
智能软件与⼯程学院

School of Intelligent Software and Engineering

排序 (续)

Sorting Cont'd

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne.Thanks for their supports!

钮鑫涛

Nanjing University

2023 Fall

智能软件与⼯程学院

School of Intelligent Software and Engineering

About the sorting itself

• We have learned many sorting algorithms

‣ Bubble , Selection , Insertion , Heap ,
Merge , Quick

‣ One may ask: can we have an algorithm with complexity smaller than
?

Θ(n2) Θ(n2) Θ(n2) Θ(n log n)
Θ(n log n) Θ(n log n)

Θ(n log n)

智能软件与⼯程学院

School of Intelligent Software and Engineering

Complexity of a problem

• We have learned how to analyze the complexity of one specific
algorithm.

• For a problem, e.g., the sorting problem, what is the complexity of it?

‣ The complexity of the best algorithms that allow solving the problem.

• The study of the complexity of explicitly given algorithms is called
analysis of algorithms, while the study of the complexity of problems is
called computational complexity theory.

智能软件与⼯程学院

School of Intelligent Software and Engineering

Upper bound and Lower bound
• Consider a problem .

‣ Upper bound: how fast can we solve the problem?

- The (worst-case) runtime of an algorithm on input
of size is:

- upper bounds the complexity of solving
problem .

- Every valid algorithm gives an upper bound on the
complexity of .

P

A
n TA(n) = max

|I|=n
{costA(I)}

TA(n)
P

P

, ,…TA1
(n) TA2

(n) TAN
(n)

Upper bound

Existing algorithms

智能软件与⼯程学院

School of Intelligent Software and Engineering

Upper bound and Lower bound
• Consider a problem .

‣ Lower bound: how slow solving the problem has to be?

- The worst-case complexity of is the worst-case
runtime of the fastest algorithm that solves :

-

- , usually in the form of , lower bounds
the complexity of solving problem .

- = means any algorithm has to spend
 time to solve problem .

P

P
P

TP(n) = min
A solves P {max

|I|=n
{costA(I)}}

Tp(n) Ω(f(n))
P

Tp(n) Ω(f(n))
Ω(f(n)) P

TAmin
(n)

Lower bound

The fastest possible algorithm, what is it?

智能软件与⼯程学院

School of Intelligent Software and Engineering

Lower bound of a problem
• A lower bound of for a problem means any algorithm that

solves has worst-case runtime .

• Larger lower bound is a stronger lower bound. (On the other hand,
smaller upper bound is better.)

• But how do we prove a lower bound?!

‣ It is usually unpractical to examine all possible algorithms…

‣ Instead, rely on structures/properties of the problem itself…

Ω(f(n)) P
P Ω(f(n))

智能软件与⼯程学院

School of Intelligent Software and Engineering

Trivial Lower Bounds
• Lower Bound based on Output Size

‣ Any algorithm that for inputs of size has a worst-case output size of
 needs to have a runtime of .

‣ This is because it has to output all the elements of the output in the
worst-case.

‣ E.g., an algorithm generating all the permutations of an array must cost
at least

n
f(n) Θ(f(n))

f(n)

Ω(n!)

智能软件与⼯程学院

School of Intelligent Software and Engineering

Trivial Lower Bounds
• Lower Bound argument based on Input Size (Incorrect)

‣ Since the algorithm "has" to read its entire input, any algorithm for inputs
of size runs in time?

‣ The argument above is that it is false.

- Searching a sorted list: Given numbers in sorted order,
and a number , check if there exists such that .

- We do not need to scan all the inputs by using binary-search algorithm

n Ω(n)

n a1, a2, . . . , an
v i ai = v

智能软件与⼯程学院

School of Intelligent Software and Engineering

Trivial Lower Bounds

• The problem with trivial techniques is that it often suggests a lower bound
that it is too low.

• For example, the trivial lower bound for the complexity of comparison
based sorts is , because the algorithm must output the results. This
bound is too low.

‣ Note: the larger the lower bound, the more useful it is.

Ω(n)

智能软件与⼯程学院

School of Intelligent Software and Engineering

Adversary Argument

智能软件与⼯程学院

School of Intelligent Software and Engineering

Get a tighter lower bound
• Recall the lower-bound:

• The key is to design the worst input for an algorithm, and this algorithm must
solve it!

‣ But how it possible to design a worst input in the case that we do not even
know the algorithm?

‣ We first have to specify precisely what kinds of algorithms we will
consider by using: key operations!

‣ And then devise an adversary strategy to construct a worst case input!

TP(n) = min
A solves P {max

|I|=n
{costA(I)}}

智能软件与⼯程学院

School of Intelligent Software and Engineering

Key operation
• A key operation is a step that is representative of the computation overall.

• Properties of key operations:

‣ Can be constant-time operations.

‣ Represent or dominate other operations.

‣ Number of key operations should give a function of the input size.

• A model of computation might be designed around key operations (other
computation are omitted);

智能软件与⼯程学院

School of Intelligent Software and Engineering

Key operation

• Examples of key operations:

‣ Access one data item (e.g. query the value in an array)

‣ Compare two categorical items (outcome or)

‣ Compare two ordinal items (outcome , , or)

‣ Determine if two vertices in a graph are adjacent

ith

= ≠

= < >

智能软件与⼯程学院

School of Intelligent Software and Engineering

Adversary strategy example: Three-Card Monte
• The dealer show the tourist three cards, say:

• The dealer shuffles the cards face down on a table (usually slowly
enough that the tourist can follow the Queen), and then asks the
tourist to bet on which card is the Queen.

In principle, the tourist’s chances of winning are
at least , more if the tourist was carefully

watching the movement of the cards!
1/3

智能软件与⼯程学院

School of Intelligent Software and Engineering

Three-Card Monte
• In practice, however, the tourist never wins, because the dealer cheats.

• The dealer actually holds at least four cards; before he even starts shuffling
the cards, the dealer palms the queen or sticks it up his sleeve

Hidden!

• No matter what card the tourist bets on, the dealer turns over a black card

智能软件与⼯程学院

School of Intelligent Software and Engineering

Three-Card Monte
• After the tourist giving up, the dealer slides the queen under one of the

cards and turns it over, showing the tourist ‘where the queen was all
along’

slides the card back!

• As long as the dealer doesn’t reveal all the black cards at once, the
tourist has no way to prove that the dealer cheated!

智能软件与⼯程学院

School of Intelligent Software and Engineering

n-Card Monte

• Now let’s consider a similar game, but with an algorithm acting as the
tourist and with bits instead of cards.

• Suppose we have an array of bits and we want to determine if any of
them is a .

• Obviously we can figure this out by just looking at every bit, but can we do
better? That is, without looking at every bit.

n
1

Key operation

智能软件与⼯程学院

School of Intelligent Software and Engineering

Adversary argument
• Basic idea:

‣ An all-powerful malicious adversary pretends to choose an input for the algorithm.

‣ When the algorithm wants checks a bit, the adversary sets that bit to whatever
value will make the algorithm do the most work.

‣ If the algorithm does not check enough bits before terminating, then there will be
several different inputs, each consistent with the bits already checked, and
should result in different outputs.

‣ Whatever the algorithm outputs, the adversary can ‘reveal’ an input that is has all
the examined bits but contradicts the algorithm’s output, and then claim that that
was the input that he was using all along.

智能软件与⼯程学院

School of Intelligent Software and Engineering

n-Card Monte
• For the -card monte problem, the adversary originally pretends to choose

an input array whenever the algorithm looks at a bit, it sees a (This is
the worst input since if it sees a , then algorithm can terminate
immediately with a right answer).

• Now suppose the algorithms stops before looking at every bits.

‣ If the algorithm says ‘No, there’s no 1,’ the adversary changes one of the
unexamined bits to a 1 and shows the algorithm that it’s wrong.

‣ If the algorithm says ‘Yes, there’s a 1,’ the adversary reveals the array of
zeros and again proves the algorithm wrong.

n
→ 0

1

智能软件与⼯程学院

School of Intelligent Software and Engineering

Some notes about the adversary strategy

• One absolutely crucial feature of this argument is that the adversary
makes absolutely no assumptions about the algorithm.

• The adversary strategy can’t depend on some predetermined order of
examining bits, and it doesn’t care about anything the algorithm might or
might not do when it’s not looking at bits.

• However, as long as there are at least two possible answers to the
problem that are consistent with all answers given by the adversary, the
algorithm cannot be done!

智能软件与⼯程学院

School of Intelligent Software and Engineering

Adversary argument for Comparison-based sorting

• The comparison is widely used as the key operation to analyze sorting
algorithms

‣ Don’t get to assume that the data are integers, or numbers. So the
algorithm is more general!

‣ The number of comparisons performed by a sorting algorithm usually
(but not always) matches the asymptotic number of instructions
performed

智能软件与⼯程学院

School of Intelligent Software and Engineering

Setup for comparison sorting
• The input to the problem is elements in some initial order.

• The algorithm knows nothing about the elements.

• The algorithm may compare two elements (“is ?”) at a cost of 1

‣ Particularly, the algorithm cannot inspect the values of input items.

• Moving/copying/swapping items is free!

• Assume that the input contains no duplicates.

n

ai > aj

智能软件与⼯程学院

School of Intelligent Software and Engineering

Set up of the adversary

• Notice that there are different permutations (and thus solutions) that the
sorting algorithm must decide between.

• The adversary maintains a list of all of the permutations that are
consistent with the comparisons that the algorithm has made so far.

• Initially contains all permutations.

n!

L

L n!

智能软件与⼯程学院

School of Intelligent Software and Engineering

The adversary’s strategy
• The adversary’s strategy for responding to “Is element less than element ” is as follows:

‣ Let be the permutations in for which element is less than element , let be the
permutations in for which element is greater than or equal to element . (Thus,

).

‣ Then the adversary responds “yes” exactly when , otherwise responds
“no”. In other words, the adversary answers in such a way to keep as large as possible
(the worst input construction).

‣ Then the adversary updates so that only those permutations consistent with this answer
remain. So if “yes” is answered then the permutations in are removed, and if “no” is
answered the permutations in are removed.

i j

Lyes L i j Lno
L i j

L = Lyes ∪ Lno

|Lyes | ≥ |Lno |
L

L
Lno

Lyes

智能软件与⼯程学院

School of Intelligent Software and Engineering

The bound determined by the adversary’s strategy

• Since at least half of the permutations in remain, and the algorithm
cannot be done until , the number of comparisons required is at
least .

• Therefore, the lower bound of comparison-based sorting is

L
|L | = 1

⌈lg(n!)⌉

Ω(lg(n!)) = Ω(n lg n)

智能软件与⼯程学院

School of Intelligent Software and Engineering

Information-Theoretic

 Arguments

智能软件与⼯程学院

School of Intelligent Software and Engineering

The amount of the information
• Consider the minimum number of distinct outputs that a sorting

algorithm must be able to produce to be able to sort any possible input of
length .

‣

• Why minimum? We don’t want redundant outputs that don’t allow us to
solve more inputs.

• In other words, the algorithm must be capable of outputting at least
different permutations, or there would exist some input that it was not
capable of sorting.

M

n

M = n!

M

智能软件与⼯程学院

School of Intelligent Software and Engineering

The amount of the information
• Remember, the algorithm is deterministic and its behavior is determined

entirely by the results of the comparisons.

• If a deterministic algorithm makes comparisons, how many outputs distinct
outputs can it possibly produce?

‣ At most different possible outputs.

‣ This is because one comparison can only has two different outcomes
true for , otherwise false.

• Therefore, , and is at least

c

2c

→
ai > aj

2c ≥ n! c lg n!

智能软件与⼯程学院

School of Intelligent Software and Engineering

An alternative view: Decision Trees

• Decisions trees can be used to describe
algorithms.

‣ A decision tree is a tree.

‣ Each internal node denotes a query the
algorithm makes on input.

‣ Outgoing edges denote the possible
answers to that query.

‣ Each leaf denotes an output.

Query1

Query2a Query2b

Answer1-1 Answer1-2

Answer2a-1

Answer2a-2
Answer2a-3

Answer2b-1 Answer2b-2

Output1 Output2 Output3 Output4 Output5

Algorithm described in decision tree

智能软件与⼯程学院

School of Intelligent Software and Engineering

An alternative view: Decision Trees

• One execution of the algorithm is a path
from root to a leaf.

‣ At each internal node, answer to
query tells us where to go next.

• The worst-case time complexity is at
least the length of the longest path from
root to some leaf, i.e., height of the tree!

Query1

Query2a Query2b

Answer1-1 Answer1-2

Answer2a-1

Answer2a-2
Answer2a-3

Answer2b-1 Answer2b-2

Output1 Output2 Output3 Output4 Output5

Algorithm described in decision tree

 execution

Worst-case:

The height of the tree

智能软件与⼯程学院

School of Intelligent Software and Engineering

Decision Tree

1 : 2

2 : 3 1 : 3

< 2,1,3 > 2 : 3

< 2,3,1 > < 3,2,1 >

< 1,2,3 > 2 : 3

< 1,3,2 > < 3,1,2 >

≤

≤

≤

≤

≤

>

>

>

>

>

Some algorithm Sorts , where< a1, a2, a3 > a1 = 6, a2 = 8, a3 = 5

 denotes the query for
comparison of and

i : j
ai aj

智能软件与⼯程学院

School of Intelligent Software and Engineering

Comparison-based sorting lower bound
• Assume input items are distinct.

• Assume the algorithm only uses “ ” to do comparison.

• We can use a binary comparison tree to describe the algorithm.

‣ Each internal node has two outgoing edges.

‣ Each internal node denotes a query of the form “ ”.

• The tree must have leaves.

• The height of the tree must be , which is .

≤

ai ≤ aj

≥ n!

≥ lg(n!) Ω(n lg n)

Any comparison-based sorting algorithm has time complexity , in the worst case.Ω(n lg n)

智能软件与⼯程学院

School of Intelligent Software and Engineering

*Information content

• Information content, or Self-information or Shannon information of an event :

‣ , or equivalently,

‣ It measures the "informational value” of an event depending on its “surprising”

- If a highly likely event occurs, it carries very little information. In fact, a 100%
likely event occurs, it has no information!

- On the other hand, if a highly unlikely event occurs, it is much more
informative.

x

I(x) := − lg Pr(x) I(x) := lg
1

Pr(x)

Claude Shannon

智能软件与⼯程学院

School of Intelligent Software and Engineering

Information content

• For instance, the knowledge that some particular number will not be the
winning number of a lottery provides very little information, because any
particular chosen number will almost certainly not win.

• However, knowledge that a particular number will win a lottery has high
informational value because it communicates the outcome of a very low
probability event.

智能软件与⼯程学院

School of Intelligent Software and Engineering

Information entropy
• Given a discrete random variable , which takes values in the alphabet and is

distributed according to , the entropy of a random variable is the
average level of "information", "surprise", or "uncertainty" inherent to the variable's
possible outcomes.

‣

• As an example, rolling a die has higher entropy than tossing a coin!

‣ =

‣ =

X 𝒳
Pr : 𝒳 → [0,1]

H(X) := ∑
x∈𝒳

− Pr(X = x)lg Pr(X = x) = 𝔼[−lg Pr(X)]

H(
🎲
) ∑

x∈[1,2,3,4,5,6]

− Pr(X = x)lg Pr(X = x) = ∑
x∈[1,2,3,4,5,6]

− 1/6 lg 1/6 ≈ 2.58

H(
🪙
) ∑

x∈[0,1]

− Pr(X = x)lg Pr(X = x) = ∑
x∈[0,1]

− 1/2 lg 1/2 = 1

智能软件与⼯程学院

School of Intelligent Software and Engineering

Information entropy
• Consider a coin with probability of landing on heads and probability of landing on

tails.

‣ The information for landing on head:

- The smaller the , the larger information when landing on head!

‣ The information for landing on tail:

- The smaller the , the larger information when landing on tail!

‣ The entropy for tossing a coin: =

- The maximum surprise is when , for which one outcome is not expected over
the other. In this case a coin tossing has an entropy of one bit.

p 1 − p

I(landing on head) = − lg p

p

I(landing on head) = − lg(1 − p)

1 − p

−(1/2 lg p + 1/2 lg(1 − p)) −1/2 lg p(1 − p)

p = 1/2

智能软件与⼯程学院

School of Intelligent Software and Engineering

Information-theoretic lower bound

• Sorting an array of size, the entropy of such a random permutation is
 bits.

• Since a comparison can give only two results, the maximum amount of
information it provides is 1 bit.

• Therefore, after k comparisons the remaining entropy of the permutation,
given the results of those comparisons, is at least log2(n!) − k bits on
average. To perform the sort, complete information is needed, so the
remaining entropy must be 0. It follows that k must be at least log2(n!) in
on average.

n S
log n!

智能软件与⼯程学院

School of Intelligent Software and Engineering

Non-comparison-based

sorting

智能软件与⼯程学院

School of Intelligent Software and Engineering

Bucket sort
• Assume we want to sort n integers, and we know each item

is from the set [10]. Can we beat ?

• Of course, very easy!

‣ Create 10 empty lists. (These are the buckets.)

‣ Scan through input, for each item, append it to the end
of the corresponding list.

‣ Concatenate all lists.

Θ(n log n)

1

2

10

1, 1, 1

2

…
..

10, 10

1, 1, 1, 2, …, 10, 10

智能软件与⼯程学院

School of Intelligent Software and Engineering

Bucket sort

• This algorithm only takes time.

• This is not a comparison based algorithm.

‣ No comparison between items are made.

‣ Instead the algorithm uses actual values of the items.

Θ(n)

1. Create d empty lists. (These are the buckets.)

2. Scan through input, for each item, append it to the
end of the corresponding list.

3. Concatenate all lists.

智能软件与⼯程学院

School of Intelligent Software and Engineering

Bucket sort
• In general, if the input items are all from set [d], then we can use the

following algorithm to sort them.
BucketSort(A, d):
< > = CreateBuckets(d)
for i :=1 to A.length

 AssignToBucket(A[i])
CombineBuckets()

L1, L2, . . . , Ld

L1, L2, . . . , Ld

• Total time complexity is .

• time to create buckets.

• time to assign items to buckets.

• time to combine buckets.

Θ(n + d)

Θ(d)

Θ(n)

Θ(d)

What if n ≪ d? 
Say sort 1000 64-bit integers.

智能软件与⼯程学院

School of Intelligent Software and Engineering

Bucket sort
• If the range of items’ values is too large, allow

each bucket to hold multiple values.

• Allocate k buckets each responsible for an
interval of size d∕k.

• But now we need to sort each bucket before
combining them.

BucketSort(A, k):
< > = CreateBuckets(k)
for i :=1 to A.length

 AssignToBucket(A[i])
for j :=1 to k

 SortWithinBucket()
CombineBuckets()

L1, L2, . . . , Lk

Lj

L1, L2, . . . , Ld

n = 8, d = 50, k = 5

3 9

29 25 3 49 9 37 21 43

29 25 21 37 49 43

0-9 10-19 20-29 30-39 40-49

3 9 21 25 29 37 43 49

0-9 10-19 20-29 30-39 40-49

Sort in each bucket 3, 9, 21, 25, 29, 37, 43, 49

智能软件与⼯程学院

School of Intelligent Software and Engineering

Bucket sort

• Runtime is , plus cost for sorting within
buckets.

‣ If items are uniformly distributed and we use
insertion sort, expected cost for sorting is

.

• Expected total runtime is , which
is when we have buckets.

• BucketSort can be stable.

Θ(n + k)

O(k ⋅ (n/k)2) = O(n2/k)

O(n + k + (n2/k))
O(n) k ≈ n

BucketSort(A, k):
< > = CreateBuckets(k)
for i :=1 to A.length

 AssignToBucket(A[i])
for j :=1 to k

 SortWithinBucket()
CombineBuckets()

L1, L2, . . . , Lk

Lj

L1, L2, . . . , Ld

智能软件与⼯程学院

School of Intelligent Software and Engineering

Radix sort
• Assume we want to sort n decimal integers each of d-digits.

• How about recursive bucket sort?

‣ Based on most significant bit, assign items to 10 buckets.

‣ Sort recursively in each bucket (i.e., use 2nd most significant bit).

‣ Valid but not for now…

• RadixSort: iterative, starting from least significant bit.

智能软件与⼯程学院

School of Intelligent Software and Engineering

Radix sort
RadixSort(A, d):
for i := 1 to d
 use-a-stable-sort-to-sort-A-on-digit-i

329

457

657

839

436

720

355

720

355

436

457

657

329

839

720

329

436

839

355

457

657

329

355

436

457

657

720

839

智能软件与⼯程学院

School of Intelligent Software and Engineering

Radix sort

• Use induction to prove the claim.

• [Basis] The claim holds after the first iteration.

• [Hypothesis] Assume the claim holds after the first k -1 iterations.

• [Inductive Step] Consider two items a and b after k iterations.

‣ W.l.o.g., assume a appears before b. Thus, a[k] ≤ b[k].

‣ If a[k] < b[k], then it must be a[k…1] < b[k…1].

‣ If a[k] = b[k], since we use stable sort, it must be a[(k-1)…1] ≤ b[(k-1)…1]. Again, a[k…1] ≤ b[k…1].

Claim : after ith iteration, items are sorted by their rightmost i bits.

智能软件与⼯程学院

School of Intelligent Software and Engineering

Radix sort

• Since only considering decimal numbers, we only need 10 = buckets.

• RadixSort can sort n decimal d-digits numbers in time.

Θ(1)

O(dn)

RadixSort(A, d):
for i := 1 to d
 use-a-stable-sort-to-sort-A-on-digit-i

RadixSort(A, d):
for i := 1 to d
 use-bucket-sort-to-sort-A-on-digit-i

329

457

657

839

436

720

355

720

355

436

457

657

329

839

720

329

436

839

355

457

657

329

355

436

457

657

720

839

智能软件与⼯程学院

School of Intelligent Software and Engineering

Lower bound for sorting by querying the value

• Assume we want to sort n integers.

a1 a2 … an-1 an

a1 a2 … an-1

= 1
an“What is ”an−1 “ ”an−1 = 1

…

“What is ”a1 “ ”a1 = 1

… … (always say 1)

a1

= 1
a2 … an-1

= 1
an

a1

= 1

a2

=1
… an-1

= 1

an

=1

 queries, workn − 1 Θ(n)

sorry but a2 > 1
a2

< 1

a1

= 1
… an-1

= 1

an

=1

a1

=1

a3

= 1
… an

= 1

a2

> 1
Place at beginning or end？a2

智能软件与⼯程学院

School of Intelligent Software and Engineering

Lower bound for sorting by querying value

• The algorithm, which queries the input times, does not solve the
problem.

• Any algorithm which queries the input at most times does not solve
the problem.

• Solving the “sort integers” problem by querying values of input has a
time complexity of .

n − 1

n − 1

n
Ω(n)

智能软件与⼯程学院

School of Intelligent Software and Engineering

Summary
• Lower Bounds:

‣ Sorting needs time. (adversary argument)

‣ Comparison-based sorting needs . (decision tree)

• Upper Bounds:

‣ There are comparison-based sorting algorithms.

‣ BucketSort, RadixSort can be in many cases.

Ω(n)

Ω(n log n)

O(n log n)

Θ(n)

智能软件与⼯程学院

School of Intelligent Software and Engineering

Further reading

• [CLRS] Ch.8

