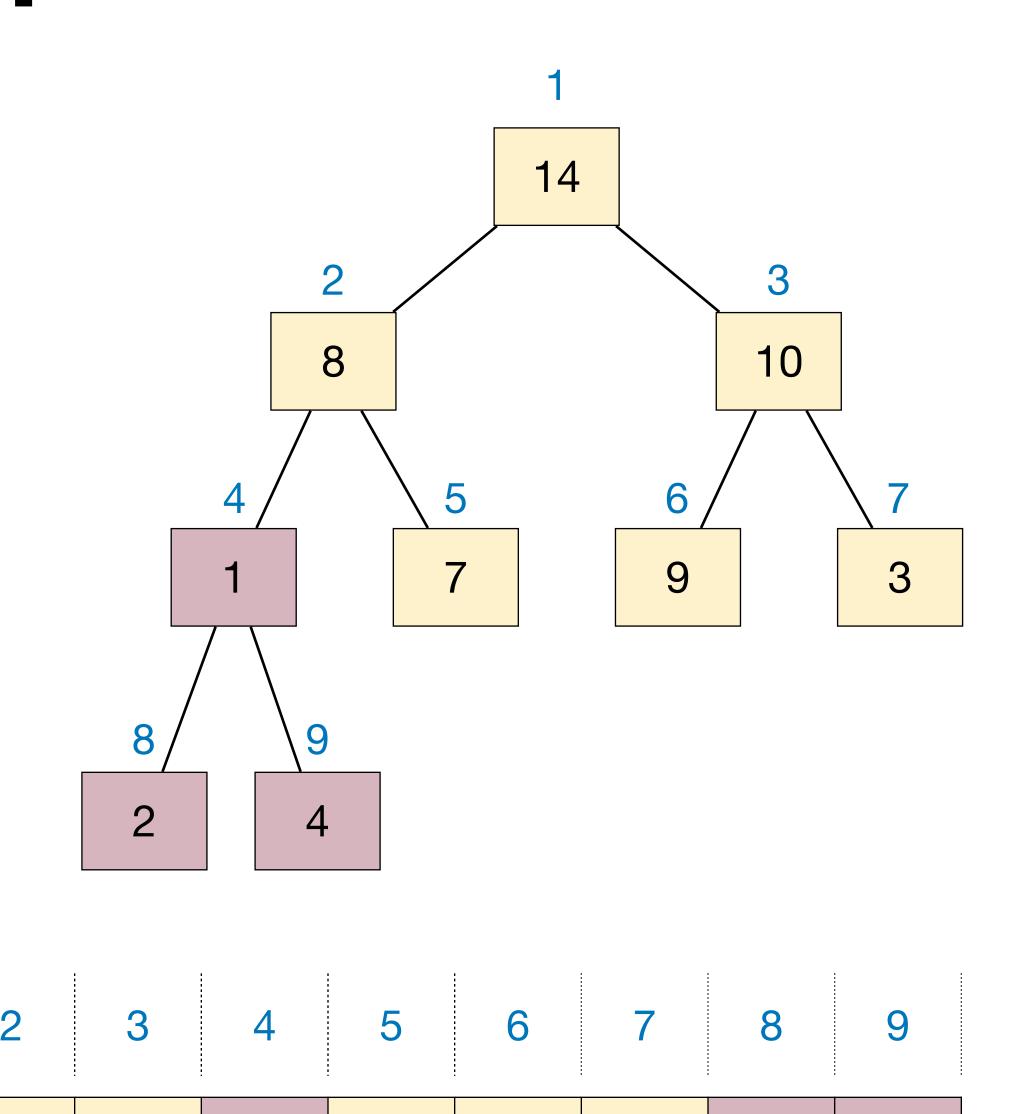
9

14

8

10

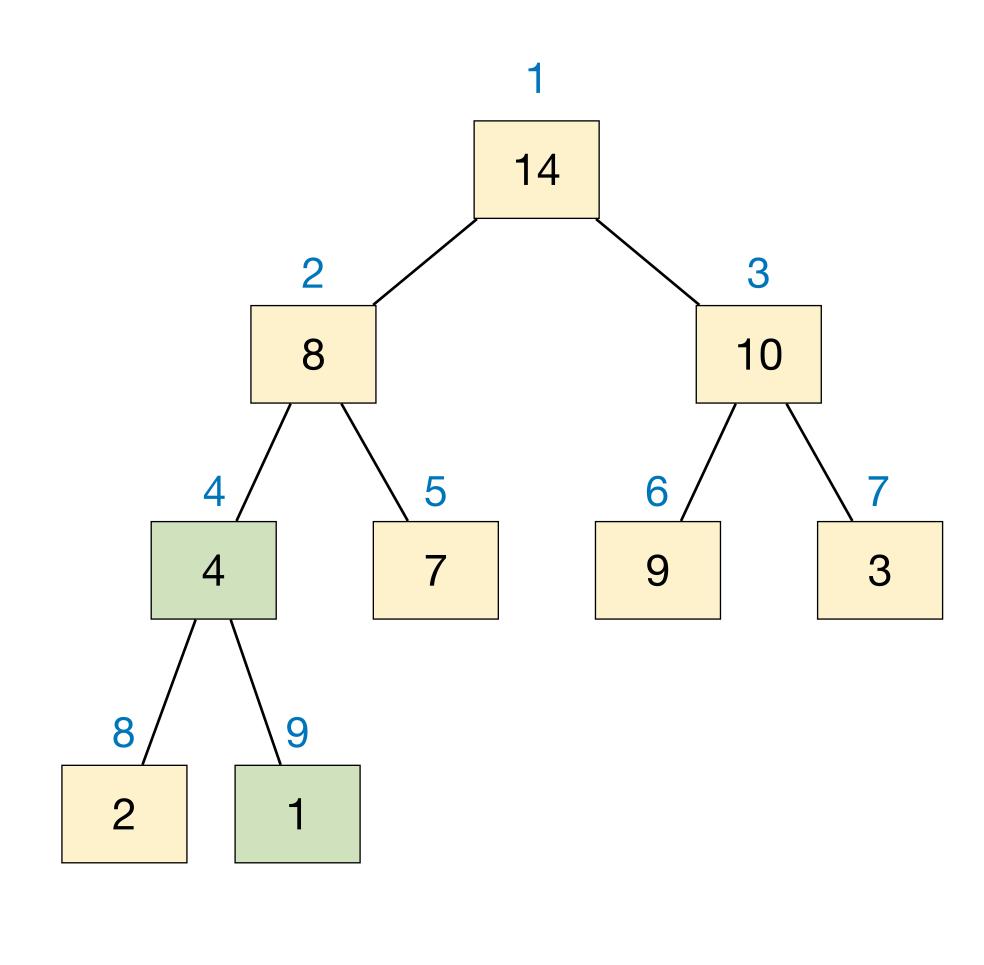
- Remove the maximum item from the heap and return it.
 - Remove and return root is simple, but then what to do?
 - Move the last item to the root!
 - Again, we need to maintain the heap property: compare with children, swap with bigger one; do this recursively



9

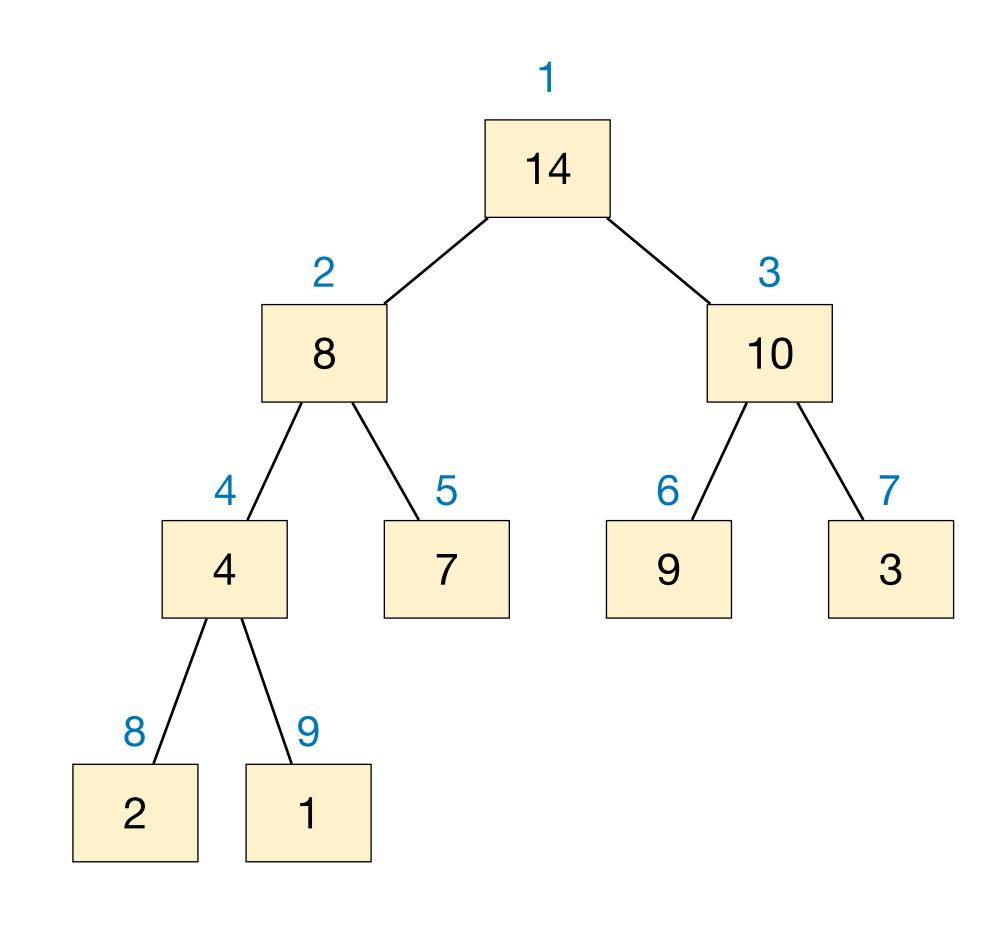
2

- Remove the maximum item from the heap and return it.
 - Remove and return root is simple, but then what to do?
 - Move the last item to the root!
 - Again, we need to maintain the heap property: compare with children, swap with bigger one; do this recursively



1	2	3	4	5	6	7	8	9
14	8	10	4	7	9	3	2	1

- Remove the maximum item from the heap and return it.
 - Remove and return root is simple, but then what to do?
 - Move the last item to the root!
 - Again, we need to maintain the heap property: compare with children, swap with bigger one; do this recursively



1	2	3	4	5	6	7	8	9
14	8	10	4	7	9	3	2	1

 $max_item := A[1]$

MaxHeapify(1, A)

return max item

Max-Heap — HeapExtractMax

HeapExtractMax(A):

 $A[1] = A[heap_size--]$

Application of heaps:

Priority Queue

Priority Queue

- Recall the Queue ADT represents a collection of items to which we can add items and remove the next item.
 - Add (item): add item to the queue.
 - Remove (): remove the next item y from queue, return y.
- The queuing discipline decides which item to be removed.
 - First-in-first-out queue (FIFO Queue)
 - Last-in-first-out queue (LIFO Queue, Stack)
 - Priority queue: each item associated with a priority, Remove always deletes the item with max (or min) priority.

Priority Queue

- Use binary heap to implement priority queue
 - ► Add (item): HeapInsert (item)
 - Remove():HeapExtractMax()
 - ► Other operations: GetMax(), UpdatePriority(item, val)
 - All these operations finish within $O(\lg n)$ time
- Application of priority queues
 - Scheduling, Event simulation, ...
 - Used in more sophisticated algorithms (will see them later...)

Take an array and make it a max-heap.

```
HeapSort(I):

heap := BuildMaxHeap(I)

for i := n down to 2

cur\_max := heap.HeapExtractMax()

I[i] := cur\_max
```

- 1. Keep a copy of the root item
- 2. Remove last item and put it to root
- 3. Maintain heap property
- 4. Return the copy of the root item

In each iteration:

Place one item in the array to its final position.

Place max item in current heap to its final position.

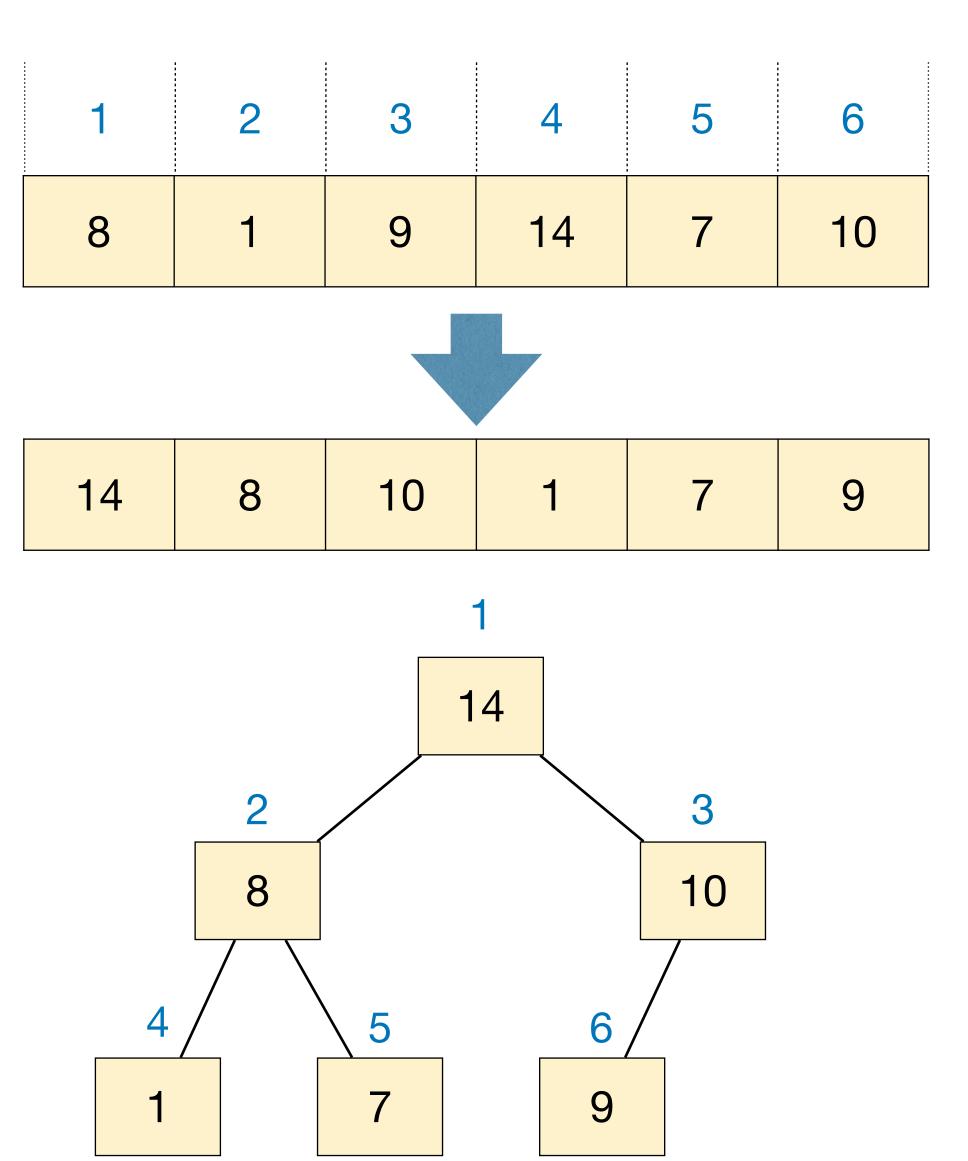
Place i^{th} biggest item to position n - i + 1.

HeapSort(I):

heap := BuildMaxHeap(I)

for i := n down to 2

 $cur_max := heap.HeapExtractMax()$

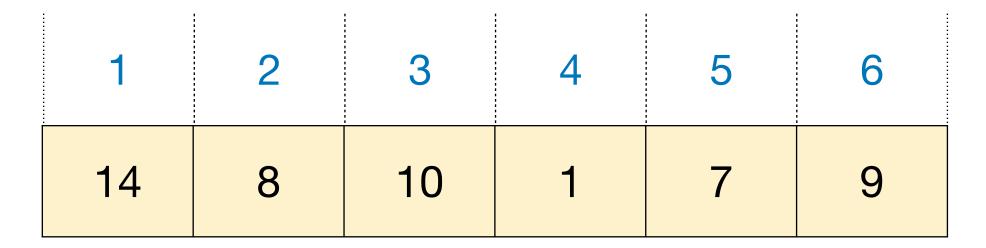


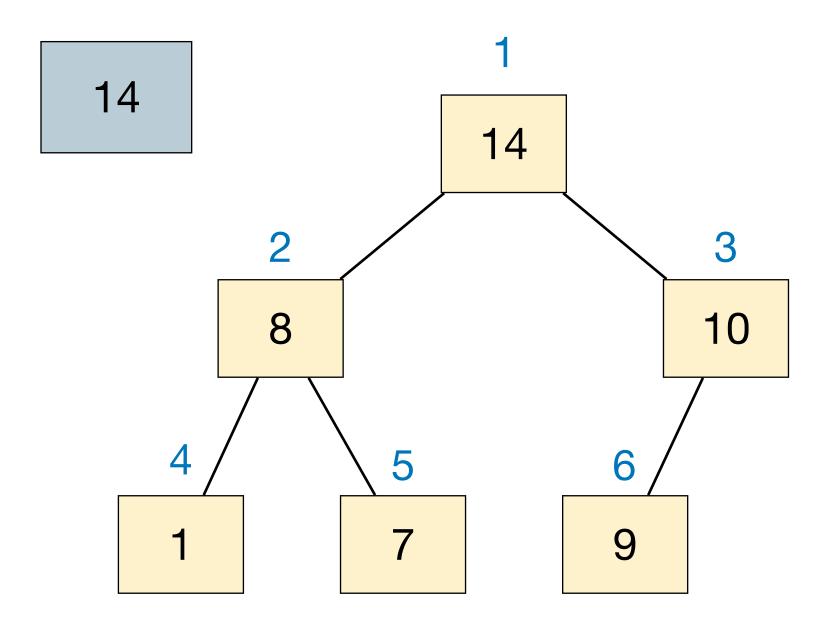
HeapSort(I):

heap := BuildMaxHeap(I)

for i := n down to 2

 $cur_max := heap.HeapExtractMax()$



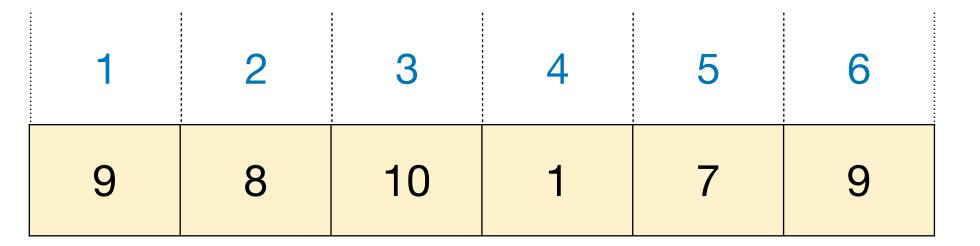


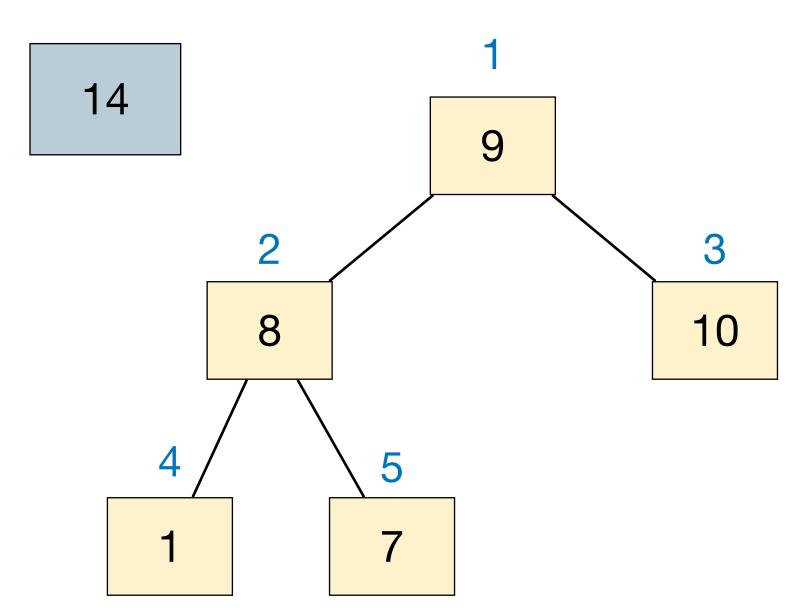
HeapSort(I):

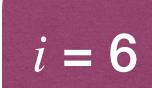
heap := BuildMaxHeap(I)

for i := n down to 2

 $cur_max := heap.HeapExtractMax()$





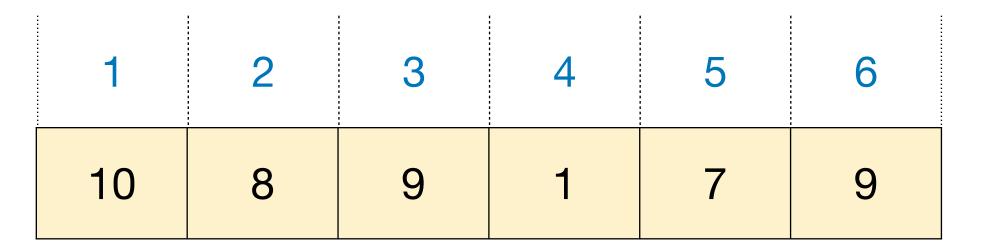


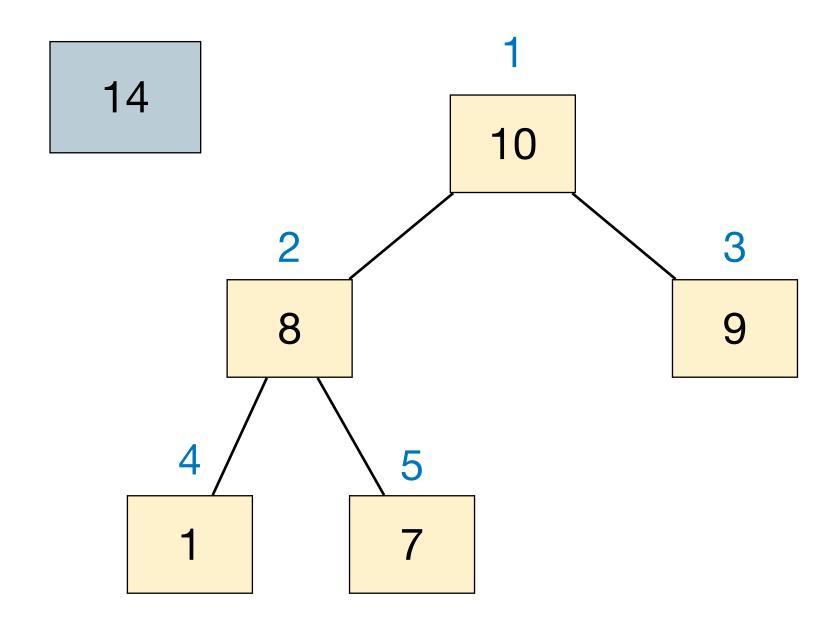
HeapSort(I):

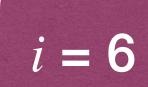
heap := BuildMaxHeap(I)

for i := n down to 2

 $cur_max := heap.HeapExtractMax()$







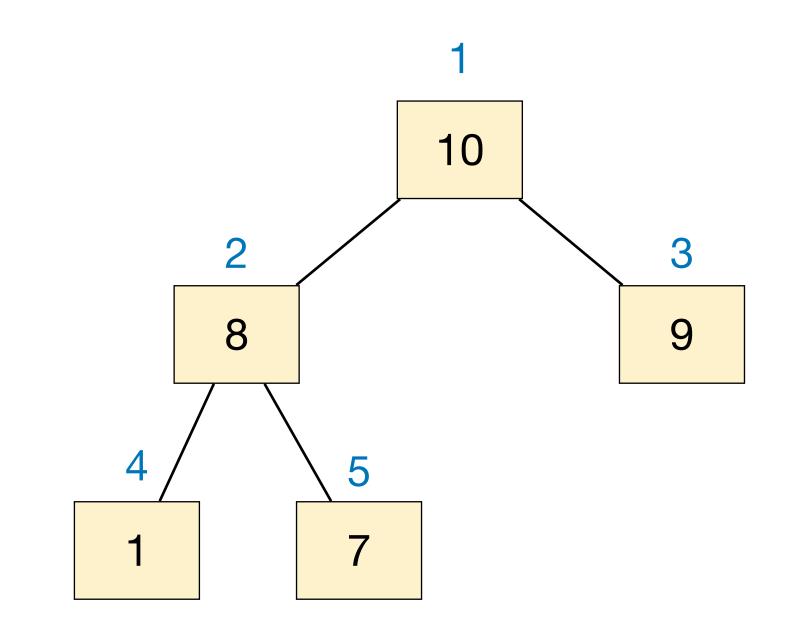
HeapSort(I):

heap := BuildMaxHeap(I)

for i := n down to 2

 $cur_max := heap.HeapExtractMax()$

1	2	3	4	5	6
10	8	9	1	7	14

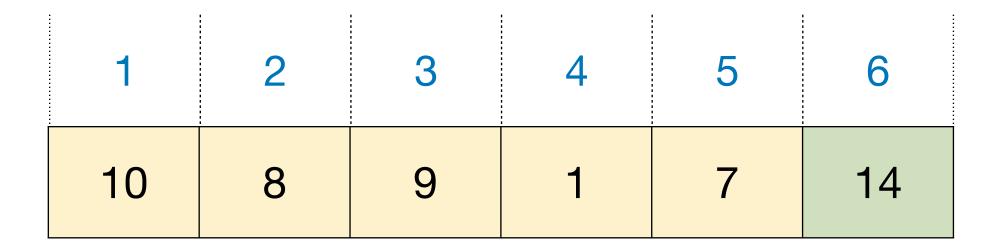


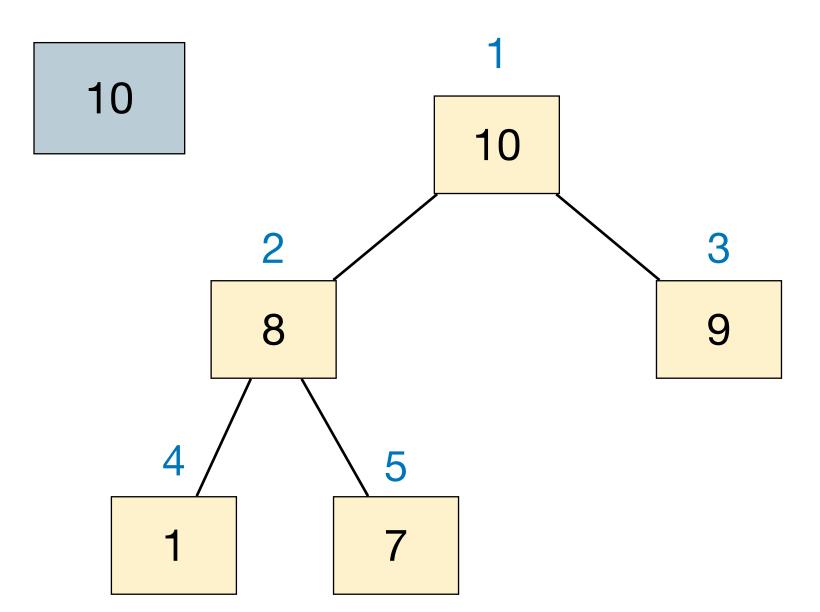
HeapSort(I):

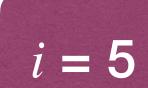
heap := BuildMaxHeap(I)

for i := n down to 2

 $cur_max := heap.HeapExtractMax()$





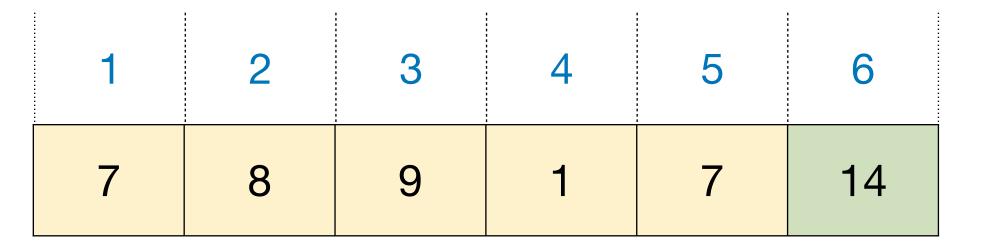


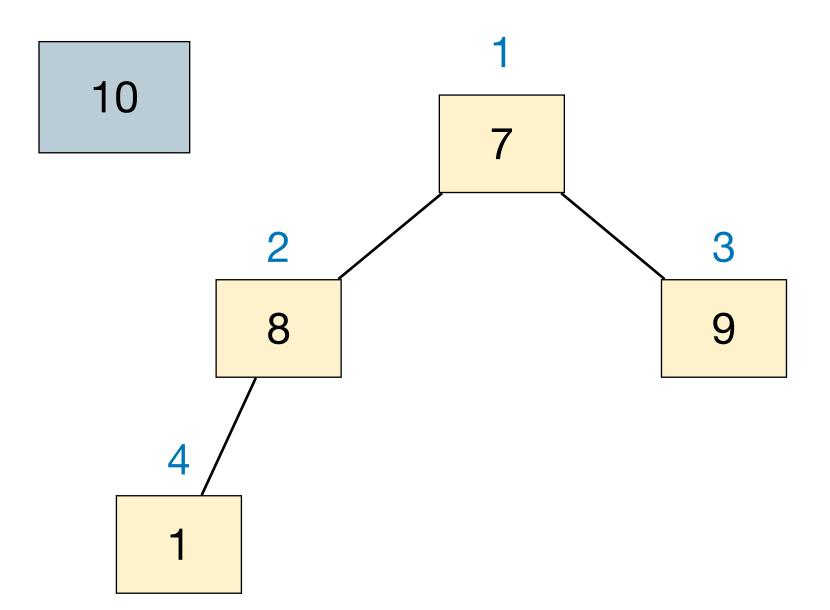
HeapSort(I):

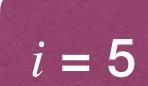
heap := BuildMaxHeap(I)

for i := n down to 2

 $cur_max := heap.HeapExtractMax()$





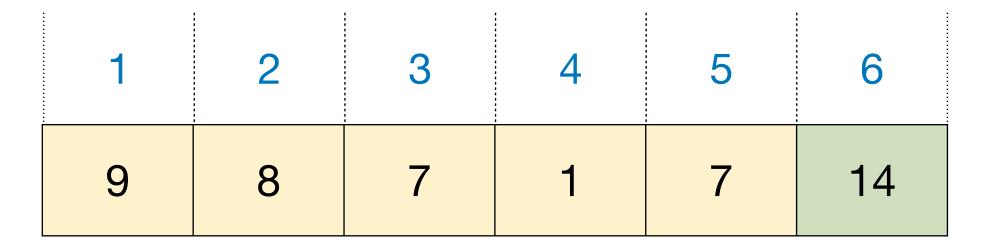


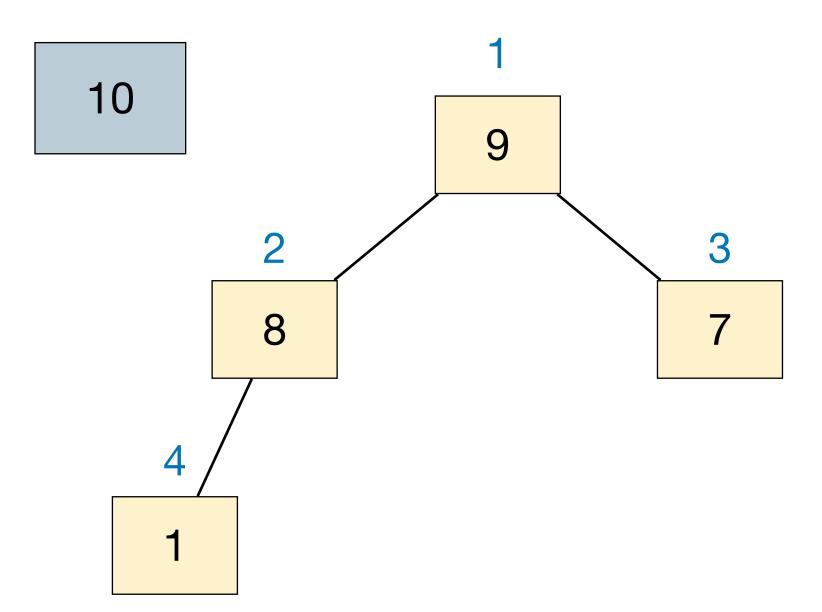
HeapSort(I):

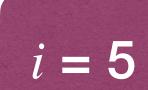
heap := BuildMaxHeap(I)

for i := n down to 2

 $cur_max := heap.HeapExtractMax()$







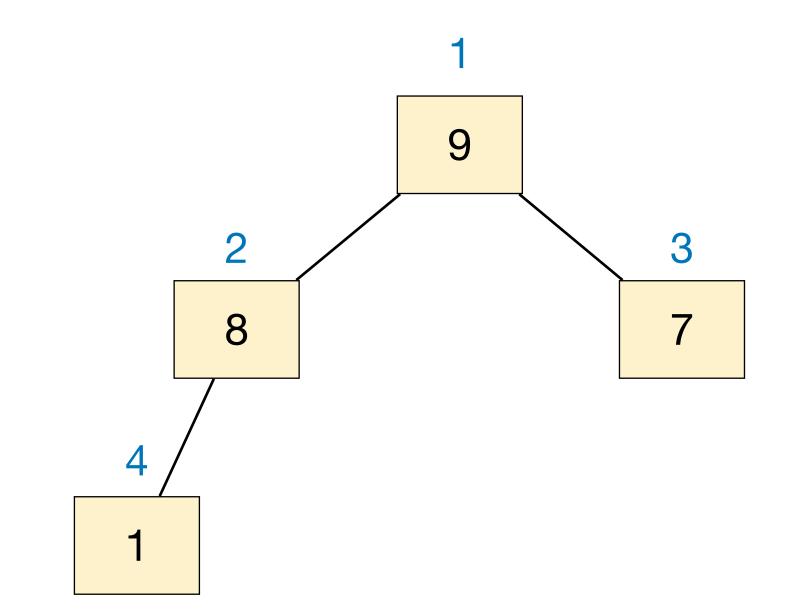
HeapSort(I):

heap := BuildMaxHeap(I)

for i := n down to 2

 $cur_max := heap.HeapExtractMax()$

1	2	3	4	5	6
9	8	7	1	10	14

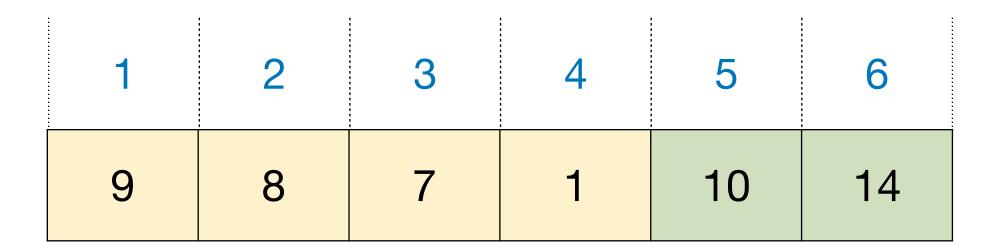


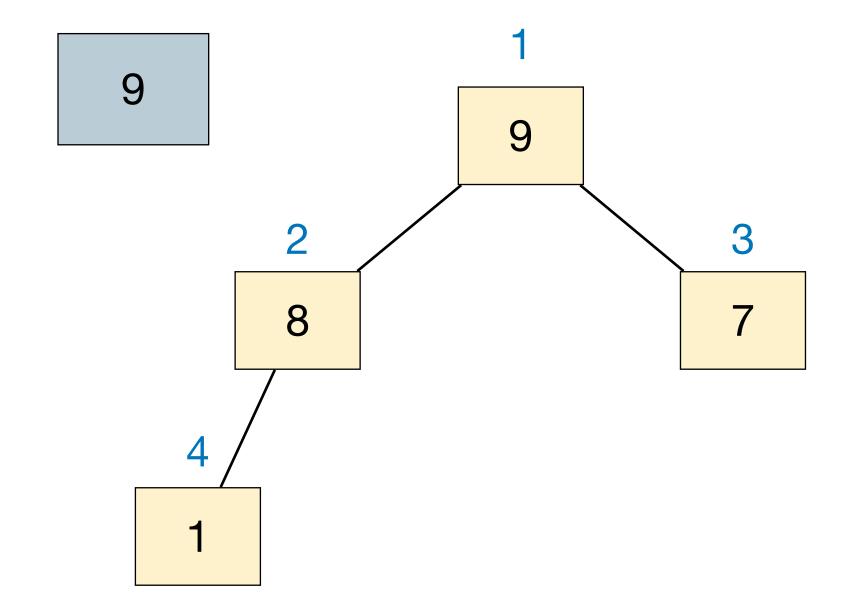
HeapSort(I):

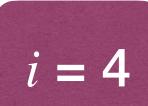
heap := BuildMaxHeap(I)

for i := n down to 2

 $cur_max := heap.HeapExtractMax()$





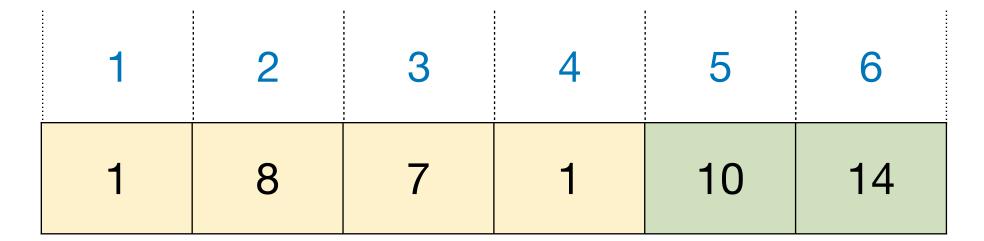


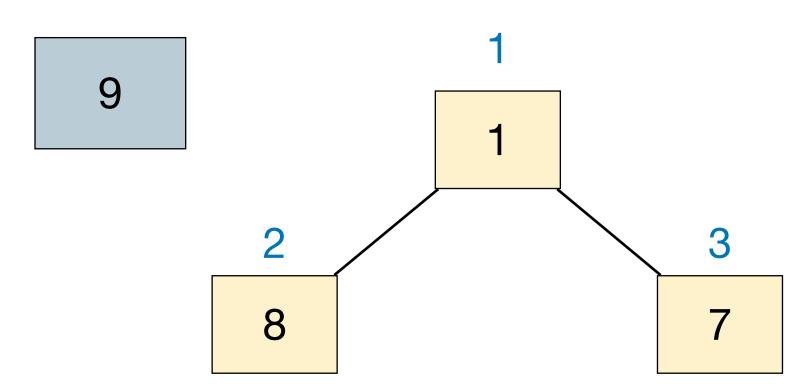
HeapSort(I):

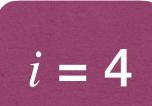
heap := BuildMaxHeap(I)

for i := n down to 2

 $cur_max := heap.HeapExtractMax()$





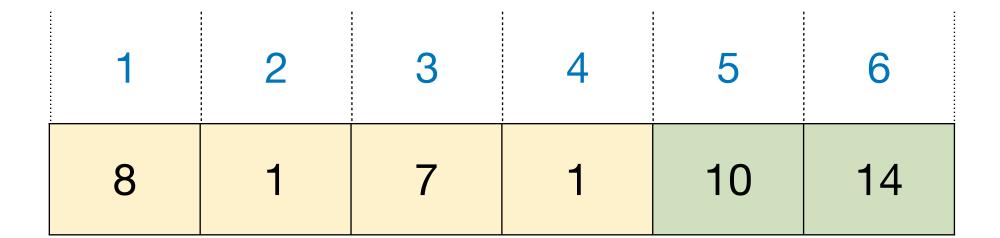


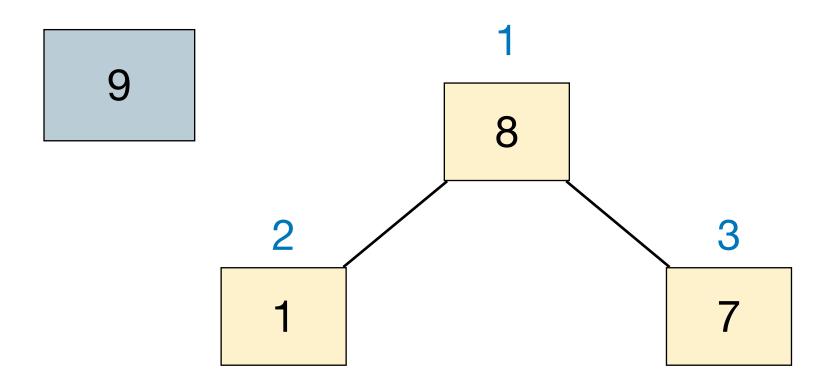
HeapSort(I):

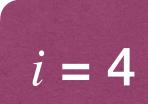
heap := BuildMaxHeap(I)

for i := n down to 2

 $cur_max := heap.HeapExtractMax()$







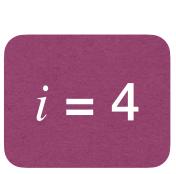
HeapSort(I):

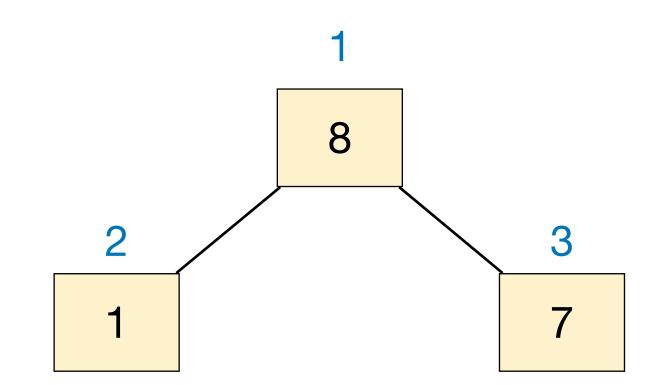
heap := BuildMaxHeap(I)

for i := n down to 2

 $cur_max := heap.HeapExtractMax()$

1	2	3	4	5	6
8	1	7	9	10	14





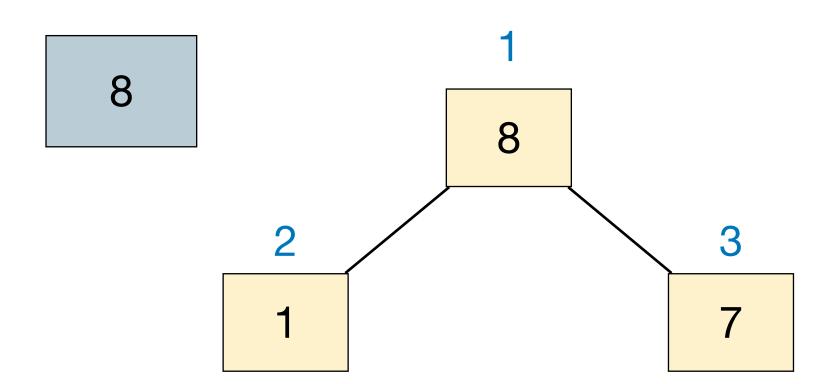
HeapSort(I):

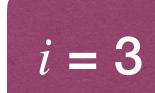
heap := BuildMaxHeap(I)

for i := n down to 2

 $cur_max := heap.HeapExtractMax()$

1	2	3	4	5	6
8	1	7	9	10	14





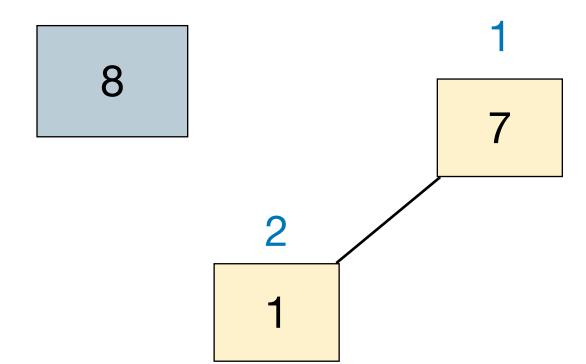
HeapSort(I):

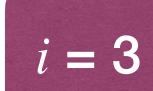
heap := BuildMaxHeap(I)

for i := n down to 2

 $cur_max := heap.HeapExtractMax()$

1	2	3	4	5	6
7	1	7	9	10	14





HeapSort(I):

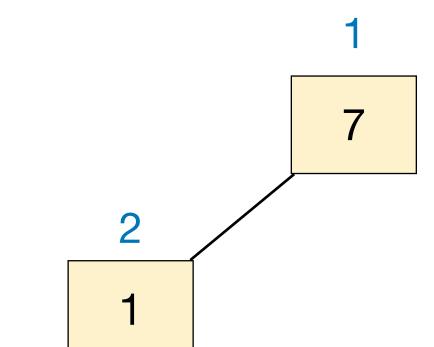
heap := BuildMaxHeap(I)

for i := n down to 2

 $cur_max := heap.HeapExtractMax()$

 $I[i] := cur_max$

1	2	3	4	5	6
7	1	8	9	10	14



i = 3

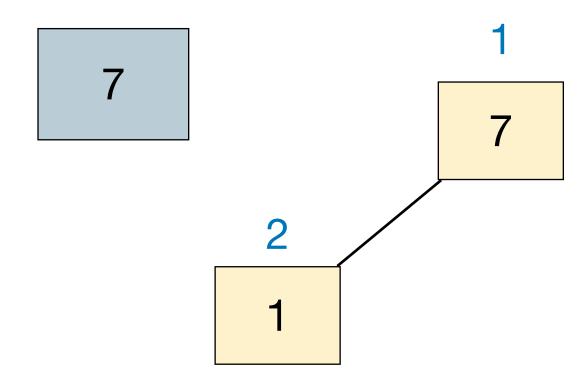
HeapSort(I):

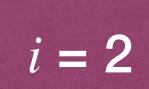
heap := BuildMaxHeap(I)

for i := n down to 2

 $cur_max := heap.HeapExtractMax()$

1	2	3	4	5	6
7	1	8	9	10	14





i = 2

HeapSort(I):

heap := BuildMaxHeap(I)

for i := n down to 2

 $cur_max := heap.HeapExtractMax()$

 $I[i] := cur_max$

1	2	3	4	5	6
1	1	8	9	10	14

7

1

HeapSort(I):

heap := BuildMaxHeap(I)

for i := n down to 2

 $cur_max := heap.HeapExtractMax()$

 $I[i] := cur_max$

1	2	3	4	5	6
1	7	8	9	10	14

1

1

HeapSort(I):

heap := BuildMaxHeap(I)

for i := n down to 2

 $cur_max := heap.HeapExtractMax()$

 $I[i] := cur_max$

In each iteration:

Place one item in the array to its final position.

Place max item in current heap to its final position.

Place i^{th} biggest item to position n - i + 1.

Total runtime of these iterations

$$\sum_{i=2}^{n} O(\lg i) = O(\lg(n!)) = O(n \lg n)$$

Stirling's formula

HeapSort(I):

heap := BuildMaxHeap(I)

for i := n down to 2

 $cur_max := heap.HeapExtractMax()$

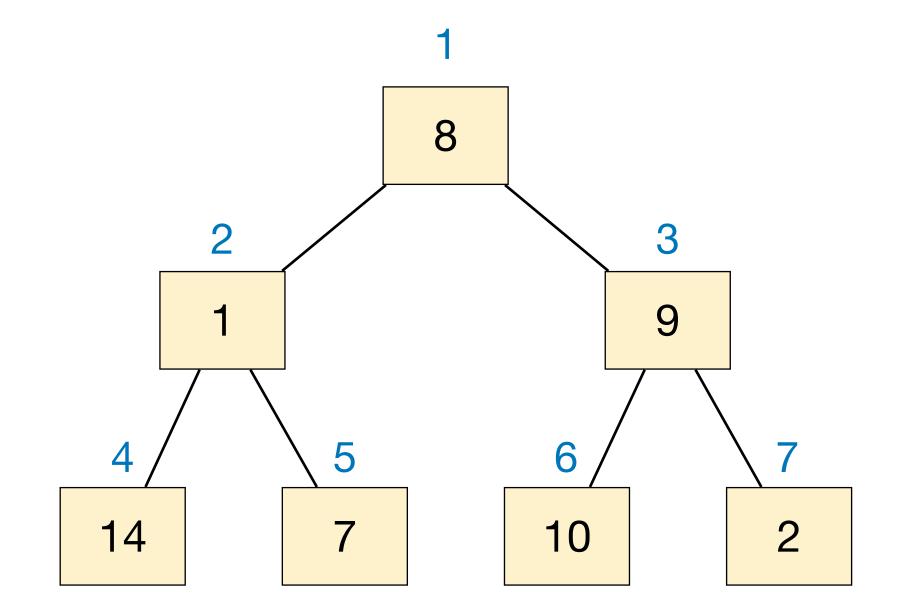
 $I[i] := cur_max$

- Given an array I[1...n], how to build a max-heap?
 - Start with an empty heap, then call HeapInsert n times?

Cost is
$$\sum_{i=1}^{n} O(\lg i) = O(n \lg n)$$

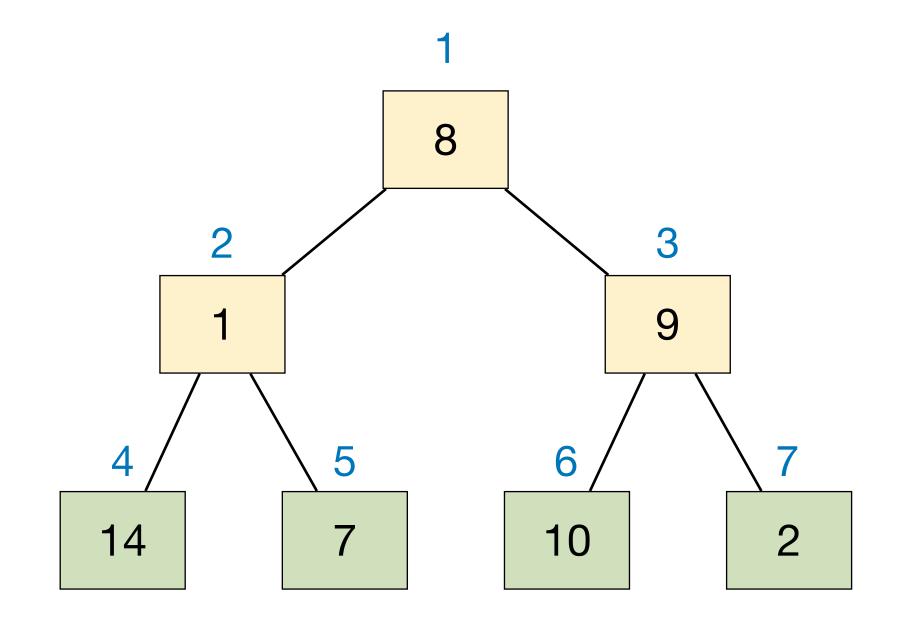
Not bad, but we can do better.

- Given an array I[1...n], how to build a max-heap?
 - Bottom-up approach: keep merging small heaps into larger ones, until a single heap remains.



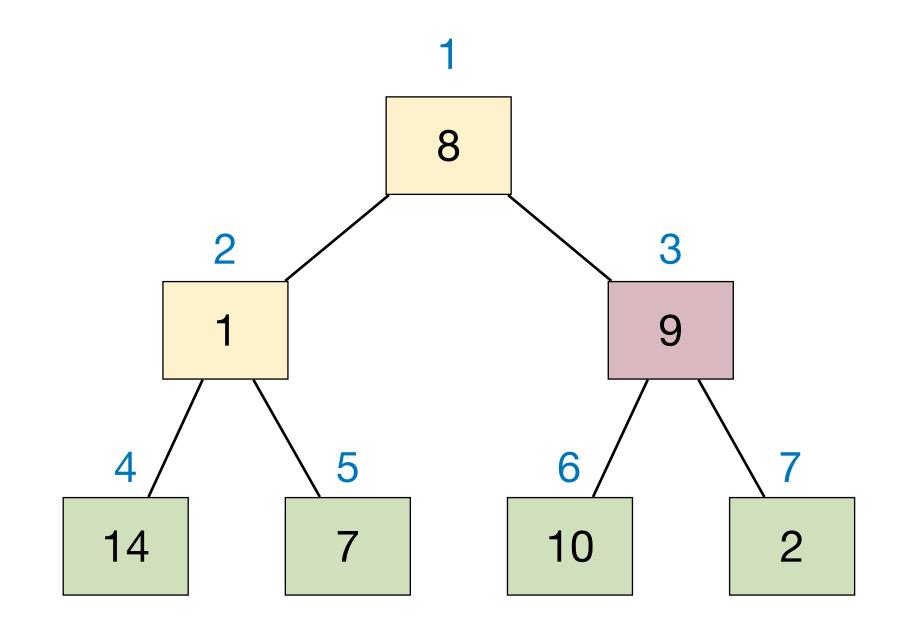
1	2	3	4	5	6	7
8	1	9	14	7	10	2

- Given an array I[1...n], how to build a max-heap?
 - Bottom-up approach: keep merging small heaps into larger ones, until a single heap remains.
 - Each leaf node is a 1-item heap.



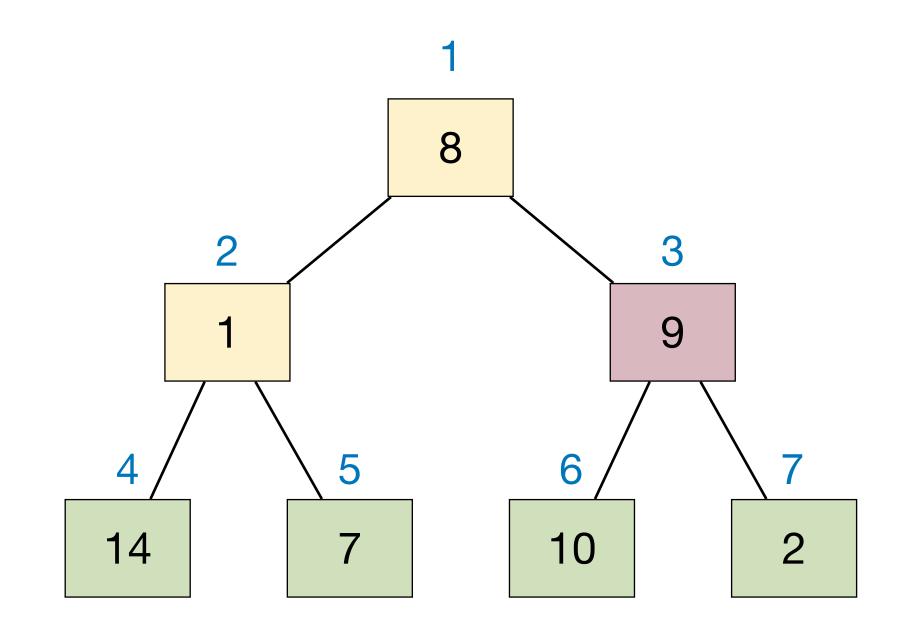
1	2	3	4	5	6	7
8	1	9	14	7	10	2

- Given an array I[1...n], how to build a max-heap?
 - Bottom-up approach: keep merging small heaps into larger ones, until a single heap remains.
 - Each leaf node is a 1-item heap.
 - Go through remaining nodes in index decreasing order: at each node, we are merging two heaps.



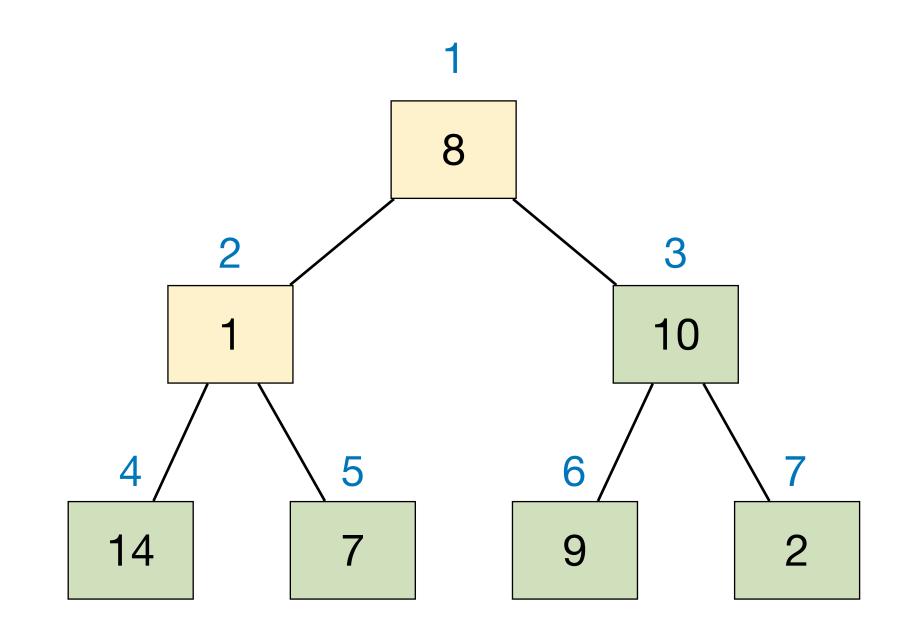
1	2	3	4	5	6	7
8	1	9	14	7	10	2

- Given an array I[1...n], how to build a max-heap?
 - Bottom-up approach: keep merging small heaps into larger ones, until a single heap remains.
 - Each leaf node is a 1-item heap.
 - Go through remaining nodes in index decreasing order: at each node, we are merging two heaps.
 - Maintain heap property during merging: use MaxHeapify.



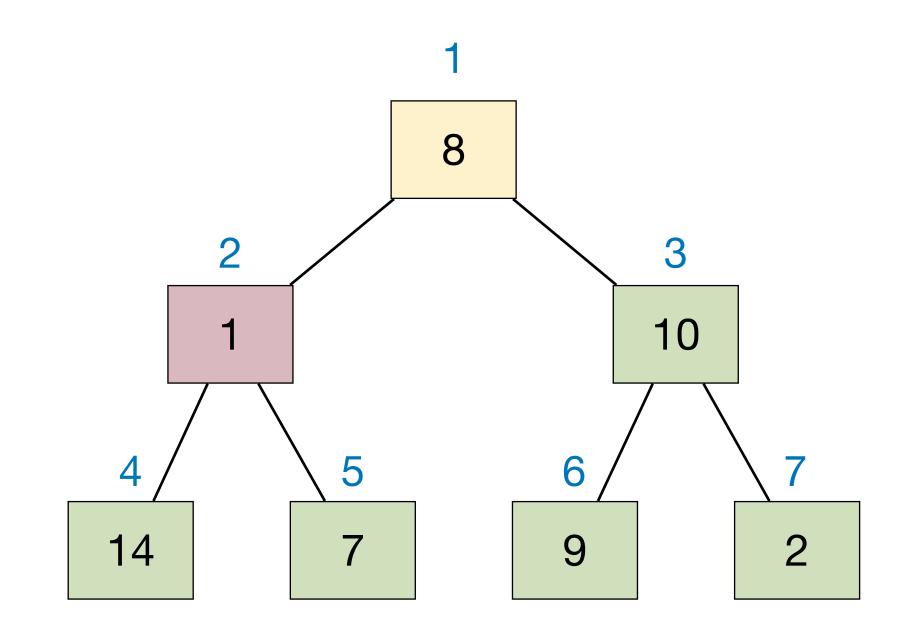
1	2	3	4	5	6	7
8	1	9	14	7	10	2

- Given an array I[1...n], how to build a max-heap?
 - Bottom-up approach: keep merging small heaps into larger ones, until a single heap remains.
 - Each leaf node is a 1-item heap.
 - Go through remaining nodes in index decreasing order: at each node, we are merging two heaps.
 - Maintain heap property during merging: use MaxHeapify.



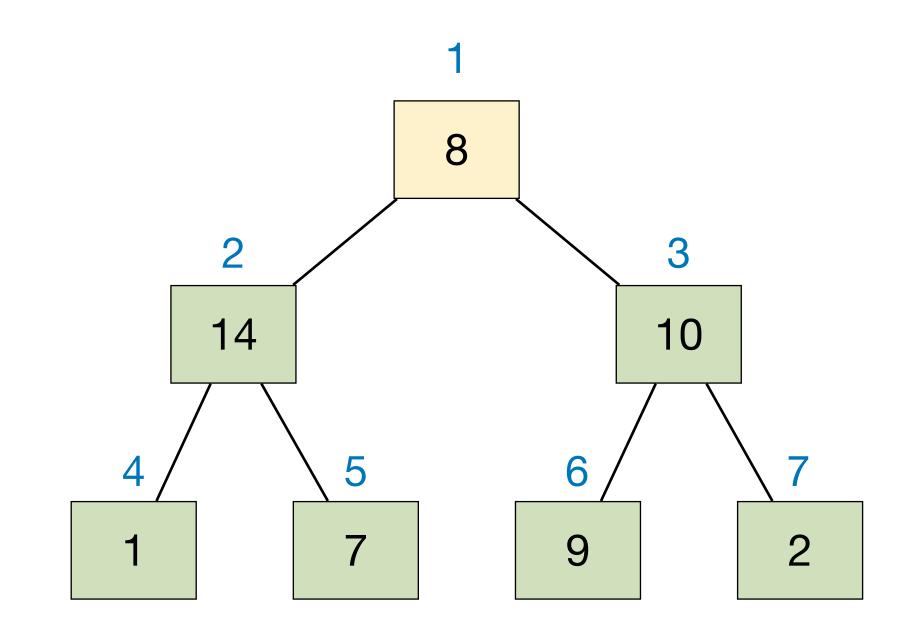
1	2	3	4	5	6	7
8	1	10	14	7	9	2

- Given an array I[1...n], how to build a max-heap?
 - Bottom-up approach: keep merging small heaps into larger ones, until a single heap remains.
 - Each leaf node is a 1-item heap.
 - Go through remaining nodes in index decreasing order: at each node, we are merging two heaps.
 - Maintain heap property during merging: use MaxHeapify.



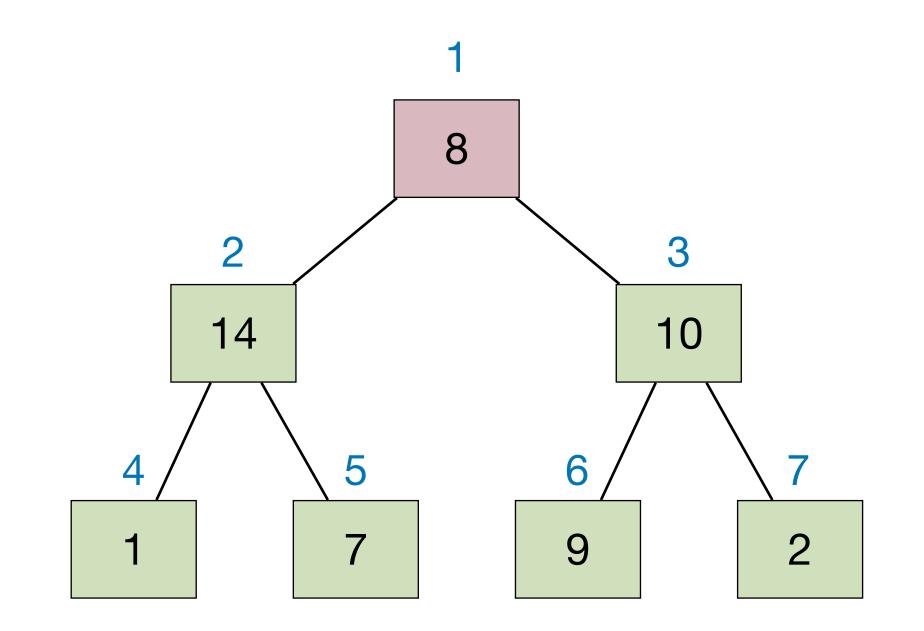
1	2	3	4	5	6	7
8	1	10	14	7	9	2

- Given an array I[1...n], how to build a max-heap?
 - Bottom-up approach: keep merging small heaps into larger ones, until a single heap remains.
 - Each leaf node is a 1-item heap.
 - Go through remaining nodes in index decreasing order: at each node, we are merging two heaps.
 - Maintain heap property during merging: use MaxHeapify.



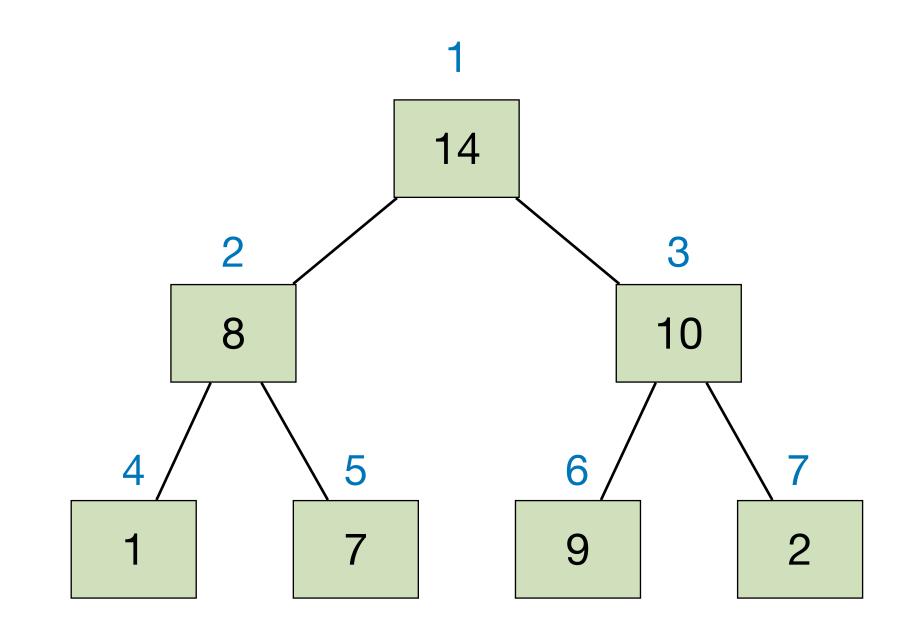
1	2	3	4	5	6	7
8	14	10	1	7	9	2

- Given an array I[1...n], how to build a max-heap?
 - Bottom-up approach: keep merging small heaps into larger ones, until a single heap remains.
 - Each leaf node is a 1-item heap.
 - Go through remaining nodes in index decreasing order: at each node, we are merging two heaps.
 - Maintain heap property during merging: use MaxHeapify.



1	2	3	4	5	6	7
8	14	10	1	7	9	2

- Given an array I[1...n], how to build a max-heap?
 - Bottom-up approach: keep merging small heaps into larger ones, until a single heap remains.
 - Each leaf node is a 1-item heap.
 - Go through remaining nodes in index decreasing order: at each node, we are merging two heaps.
 - Maintain heap property during merging: use MaxHeapify.



1	2	3	4	5	6	7
14	8	10	1	7	9	2

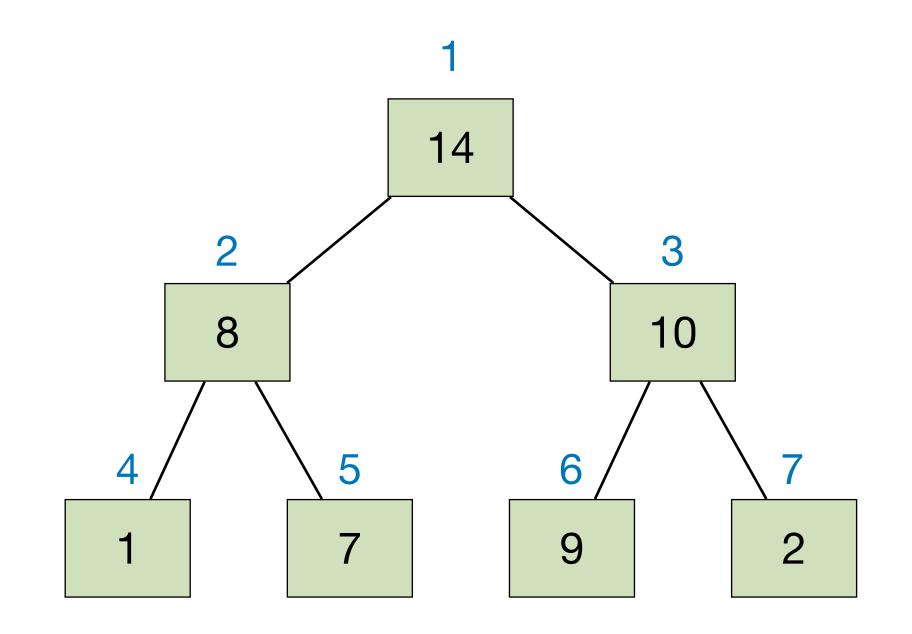
BuildMaxHeap(A):

```
heap_size := n

for i := Floor(n/2) down to 1

MaxHeapify(i, A)
```

- Time complexity of BuildMaxHeap?
 - $\Theta(n)$ calls to MaxHeapify, each costing $O(\lg n)$, so $O(n \lg n)$?
 - Correct but not tight...



1	2	3	4	5	6	7
14	8	10	1	7	9	2

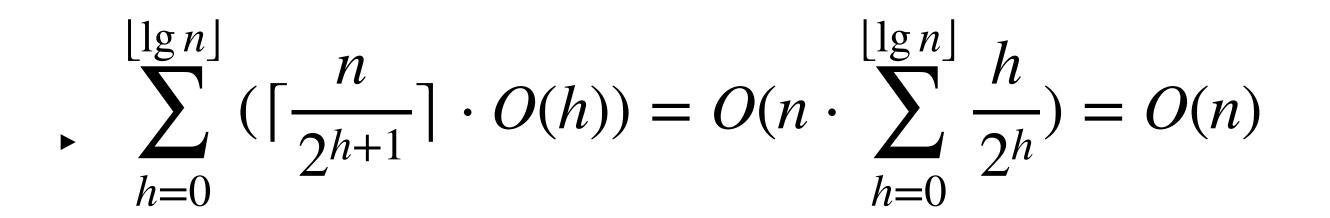
BuildMaxHeap(I):

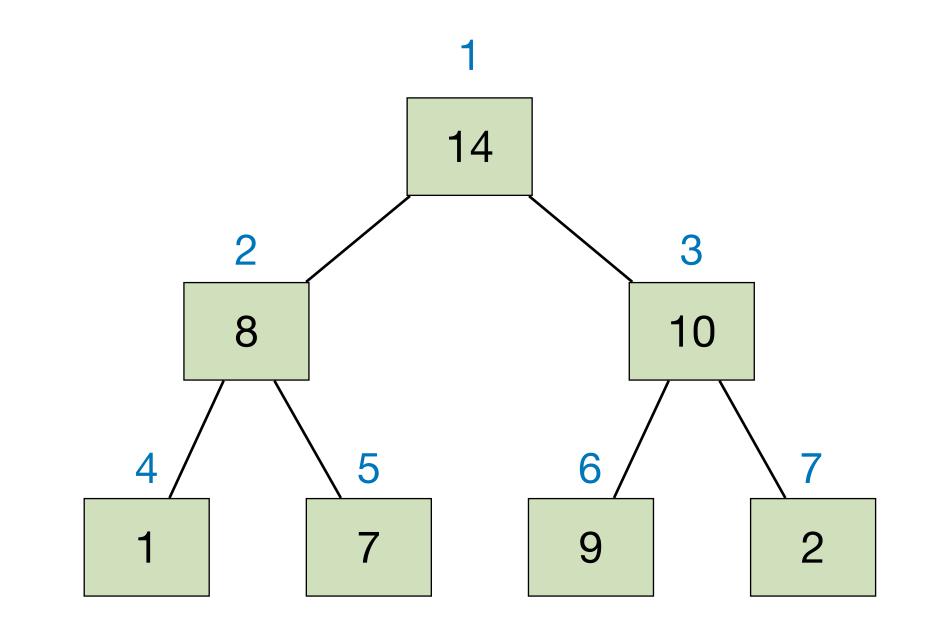
$$heap_size := n$$

for
$$i := Floor(n/2)$$
 down to 1

 $MaxHeapify(i)$

- Height of n-items heap is $\lfloor \lg n \rfloor$
- Any height h has $\leq \lceil \frac{n}{2^{h+1}} \rceil$ nodes
- Cost of all MaxHeapify:





1	2	3	4	5	6	7
14	8	10	1	7	9	2


```
HeapSort(I):
```

heap := BuildMaxHeap(I)

for i := n down to 2

 $cur_max := heap.HeapExtractMax()$

 $I[i] := cur_max$

BuildMaxHeap(I):

```
heap\_size := n
for i := Floor(n/2) down to 1
MaxHeapify(i)
```

Time Complexity: O(n)

Time Complexity: $O(n \lg n)$

- Time complexity of HeapSort is $O(n \lg n)$.
- Extra space required during execution is O(1).

Further reading

• [CLRS] Ch.6

