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About the sorting itself

• We have learned many sorting algorithms


‣ Bubble , Selection , Insertion , Heap , 
Merge , Quick 


‣ One may ask: can we have an algorithm with complexity smaller than 
?

Θ(n2) Θ(n2) Θ(n2) Θ(n log n)
Θ(n log n) Θ(n log n)

Θ(n log n)
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Complexity of a problem

• We have learned how to analyze the complexity of one specific 
algorithm.


• For a problem, e.g., the sorting problem, what is the complexity of it?


‣ The complexity of the best algorithms that allow solving the problem.


• The study of the complexity of explicitly given algorithms is called 
analysis of algorithms, while the study of the complexity of problems is 
called computational complexity theory.
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Upper bound and Lower bound
• Consider a problem . 


‣ Upper bound: how fast can we solve the problem?


- The (worst-case) runtime of an algorithm  on input 
of size  is: 


-  upper bounds the complexity of solving 
problem .


- Every valid algorithm gives an upper bound on the 
complexity of .

P

A
n TA(n) = max

|I|=n
{costA(I)}

TA(n)
P

P

,   ,…TA1
(n) TA2

(n) TAN
(n)

Upper bound

Existing algorithms
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Upper bound and Lower bound
• Consider a problem .


‣ Lower bound: how slow solving the problem has to be?


- The worst-case complexity of  is the worst-case 
runtime of the fastest algorithm that solves :


- 


- , usually in the form of , lower bounds 
the complexity of solving problem .


-  =  means any algorithm has to spend 
 time to solve problem .

P

P
P

TP(n) = min
A solves P {max

|I|=n
{costA(I)}}

Tp(n) Ω( f(n))
P

Tp(n) Ω( f(n))
Ω( f(n)) P

TAmin
(n)

Lower bound

The fastest possible algorithm, what is it? 



智能软件与⼯程学院

School of Intelligent Software and Engineering 

Lower bound of a problem
• A lower bound of  for a problem  means any algorithm that 

solves  has worst-case runtime .

• Larger lower bound is a stronger lower bound. (On the other hand, 
smaller upper bound is better.)


• But how do we prove a lower bound?!


‣ It is usually unpractical to examine all possible algorithms…


‣ Instead, rely on structures/properties of the problem itself…

Ω( f(n)) P
P Ω( f(n))
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Trivial Lower Bounds
• Lower Bound based on Output Size


‣ Any algorithm that for inputs of size  has a worst-case output size of 
 needs to have a runtime of .


‣ This is because it has to output all the   elements of the output in the 
worst-case.


‣ E.g., an algorithm generating all the permutations of an array must cost 
at least 

n
f(n) Θ( f(n))

f(n)

Ω(n!)
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Trivial Lower Bounds
• Lower Bound argument based on Input Size (Incorrect)


‣ Since the algorithm "has" to read its entire input, any algorithm for inputs 
of size  runs in  time?


‣ The argument above is that it is false. 

- Searching a sorted list: Given  numbers  in sorted order, 
and a number , check if there exists  such that . 


- We do not need to scan all the inputs by using binary-search algorithm 

n Ω(n)

n a1, a2, . . . , an
v i ai = v
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Trivial Lower Bounds

• The problem with trivial techniques is that it often suggests a lower bound 
that it is too low. 


• For example, the trivial lower bound for the complexity of comparison 
based sorts is , because the algorithm must output the results. This 
bound is too low.


‣ Note: the larger the lower bound, the more useful it is.

Ω(n)
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Adversary Argument
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Get a tighter lower bound
• Recall the lower-bound: 


• The key is to design the worst input for an algorithm, and this algorithm must 
solve it!


‣ But how it possible to design a worst input in the case that we do not even 
know the algorithm?


‣ We first have to specify precisely what kinds of algorithms we will 
consider by using: key operations!


‣ And then devise an adversary strategy to construct a worst case input!

TP(n) = min
A solves P {max

|I|=n
{costA(I)}}
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Key operation
• A key operation is a step that is representative of the computation overall.


• Properties of key operations:


‣ Can be constant-time operations.


‣ Represent or dominate other operations.


‣ Number of key operations should give a function of the input size.


• A model of computation might be designed around key operations (other 
computation are omitted);
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Key operation

• Examples of key operations:


‣ Access one data item (e.g. query the  value in an array)


‣ Compare two categorical items (outcome  or )


‣ Compare two ordinal items (outcome , , or )


‣ Determine if two vertices in a graph are adjacent

ith

= ≠

= < >
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Adversary strategy example: Three-Card Monte
• The dealer show the tourist three cards, say:

• The dealer shuffles the cards face down on a table (usually slowly 
enough that the tourist can follow the Queen), and then asks the 
tourist to bet on which card is the Queen.

In principle, the tourist’s chances of winning are 
at least , more if the tourist was carefully 

watching the movement of the cards!
1/3
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Three-Card Monte
• In practice, however, the tourist never wins, because the dealer cheats.


• The dealer actually holds at least four cards; before he even starts shuffling 
the cards, the dealer palms the queen or sticks it up his sleeve

Hidden!

• No matter what card the tourist bets on, the dealer turns over a black card
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Three-Card Monte
• After the tourist giving up, the dealer slides the queen under one of the 

cards and turns it over, showing the tourist ‘where the queen was all 
along’ 

slides the card back!

• As long as the dealer doesn’t reveal all the black cards at once, the 
tourist has no way to prove that the dealer cheated!
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n-Card Monte

• Now let’s consider a similar game, but with an algorithm acting as the 
tourist and with bits instead of cards. 


• Suppose we have an array of  bits and we want to determine if any of 
them is a . 


• Obviously we can figure this out by just looking at every bit, but can we do 
better? That is, without looking at every bit.

n
1

Key operation
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Adversary argument
• Basic idea:


‣  An all-powerful malicious adversary pretends to choose an input for the algorithm. 


‣ When the algorithm wants checks a bit, the adversary sets that bit to whatever 
value will make the algorithm do the most work. 


‣ If the algorithm does not check enough bits before terminating, then there will be 
several different inputs, each consistent with the bits already checked,  and 
should result in different outputs.


‣ Whatever the algorithm outputs, the adversary can ‘reveal’ an input that is has all 
the examined bits but contradicts the algorithm’s output, and then claim that that 
was the input that he was using all along.
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n-Card Monte
• For the -card monte problem, the adversary originally pretends to choose 

an input array  whenever the algorithm looks at a bit, it sees a  (This is 
the worst input since if it sees a , then algorithm can terminate 
immediately with a right answer).


• Now suppose the algorithms stops before looking at every bits. 


‣ If the algorithm says ‘No, there’s no 1,’ the adversary changes one of the 
unexamined bits to a 1 and shows the algorithm that it’s wrong.


‣ If the algorithm says ‘Yes, there’s a 1,’ the adversary reveals the array of 
zeros and again proves the algorithm wrong.

n
→ 0

1
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Some notes about the adversary strategy 

• One absolutely crucial feature of this argument is that the adversary 
makes absolutely no assumptions about the algorithm. 


• The adversary strategy can’t depend on some predetermined order of 
examining bits, and it doesn’t care about anything the algorithm might or 
might not do when it’s not looking at bits. 


• However, as long as there are at least two possible answers to the 
problem that are consistent with all answers given by the adversary, the 
algorithm cannot be done!
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Adversary argument for Comparison-based  sorting 

• The comparison is widely used as the key operation to analyze sorting 
algorithms


‣ Don’t get to assume that the data are integers, or numbers. So the 
algorithm is more general!


‣ The number of comparisons performed by a sorting algorithm usually 
(but not always) matches the asymptotic number of instructions 
performed 
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Setup for comparison sorting
• The input to the problem is  elements in some initial order.


• The algorithm knows nothing about the elements.


• The algorithm may compare two elements (“is  ?”)  at a cost of 1


‣ Particularly, the algorithm cannot inspect the values of input items.


• Moving/copying/swapping items is free!


• Assume that the input contains no duplicates.

n

ai > aj
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Set up of the adversary

• Notice that there are  different permutations (and thus solutions) that the 
sorting algorithm must decide between.


• The adversary maintains a list  of all of the permutations that are 
consistent with the comparisons that the algorithm has made so far.


• Initially  contains all  permutations. 

n!

L

L n!
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The adversary’s strategy
• The adversary’s strategy for responding to “Is element  less than element ” is as follows:


‣ Let  be the permutations in  for which element  is less than element , let  be the 
permutations in  for which element  is greater than or equal to element .  (Thus, 

).


‣ Then the adversary responds “yes” exactly when , otherwise responds 
“no”.  In other words, the adversary answers in such a way to keep  as large as possible 
(the worst input construction).


‣ Then the adversary updates  so that only those permutations consistent with this answer 
remain. So if “yes” is answered then the permutations in  are removed, and if “no” is 
answered the permutations in  are removed.

i j

Lyes L i j Lno
L i j

L = Lyes ∪ Lno

|Lyes | ≥ |Lno |
L

L
Lno

Lyes



智能软件与⼯程学院

School of Intelligent Software and Engineering 

The bound determined by the adversary’s strategy

• Since at least half of the permutations in  remain, and the algorithm 
cannot be done until , the number of comparisons required is at 
least .


• Therefore, the lower bound of comparison-based sorting is 
 

L
|L | = 1

⌈lg(n!)⌉

Ω(lg(n!)) = Ω(n lg n)
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Information-Theoretic

 Arguments
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The amount of the information
• Consider the minimum number  of distinct outputs that a sorting 

algorithm must be able to produce to be able to sort any possible input of 
length .


‣  


• Why minimum? We don’t want redundant outputs that don’t allow us to 
solve more inputs. 


• In other words, the algorithm must be capable of outputting at least  
different permutations, or there would exist some input that it was not 
capable of sorting. 

M

n

M = n!

M
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The amount of the information
• Remember, the algorithm is deterministic and its behavior is determined 

entirely by the results of the comparisons.


• If a deterministic algorithm makes  comparisons, how many outputs distinct 
outputs can it possibly produce?


‣ At most  different possible outputs. 


‣ This is because one comparison can only has two different outcomes  
true for , otherwise false.


• Therefore, , and  is at least 

c

2c

→
ai > aj

2c ≥ n! c lg n!
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An alternative view: Decision Trees

• Decisions trees can be used to describe 
algorithms.

‣ A decision tree is a tree.


‣ Each internal node denotes a query the 
algorithm makes on input.


‣ Outgoing edges denote the possible 
answers to that query.


‣ Each leaf denotes an output.

Query1

Query2a Query2b

Answer1-1 Answer1-2

Answer2a-1

Answer2a-2
Answer2a-3

Answer2b-1 Answer2b-2

Output1 Output2 Output3 Output4 Output5

Algorithm described in decision tree
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An alternative view: Decision Trees

• One execution of the algorithm is a path 
from root to a leaf.

‣ At each internal node, answer to 
query tells us where to go next.


• The worst-case time complexity is at 
least the length of the longest path from 
root to some leaf, i.e., height of the tree!

Query1

Query2a Query2b

Answer1-1 Answer1-2

Answer2a-1

Answer2a-2
Answer2a-3

Answer2b-1 Answer2b-2

Output1 Output2 Output3 Output4 Output5

Algorithm described in decision tree

 execution

Worst-case:

The height of the tree
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Decision Tree

1 : 2

2 : 3 1 : 3

< 2,1,3 > 2 : 3

< 2,3,1 > < 3,2,1 >

< 1,2,3 > 2 : 3

< 1,3,2 > < 3,1,2 >

≤

≤

≤

≤

≤

>

>

>

>

>

Some algorithm Sorts  ,  where< a1, a2, a3 > a1 = 6, a2 = 8, a3 = 5

 denotes the query for 
comparison of  and 

i : j
ai aj
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Comparison-based sorting lower bound
• Assume input items are distinct.


• Assume the algorithm only uses “ ” to do comparison.


• We can use a binary comparison tree to describe the algorithm.


‣ Each internal node has two outgoing edges.


‣ Each internal node denotes a query of the form “ ”.


• The tree must have   leaves.


• The height of the tree must be ,  which is .

≤

ai ≤ aj

≥ n!

≥ lg(n!) Ω(n lg n)

Any comparison-based sorting algorithm has time complexity , in the worst case.Ω(n lg n)
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*Information content

• Information content, or Self-information or Shannon information of an event :


‣ , or equivalently, 


‣ It measures the "informational value” of an event depending on its “surprising”


-  If a highly likely event occurs, it carries very little information. In fact, a 100% 
likely event occurs, it has no information!


- On the other hand, if a highly unlikely event occurs, it is much more 
informative.

x

I(x) := − lg Pr(x) I(x) := lg
1

Pr(x)

Claude Shannon
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Information content

• For instance, the knowledge that some particular number will not be the 
winning number of a lottery provides very little information, because any 
particular chosen number will almost certainly not win.


• However, knowledge that a particular number will win a lottery has high 
informational value because it communicates the outcome of a very low 
probability event.
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Information entropy
• Given a discrete random variable , which takes values in the alphabet  and is 

distributed according to , the entropy of a random variable is the 
average level of "information", "surprise", or "uncertainty" inherent to the variable's 
possible outcomes.


‣ 


• As an example, rolling a die has higher entropy than tossing a coin!


‣   = 


‣  = 

X 𝒳
Pr : 𝒳 → [0,1]

H(X) := ∑
x∈𝒳

− Pr(X = x)lg Pr(X = x) = 𝔼[−lg Pr(X)]

H(
🎲
) ∑

x∈[1,2,3,4,5,6]

− Pr(X = x)lg Pr(X = x) = ∑
x∈[1,2,3,4,5,6]

− 1/6 lg 1/6 ≈ 2.58

H(
🪙
) ∑

x∈[0,1]

− Pr(X = x)lg Pr(X = x) = ∑
x∈[0,1]

− 1/2 lg 1/2 = 1
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Information entropy
• Consider a coin with probability  of landing on heads and probability  of landing on 

tails.


‣ The information for landing on head: 


- The smaller the , the larger information when landing on head!


‣ The information for landing on tail: 


- The smaller the , the larger information when landing on tail!


‣ The entropy for tossing a coin:  = 


- The maximum surprise is when , for which one outcome is not expected over 
the other. In this case a coin tossing has an entropy of one bit.

p 1 − p

I(landing on head) = − lg p

p

I(landing on head) = − lg(1 − p)

1 − p

−(1/2 lg p + 1/2 lg(1 − p)) −1/2 lg p(1 − p)

p = 1/2
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Information-theoretic lower bound

• Sorting an array of  size, the entropy of such a random permutation  is 
 bits. 


• Since a comparison can give only two results, the maximum amount of 
information it provides is 1 bit. 


• Therefore, after k comparisons the remaining entropy of the permutation, 
given the results of those comparisons, is at least log2(n!) − k bits on 
average. To perform the sort, complete information is needed, so the 
remaining entropy must be 0. It follows that k must be at least log2(n!) in 
on average.

n S
log n!
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Non-comparison-based

sorting 
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Bucket sort
• Assume we want to sort n integers, and we know each item 

is from the set [10]. Can we beat ?

• Of course, very easy!


‣ Create 10 empty lists. (These are the buckets.)


‣ Scan through input, for each item, append it to the end 
of the corresponding list.

‣ Concatenate all lists.

Θ(n log n)

1

2

10

1, 1, 1

2

…
..

10, 10

1, 1, 1, 2, …, 10, 10
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Bucket sort

• This algorithm only takes  time.


• This is not a comparison based algorithm.


‣ No comparison between items are made.


‣ Instead the algorithm uses actual values of the items.

Θ(n)

1. Create d empty lists. (These are the buckets.)


2. Scan through input, for each item, append it to the 
end of the corresponding list.


3. Concatenate all lists.
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Bucket sort
• In general, if the input items are all from set [d], then we can use the 

following algorithm to sort them.
BucketSort(A, d):
< >  = CreateBuckets(d)
for  i :=1 to  A.length

  AssignToBucket(A[i])
CombineBuckets( )

L1, L2, . . . , Ld

L1, L2, . . . , Ld

• Total time complexity is .


•  time to create buckets.


•  time to assign items to buckets.


•  time to combine buckets.

Θ(n + d)

Θ(d)

Θ(n)

Θ(d)

What if n ≪ d? 
Say sort 1000 64-bit integers.
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Bucket sort
• If the range of items’ values is too large, allow 

each bucket to hold multiple values.

• Allocate k buckets each responsible for an 
interval of size d∕k.


• But now we need to sort each bucket before 
combining them.

BucketSort(A, k):
< >  = CreateBuckets(k)
for  i :=1 to  A.length

  AssignToBucket(A[i])
for  j :=1 to k

  SortWithinBucket( )
CombineBuckets( )

L1, L2, . . . , Lk

Lj

L1, L2, . . . , Ld

n = 8, d = 50, k = 5

3 9

29    25    3    49    9    37    21    43

29 25 21 37 49 43

0-9 10-19 20-29 30-39 40-49

3 9 21 25 29 37 43 49

0-9 10-19 20-29 30-39 40-49

Sort in each bucket 3, 9, 21, 25, 29, 37, 43, 49
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Bucket sort

• Runtime is , plus cost for sorting within 
buckets.

‣ If items are uniformly distributed and we use 
insertion sort, expected cost for sorting is 

.

• Expected total runtime is , which 
is  when we have  buckets.

• BucketSort can be stable.

Θ(n + k)

O(k ⋅ (n/k)2) = O(n2/k)

O(n + k + (n2/k))
O(n) k ≈ n

BucketSort(A, k):
< >  = CreateBuckets(k)
for  i :=1 to  A.length

  AssignToBucket(A[i])
for  j :=1 to k

  SortWithinBucket( )
CombineBuckets( )

L1, L2, . . . , Lk

Lj

L1, L2, . . . , Ld
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Radix sort
• Assume we want to sort n decimal integers each of d-digits.


• How about recursive bucket sort?


‣ Based on most significant bit, assign items to 10 buckets.

‣ Sort recursively in each bucket (i.e., use 2nd most significant bit).


‣ Valid but not for now…


• RadixSort: iterative, starting from least significant bit.
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Radix sort
RadixSort(A, d):
for  i := 1 to d
       use-a-stable-sort-to-sort-A-on-digit-i

329

457

657

839

436

720

355

720

355

436

457

657

329

839

720

329

436

839

355

457

657

329

355

436

457

657

720

839
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Radix sort

• Use induction to prove the claim.


• [Basis] The claim holds after the first iteration.


• [Hypothesis] Assume the claim holds after the first k -1 iterations.


• [Inductive Step] Consider two items a and b after k iterations.


‣ W.l.o.g., assume a appears before b. Thus, a[k] ≤ b[k].


‣ If a[k] < b[k], then it must be a[k…1] < b[k…1].


‣ If a[k] = b[k], since we use stable sort, it must be a[(k-1)…1] ≤ b[(k-1)…1]. Again, a[k…1] ≤ b[k…1].

Claim : after ith iteration, items are sorted by their rightmost i bits.
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Radix sort

• Since only considering decimal numbers, we only need 10 =  buckets.


• RadixSort can sort n decimal d-digits numbers in  time.

Θ(1)

O(dn)

RadixSort(A, d):
for  i := 1 to d
       use-a-stable-sort-to-sort-A-on-digit-i

RadixSort(A, d):
for  i := 1 to d
       use-bucket-sort-to-sort-A-on-digit-i

329


457


657


839


436


720


355

720


355


436


457


657


329


839

720


329


436


839


355


457


657

329


355


436


457


657


720


839
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Lower bound for sorting by querying the value

• Assume we want to sort n integers.

a1 a2 … an-1 an

a1 a2 … an-1

= 1
an“What is ”an−1 “ ”an−1 = 1

…

“What is ”a1 “ ”a1 = 1

… … (always say 1)

a1

= 1
a2 … an-1

= 1
an

a1

= 1

a2

=1
… an-1

= 1

an

=1

 queries,  workn − 1 Θ(n)

sorry but a2 > 1
a2

< 1

a1

= 1
… an-1

= 1

an

=1

a1

=1

a3

= 1
… an

= 1

a2

> 1
Place  at beginning or end？a2
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Lower bound for sorting by querying value 

• The algorithm, which queries the input  times, does not solve the 
problem.


• Any algorithm which queries the input at most  times does not solve 
the problem.


• Solving the “sort  integers” problem by querying values of input has a 
time complexity of .

n − 1

n − 1

n
Ω(n)
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Summary
• Lower Bounds:


‣ Sorting needs  time. (adversary argument)

‣ Comparison-based sorting needs . (decision tree)


• Upper Bounds:

‣ There are  comparison-based sorting algorithms.

‣ BucketSort, RadixSort can be  in many cases.

Ω(n)

Ω(n log n)

O(n log n)

Θ(n)
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Further reading

• [CLRS] Ch.8


