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Bogosort: The stupid sort

Not Sorted! Sorted!
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The Sorting Problem
• Sort  numbers into ascending order.


• We can actually sort a collection of any type of data, as long as a total order is defined for that type 
of data.


• That is, for any distinct data items  and , we compare them, i.e., we can determine:


‣ , otherwise, , where “<” is a binary relation:


- E.g., in Java, to use Collections.sort(List<DataType> list, 
Comparator<DataType> comparator) for sorting, you should implement the 
comparator and define the following function in it:


public int compare(DataType item1, DataType item2) 

• We can also sort partially ordered items (more on this later).

n

a b

a < b, or b < a a = b
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Sorting algorithms till now
• Insertion Sort: gradually in crease size of sorted part.


‣  time,  space


• Merge Sort: example of divide-and-conquer


‣  time,  space


• Heap Sort: leverage the heap data structure


‣  time,  space

O(n2) O(1)

O(n log n) O(n)

O(n log n) O(1)
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Characteristics of sorting algorithms

• In-place (原地): a sorting algorithm is in-place if  extra space is 
needed beyond input.


• Stability (稳定): a sorting algorithm is stable if numbers with the same 
value appear in the output array in the same order as they do in the input 
array.

O(1)
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Sorting algorithms till now

Insertion Sort: gradually in 
crease size of sorted part.


‣  time,  space


‣ In-place, and stable.

O(n2) O(1)

Counterexample for stability: <2a, 2b, 1>: 
It is already a max heap, then 
1. 2a is extracted, and placed in the end 
2. 2b is extracted, and placed in the end but 

one index 
At last, we get  <1, 2b, 2a> 

Merge Sort: example of 
divide-and-conquer


‣  time,  
space


‣ Not in-place, but stable.

O(n log n) O(n)

Heap Sort: leverage the heap 
data structure


‣  time,  space


‣ In-place, but not stable.

O(n log n) O(1)
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Elementary sorting
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The Selection Sort Algorithm
• Basic idea: pick out minimum element from input, then recursively sort 

remaining elements, and finally concatenate the minimum element with 
sorted remaining elements.

SelectionSortRec(A):
if   |A| = 1
return A

else 
min := GetMinElement(A)
A’ := RemoveElement(A, min)
return Concatenate(min, SelectionSortRec(A’))

SelectionSort(A):
for   i := 1 to A.length

minIdx := i
for j := i + 1 to A.length 
if A[j] < A[minIdx]

minIdx := j
Swap(i, minIdx)



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Analysis of SelectionSort

• Why it is correct? (What is the loop invariant?)


‣ After the  iteration, the first  items are sorted, and they are the 
smallest elements in the original array.


• Time complexity for sorting  items?


‣

ith i i

n

n−1

∑
i=1

(Θ(1) + Θ(n − i)) = Θ(n2)

SelectionSort(A):
for   i := 1 to A.length

minIdx := i
for j := i + 1 to A.length 
if A[j] < A[minIdx]

minIdx := j
Swap(i, minIdx)
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Analysis of SelectionSort

• Space complexity?


‣  extra space, thus in-place


• Stability?


‣ Not stable! Swap operation can mess up 
relative order


- Counterexample for stability: <2a, 2b, 1>

O(1)

SelectionSort(A):
for   i := 1 to A.length

minIdx := i
for j := i + 1 to A.length 
if A[j] < A[minIdx]

minIdx := j
Swap(i, minIdx)
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Before we move on
SelectionSortRec(A):
if   |A| = 1
return A

else 
min := GetMinElement(A)
A’ := RemoveElement(A, min)
return Concatenate(min, SelectionSortRec(A’))

SelectionSort(A):
for   i := 1 to A.length

minIdx := i
for j := i + 1 to A.length 
if A[j] < A[minIdx]

minIdx := j
Swap(i, minIdx)

Get the minimal element and extract it? 
Similar operations: HeapGetMax, HeapExtractMax
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Before we move on
SelectionSortRec(A):
if   |A| = 1
return A

else 
min := GetMinElement(A)
A’ := RemoveElement(A, min)
return Concatenate(min, SelectionSortRec(A’))

SelectionSortRecVariant(A):
if   |A| = 1
return A

else 
max := GetMaxElement(A)
A’ := RemoveElement(A, max)
return Concatenate(SelectionSortRec(A’), max)

Let A get organized as a heap, then it leads to the faster  
HeapSort algorithm.

The choice of data structure affects the performance of 
algorithms!
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The Bubble Sort Algorithm
• Basic idea: repeatedly step through the array, compare adjacent pairs and 

swaps them if they are in the wrong order. Thus, larger elements "bubble" to 
the “top”.

BubbleSort(A):
for  i := A.length down to 2      
for  j := 1 to i - 1
if A[j] > A[j+1]

Swap(A[j],  A[j+1])



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Analysis of BubbleSort

• Correctness:


‣ What is the invariant?


• Time complexity:


‣ Θ(n2)

BubbleSort(A):
for  i := A.length down to 2      
for  j := 1 to i - 1
if A[j] > A[j+1]

Swap(A[j],  A[j+1])

• Space complexity:


‣ 


• Stability: 


‣ Stable

Θ(1)
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Improving BubbleSort
BubbleSort(A):
for  i := A.length down to 2      
for  j := 1 to i - 1
if A[j] > A[j+1]

Swap(A[j],  A[j+1])

• What if in one iteration we never swap data items?


‣ Then A[1…i] are sorted, and we are done! (Why?)
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Improving BubbleSort
• When the input is mostly sorted, this variant 

performs much better.


‣ Particularly, when the input is sorted, this variant 
has  runtime.


- Other algorithms that also have this property, 
E.g., InsertionSort.


‣ Nonetheless, the worst case performance is still 
.


- E.g., when input is reversely sorted.

O(n)

Θ(n2)

BubbleSortImporved(A):
n := A.length
repeat 

   swapped := false
for  j := 1 to n - 1
if A[j] > A[j+1]

Swap(A[j],  A[j+1])
swapped := true

n := n - 1 
until swapped = false
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Improving BubbleSort
n = 5

3 2 1 8 9 12 15

2 3 1 8 9 12 15

2 1 3 8 9 12 15

2 1 3 8 9 12 15

2 1 3 8 9 12 15

Swap

Swap

 No Swap

 No Swap

BubbleSortImporved(A):
n := A.length
repeat 

   swapped := false
for  j := 1 to n - 1
if A[j] > A[j+1]

Swap(A[j],  A[j+1])
swapped := true

n := n - 1 
until swapped = false

swapped = true
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Improving BubbleSort
n = 4

2 1 3 8 9 12 15

1 2 3 8 9 12 15

1 2 3 8 9 12 15

1 2 3 8 9 12 15

Swap

 No Swap

BubbleSortImporved(A):
n := A.length
repeat 

   swapped := false
for  j := 1 to n - 1
if A[j] > A[j+1]

Swap(A[j],  A[j+1])
swapped := true

n := n - 1 
until swapped = false

swapped = true

 No Swap
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Improving BubbleSort
n = 3

1 2 3 8 9 12 15

1 2 3 8 9 12 15

1 2 3 8 9 12 15

 No Swap

 No Swap

BubbleSortImporved(A):
n := A.length
repeat 

   swapped := false
for  j := 1 to n - 1
if A[j] > A[j+1]

Swap(A[j],  A[j+1])
swapped := true

n := n - 1 
until swapped = false

swapped = false
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Improving BubbleSort
n = 5

3 2 1 8 9 12 15

2 3 1 8 9 12 15

2 1 3 8 9 12 15

2 1 3 8 9 12 15

2 1 3 8 9 12 15

Swap

Swap

 No Swap

 No Swap

BubbleSortImporved(A):
n := A.length
repeat 

   swapped := false
for  j := 1 to n - 1
if A[j] > A[j+1]

Swap(A[j],  A[j+1])
swapped := true

n := n - 1 
until swapped = false

The last swap index is 2, and then the following items has no 
swap, indicating that the following items are already sorted!
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Improving BubbleSort
n = 5

3 2 1 8 9 12 15

2 3 1 8 9 12 15

2 1 3 8 9 12 15

2 1 3 8 9 12 15

2 1 3 8 9 12 15

Swap

Swap

 No Swap

 No Swap

BubbleSortImporved(A):
n := A.length
repeat 

   swapped := false
for  j := 1 to n - 1
if A[j] > A[j+1]

Swap(A[j],  A[j+1])
swapped := true

n := n - 1 
until swapped = false

The last swap index is 2, and then the following items has no 
swap, indicating that the following items are already sorted! Therefore, in the next step, n should be 2
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Improving BubbleSort
‣ We can be more aggressive when reducing  after each iteration: in A[1…n], 

items after the last swap are all in correct sorted position. 
n

BubbleSortImporved(A):
n := A.length
repeat 

   swapped := false
for  j := 1 to n - 1
if A[j] > A[j+1]

Swap(A[j],  A[j+1])
swapped := true

n := n - 1 
until swapped = false

BubbleSortImporvedFurther(A):
n := A.length
repeat 

   lastSwapIdx := -1
for  j := 1 to n - 1
if A[j] > A[j+1]

Swap(A[j],  A[j+1])
lastSwapIdx := j + 1

n := lastSwapIdx - 1 
until  n <= 1
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Improving BubbleSort
n = 5

3 2 1 8 9 12 15

2 3 1 8 9 12 15

2 1 3 8 9 12 15

2 1 3 8 9 12 15

2 1 3 8 9 12 15

lastSwapIdx = 2

BubbleSortImporvedFurther(A):
n := A.length
repeat 

   lastSwapIdx := -1
for  j := 1 to n - 1
if A[j] > A[j+1]

Swap(A[j],  A[j+1])
lastSwapIdx := j + 1

n := lastSwapIdx - 1 
until  n <= 1

lastSwapIdx = 3
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Improving BubbleSort
n = 2

2 1 3 8 9 12 15 lastSwapIdx = 2

BubbleSortImporvedFurther(A):
n := A.length
repeat 

   lastSwapIdx := -1
for  j := 1 to n - 1
if A[j] > A[j+1]

Swap(A[j],  A[j+1])
lastSwapIdx := j + 1

n := lastSwapIdx - 1 
until  n <= 1

1 2 3 8 9 12 15

1 2 3 8 9 12 15

n = 1  break loop→
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Comparison of simple sorting algorithms
• Insertion


‣  swaps, and   comparisons -> worst


‣  swaps, and   comparisons -> on average


• Selection


‣  swaps, and   comparisons


• Bubble


‣   swaps, and   comparisons

n(n − 1)/2 n ⋅ (n − 1)/2

n(n − 1)/4 n ⋅ (n − 1)/4

n − 1 n ⋅ (n − 1)/2

n ⋅ (n − 1)/2 n ⋅ (n − 1)/2

Insertion-Sort(A):
for i := 2 to A.length
   key := A[i] 
   j := i - 1 
   while  j > 0 and A[j] > key 
         A[j + 1] := A[j]
         j := j - 1
   A[j + 1] := key
return A

Recall the insertion sort….
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Improving Insertion Sorting

• Insertion sorting is effective when:


‣ Input size is small


‣ The input array is nearly sorted (resulting in few comparisons and 
swaps)


• Insertion sorting is ineffective when:


‣ Elements must move far in array
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Improving Insertion Sorting
• Allow elements to move large steps


• Bring elements close to final location


‣ Make array almost sorted

• Idea: for some decreasing step size , e.g. ( ), the sequence 
must end with 1 (to ensure the correctness of sorting)


‣ For each step, sort the array so elements separated by exactly  
elements apart are in order.

h . . . ,8,4,2,1

h
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*Shell’s method for sorting 

Let’s first see an example of ShellSort: sort 16 integers.


[Pass 1] Group elements of distance 8 together, end up 
with eight groups each of size two. Sort these groups 
individually.


[Pass 2] Group elements of distance 4 together, end up 
with four groups each of size four. Sort these groups 
individually.


[Pass 3] Group elements of distance 2 together, end up 
with two groups each of size eight. Sort these groups 
individually.


[Pass 4] Group elements of distance 1, this is just an 
ordinary sort on all elements.

503 87 512 61 908 170 897 275 653 426 154 509 612 677 765 703

503 87 154 61 612 170 765 275 653 426 512 509 908 677 897 703

503 87 154 61 612 170 512 275 653 426 765 509 908 677 897 703

154 61 503 87 512 170 612 275 653 426 765 509 897 677 908 703

61 87 154 170 275 426 503 509 512 612 653 677 703 765 897 908
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General framework of ShellSort 

• To sort n items, define a set of decreasing distances 
{ } with  and .


• ShellSort then go through  passes, for the  pass:


‣ Divide items into  groups each of size about , and the  
group contains items with index ⋯

‣ For each of the  groups, sort the items in that group. (uses 
InsertionSort.)

d1, d2, . . . , dk d1 < n dk = 1

k ith

di n/di jth

j, j + di, j + 2di, j + 3di,

di
Donald L. Shell
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Benefit of ShellSort

• In a sequence of items ⟨ ⟩, if  and , then the pair 
( ) is call an inversion.


• The process of sorting is to correct all inversions!


• Earlier passes in ShellSort reduce number of inversions, making the 
sequence “closer” to being sorted.


• InsertionSort performs better (i.e., faster) as the input sequence 
becomes “closer” to being sorted.

a1, a2, ⋯, an i < j ai > aj
ai, aj
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Ideal versus Reality
• Unfortunately, ShellSort is not that fast, at least when using Shell’s original distances…

• Upper bound on the runtime of ShellSort:

‣ Assume we have  items where  is some power of two.

‣ The distances are .

‣ For the  pass, we run  instances of InsertionSort, each having to sort  items.

‣ So the total run,me is  

• Will ShellSort actually perform so poor?

n n

n/2, n/4, . . . , 1

ith n/2i 2i

(lg n)−1

∑
i=1

(n/2i ⋅ O(22i)) = O(n2)
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ShellSort can be slow!
• When using Shell’s original distances, the runtime of ShellSort can be 

 for certain input sequences.


• Example: input is , where  are in even positions, and  are 
in odd positions.


• Then, before the last pass, no pair ( ) where  and  are of different 
parity is ever compared!


• In the last pass,  work has to be done!

Θ(n2)

[n] [n/2] [n]\[n/2]

ai, aj i j

Θ(n2)

8 0 9 1 10 2 11 3 12 4 13 5 14 6 15 7
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Choice of distances matters, a lot!
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Quick Sort
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A unified view of many sorting algorithms

• Divide the input into size 1 and size n - 1.


‣ InsertionSort, easy to divide, combine needs efforts.


‣ SelectionSort, divide needs efforts, easy to combine.


• Divide the input into two parts each of same size.


‣ MergeSort, easy to divide, combine needs efforts.


• Divide the input into two parts of approximately same size.


‣ QuickSort, divide needs efforts, easy to combine.

 Divide problem into subproblems. Conquer subproblems recursively.    Combine solutions of subproblems.
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The QuickSort Algorithm
• Basic idea: 


‣ Given an array A of n items.


- Choose one item x in A  as the pivot.

- Use the pivot to partition the input into B and 
C, so that items in B are ≤ x, and items in C 
are > x.

- Recursively sort B and C.


- Output ⟨B, x, C⟩.
Tony Hoare

QuickSortAbs(A):
x := GetPivot(A)
<B, C> := Partition(A, x)
QuickSortAbs(B)
QuickSortAbs(C)
return Concatenate(B, x, C)
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Choosing the pivot
• Ideally the pivot should partition the input into two parts of roughly the 

same size (we’ll see why later).


‣ Select the “middle" element, the “first” element, or the “last” element?


‣ Or using “Median-of-three” technique, e.g., , median of 

{  }?


• For every simple deterministic method of choosing pivot, we can 
construct corresponding “bad input”.


• For now just use the last item as the pivot.

A[1], A[n], A[n/2]
A[1], A[n], A[n/2]
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The Partition Procedure

• Allocate array B of size n.


• Sequentially go through A[1… (n-1)], put small items at the left side of B, 
and large items at the right side of B.


• Finally put the pivot in the (only) remaining position.


•  time,  space, unstable.Θ(n) Θ(n)

Partition (A):
x := A[n],  l := 1, r := n
for  i := 1 to n - 1
  if  A[i] <= x
    B[l] := A[i]
    l++

  else
    B[r] := A[i]
    r--

B[l] := x
return < B, l >

• Can we do better, and how？
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In-place Partition Procedure

• Basic idea: sequentially go through 
A, use swap operations to move 
small items to the left part of A; thus 
the right part of A naturally contains 
large items.

InplacePartition(A, p, r):
i := p - 1
for  j := p to r - 1
  if  A[j] <= A[r]
    i := i + 1
    Swap(A[i], A[j])

Swap(A[i+1], A[r])
return i + 1

2 8 7 1 3 5 6 4

i pj r

2 8 7 1 3 5 6 4

i pj r

2 8 7 1 3 5 6 4

i p j r

2 8 7 1 3 5 6 4

i p j r

  A[ j] > A[r]

  A[ j] > A[r]

  
 i ++, swap(A[i], A[j])

A[ j] ≤ A[r]
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In-place Partition Procedure

• Basic idea: sequentially go through 
A, use swap operations to move 
small items to the left part of A; thus 
the right part of A naturally contains 
large items.

InplacePartition(A, p, r):
i := p - 1
for  j := p to r - 1
  if  A[j] <= A[r]
    i := i + 1
    Swap(A[i], A[j])

Swap(A[i+1], A[r])
return i + 1

2 8 7 1 3 5 6 4

i p j r

2 1 7 8 3 5 6 4

ip j r

2 1 7 8 3 5 6 4

p j r

2 1 3 8 7 5 6 4

ip j r

i

  
 i ++, swap(A[i], A[j])

A[ j] ≤ A[r]

  
i ++, swap(A[i], A[j])

A[ j] ≤ A[r]
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In-place Partition Procedure

• Basic idea: sequentially go through 
A, use swap operations to move 
small items to the left part of A; thus 
the right part of A naturally contains 
large items.

InplacePartition(A, p, r):
i := p - 1
for  j := p to r - 1
  if  A[j] <= A[r]
    i := i + 1
    Swap(A[i], A[j])

Swap(A[i+1], A[r])
return i + 1

2 1 3 8 7 5 6 4

ip j r

2 1 3 8 7 5 6 4

ip j r

ip j r

2 1 3 4 7 5 6 8

 A[ j] > A[r]

  A[ j] > A[r]

Swap(A[i+1], A[r])

break loop
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Analysis of In-place Partition Procedure

• Claim: at the beginning of any iteration, for any index k:


‣ If , then ; 

‣ If , then ; 

‣ If , then .

k ∈ [p, i] A[k] ≤ A[r]

k ∈ [i + 1,j − 1] A[k] > x

k = r A[k] = A[r]

Correctness
InplacePartition(A, p, r):
i := p - 1
for  j := p to r - 1
  if  A[j] <= A[r]
    i := i + 1
    Swap(A[i], A[j])

Swap(A[i+1], A[r])
return i + 1

• Proof: we use induction.


‣ [Basis] Trivially holds. x

i pj r

x

ip j r

≤ x > x unrestricted
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Analysis of In-place Partition Procedure

InplacePartition(A, p, r):
i := p - 1
for  j := p to r - 1
  if  A[j] <= A[r]
    i := i + 1
    Swap(A[i], A[j])

Swap(A[i+1], A[r])
return i + 1

Correctness

• Proof: we use induction.


‣ [Basis] Trivially holds.


‣ [Inductive step] Assume at the beginning of some iteration we 
have  and ,  and the stated properties hold. In this 
iteration:

i = ̂i j = ̂j

y a x

i = ̂ip j = ̂j r

y z x

i = ̂ip j = ̂j r

a y x

ip
̂j r

y z x

ip j r

or

x

̂ip ̂j r

a ≤ x z > x
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Analysis of In-place Partition Procedure

InplacePartition(A, p, r):
i := p - 1
for  j := p to r - 1
  if  A[j] <= A[r]
    i := i + 1
    Swap(A[i], A[j])

Swap(A[i+1], A[r])
return i + 1

Correctness

• Proof: we use induction.


‣ [Basis] Trivially holds.


‣ [Inductive step] Assume at the beginning of some iteration we 
have  and ,  and the stated properties hold. Then they 
hold after this iteration.


- eventually, when :


- Swap  and 

i = ̂i j = ̂j

j = r

A[i + 1] A[r]
During execution, we only swap items, no addition /deletion. 

So InplacePartition correctly partitions the input array.

y x

ip j r

x y

ip
j r
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The QuickSort Algorithm 

• Performance of InplacePartition:  

‣  time (i.e., linear time); 


‣  space; unstable.

Θ( |r − p | )

O(1)

InplacePartition(A, p, r):
i := p - 1
for  j := p to r - 1
  if  A[j] <= A[r]
    i := i + 1
    Swap(A[i], A[j])

Swap(A[i+1], A[r])
return i + 1

QuickSort(A, p, r):
if  p < r

q := InplacePartition(A, p, r)
QuickSort(A, p, q - 1)
QuickSort(A, q + 1, r)

• Performance of QuickSort? 

 Note: Although quicksort sorts in-place, the amount of 
memory it use aside from the array being sorted is not 
constant.  
Since each recursive call requires additional amount of 
space on the runtime stack. How many of them?
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Performance of QuickSort
• Cost at each level is: ,  where  is number of pivots removed in lower 

level Partition. 

‣ If the partition is “balanced”, then there will be few levels.


‣ If the partition is “balanced”, then  will increase rapidly.

c0(n − m) m

m
n

n1,1
(n − 1) − n1,1 = n1,2

n2,1 (n1,1 − 1) − n2,1 = n2,2 (n1,2 − 1) − n2,3 = n2,4n2,3

level cost  ≈ c0n

level cost  ≈ c0n

level cost  ≈ c0n
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Performance of QuickSort
Best caseWorst case

n

0 n − 1

0 n − 2

0 n − 3

2

0 1

n

≤ n/2 ≤ n/2

≤ n/4 ≤ n/4 ≤ n/4 ≤ n/4

≤ n/8 ≤ n/8 ≤ n/8 ≤ n/8 ≤ n/8 ≤ n/8 ≤ n/8 ≤ n/8

1 1 1 1 1 1 1 1 1 1 1……
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Performance of QuickSort
• Recurrence for the worse-case runtime of QuickSort: 

‣ T(n) = max
0≤q≤n−1

(T(q) + T(n − q − 1)) + c0n

• Guess , and we now verify:


‣ 


  = 


 


   

Tn ≤ cn2

T(n) ≤ max
0≤q≤n−1

(cq2 + c(n − q − 1)2) + c0n

c ⋅ max
0≤q≤n−1

(q2 + (n − q − 1)2) + c0n

≤ c(n − 1)2 + c0n = cn2 − c(2n − 1) + c0n

≤ cn2

when q = 0 or  q = n - 1

QuickSort(A, p, r):
if  p < r

q := InplacePartition(A, p, r)
QuickSort(A, p, q - 1)
QuickSort(A, q + 1, r)

→ T(n) = O(n2)
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Performance of QuickSort
• “Balanced” partition gives best case performance.


‣  implies 
. 

• Partition does not need to be perfectly balanced, 
we only need each split to be constant 
proportionality.


‣  where 
.

T(n) ≤ T(n/2) + T(n/2) + Θ(n)
T(n) = O(n log n)

T(n) ≤ T(dn) + T((1 − d)n) + Θ(n)
d = Θ(1)

QuickSort(A, p, r):
if  p < r

q := InplacePartition(A, p, r)
QuickSort(A, p, q - 1)
QuickSort(A, q + 1, r)
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Performance of QuickSort
n

1
10

n
1

100
n

9
100

n

level cost:  cn

level cost:   cn

level cost:   cn

 log10 n
9

10
n

9
100

n
81

100
n

81
1000

n
729
1000

n

1

 log10/9 n

1

level cost:   cn

level cost:   ≤ cn

level cost:   ≤ cn

O(n log n)
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Performance of QuickSort
• The performance of the best is , while the worst is 


‣ What about the performance in general?

Θ(n log n) Θ(n2)

• Average-case analysis: the expected time of algorithm over all inputs of 
size  (i.e., )  :   


‣ In order to perform a probabilistic analysis, we must use knowledge of, or 
make assumptions about, the distribution of (something about) the 
inputs.

n 𝒳n A(n) = ∑
x∈𝒳n

T(x) ⋅ Pr(x)
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Performance of QuickSort

• For QuickSort, particular values in the array are not important, instead, 
the relative ordering of the values is what matters (since QuickSort is 
comparison-based).  


• Therefore, it is important to focus on the permutation of input numbers.  A 
readable assumption is that all permutations of the input numbers are 
equally likely.


‣  To make the analysis simple, we also assume that the elements are 
distinct (duplicate values will be discussed later).
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Performance of QuickSort

• Before making rigorous analysis, we can first gain some intuition about the 
average performance.


‣ When QuickSort runs on a random input array,  we expect that some 
of the splits will be reasonably well balanced and that some will be fairly 
unbalanced.


‣ In the average case, Partition produces a mix of “good” and “bad” 
splits. That is, in a recursion tree, the good and bad splits are distributed 
randomly throughout the tree.
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Performance of QuickSort

• Further, for the sake of intuition, suppose that the good and bad splits alternate levels in the tree, 
and that the good splits are best case splits and the bad splits are worst-case splits.


‣ As an example in the above, the “mixed” Partition produces two “(n-1)/2” subarrays at the 
cost of  = , while the “balanced” Partition does so at the cost of .


‣ The cost of “bad” Partition can be absorbed by recent “good” Partition, without affecting 
time complexity asymptotically —> “mixed” Partition is at most constant factor worse than 
“balanced” Partition. 

‣ Therefore, the average runtime of QuickSort is    (rigorously proved later).

Θ(n) + Θ(n − 1) Θ(n) Θ(n)

O(n log n)

n

0 n − 1

(n − 1)/2 − 1 (n − 1)/2

Θ(n)
n

(n − 1)/2 (n − 1)/2

Θ(n)

Mixed Balanced
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Randomized QuickSort
• Picking “good” pivot is important for the performance? but how do we do it?

‣ On choosing pivot: first, middle, last, median of three, …?

• Any simple deterministic mechanism could fail! (If the input is given by an 
“adversary” that knows the algorithm.)

• Choose pivot (uniformly) at random!

‣ Since the choice is randomly made, there is a good chance 
(constant probability) that we choose a “good” pivot.

• The above claim holds even if the input is given by an 
“adversary” that knows the algorithm (but not the random bits 
the algorithm uses).

RandQuickSort(A, p, r):
if  p < r

i :=  Random(p,  r)
Swap (A[r],  A[i]) 
q := InplacePartition(A, p, r)
RandQuickSort(A, p, q - 1)
RandQuickSort(A, q + 1, r)
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Randomized QuickSort
RandQuickSort(A, p, r):
if  p < r

i :=  Random(p,  r)
Swap (A[r],  A[i]) 
q := InplacePartition(A, p, r)
RandQuickSort(A, p, q - 1)
RandQuickSort(A, q + 1, r)

InplacePartition(A, p, r):
i := p - 1
for  j := p to r - 1
  if  A[j] <= A[r]
    i := i + 1
    Swap(A[i], A[j])

Swap(A[i+1], A[r])
return i + 1

Two calls

Constant time

O(number of comparsions)
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Randomized QuickSort
• Cost of a call to RndQuickSort:


‣ Choose a pivot in  time;


‣ Run InplacePartition, the cost 
is . 

‣ Need to call RndQuickSort twice, 
the calling process (not the subrou,nes 
themselves) needs  time.

Θ(1)

O(number of comparsions)

Θ(1)

• Total cost of RndQuickSort:


‣ Time for choosing pivots , since each 
node can be pivot at most once! 


‣ All calls to InplacePartition,
. 

‣ Total time for call RndQuickSort , 
since each time a pivot is chosen, two 
RndQuickSort calls are made.

O(n)

O(total number of comparions)

O(2n)

In an execution of RndQuickSort, the cost is  + O(n) O(total number of comparions)
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Randomized QuickSort

• Each of pair of items is compared at most once!  (Items only compare with pivots, and each item can be the 
pivot at most once.)


• For ease of analysis, we let’s index the elements of the array A by their position in the sorted output, rather 
than their position in the input.


‣ For all the elements, we refer them to be  with .


• Let  =  {  is ever compared to  }, here  is an indicator random variable  

•
=  = 

z1, z2, . . . zn, z1 < z2 < . . . < zn

Xij I zi zj I I(H) = {1 H happens
0 H not happen

𝔼[X] = 𝔼
n−1

∑
i=1

n

∑
j=i+1

Xij

n−1

∑
i=1

n

∑
j=i+1

𝔼[Xij]
n−1

∑
i=1

n

∑
j=i+1

Pr(Xij = 1)

Cost of RndQuickSort is , where  is a random variable denoting the 
number of comparisons happened in InplacePartition throughout entire execution.

O(n + X) X
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Randomized QuickSort
• Let , where , let  be the first item in  that is 

chosen as a pivot. Then  are  compared iff  =  or  = . (Items from  stay in 
same split until some pivot is chosen from ). 

• 


• , let ,  

Zij = {z |z ∈ A, zi ≤ z ≤ zj} i ≤ j ̂zij Zij

zi zj ̂zij zi ̂zij zj Zij

Zij

Pr(Xij = 1) = Pr( ̂zij = zi) + Pr( ̂zij = zj) =
2

j − i + 1

𝔼[X] =
n−1

∑
i=1

n

∑
j=i+1

2
j − i + 1

k = j − i 𝔼[X] =
n−1

∑
i=1

n−i

∑
k=1

2
k + 1

<
n−1

∑
i=1

n

∑
k=1

2
k
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Randomized QuickSort
• Harmonic series 


‣ 


‣ 1 + 


‣

Hn =
n

∑
k=1

1
k

∫
n

1

1
x

dx <
n

∑
k=1

1
k

< ∫
n

2

1
x − 1

dx

ln n <
n

∑
k=1

1
k

< 1 + ln n

y =
1

x − 1
y =

1
x

0 1 2 3 4 5

1
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Randomized QuickSort
• Harmonic series 


‣  ~ 


• Hence, 


• Combined the fact that in the best case (balanced partition each time) 
randomized quick sort is , the expected running time is .


• In fact, runtime of RndQuickSort is  with high probability!

Hn =
n

∑
k=1

1
k

ln n

𝔼[X] <
n−1

∑
i=1

n

∑
k=1

2
k

< 2nHn < 2n(1 + ln n) = O(n lg n)

Θ(n lg n) Θ(n lg n)

O(n log n)
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A bit more on QuickSort

• What if there are many duplicates?

‣ Maintain four regions as we go through the array


‣ End up with three regions (“<”, “=”, and “>”), and only recurse into two of 
them (“<” and “>”): the more the duplicates, the less to recurse, and the 
better the algorithm! 

< pivot  = pivot	 > pivot
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A bit more on QuickSort

• Stop recursion once the array is too small.


‣ Recursion has overhead, QuickSort is slow on small arrays.


‣ Usually using InsertionSort for ≈ 10 elements, resulting in fewer 
swaps, comparisons or other operations on such small arrays.


- The ideal 'threshold' will vary based on the details of the specific 
implementation.
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A bit more on QuickSort
• “Random pivot selection” and “Median of three” can be combined!


‣ The expected number of comparisons needed to sort n elements with 
random pivot selection is . 


‣ Combining “Median-of-three pivoting”  (i.e., randomly selecting three 
elements and let the median of them to be the pivot) brings this down to 
about ,  but at the expense of a three-percent increase in the 
expected number of swaps. 


‣ According to Bentley, Jon L.; McIlroy, M. Douglas (1993). "Engineering a 
sort function". Software: Practice and Experience. 23 (11): 1249–1265. 

2n ln n =
2n

log2e
⋅ log2n ≈ 1.386n log2 n

1.188n log2 n
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A bit more on QuickSort
• Multiple pivots?


‣ Early studies do not give promising results, until Dual-Pivot variant 
proposed by Yaroslavskiy in 2009 seems slightly faster.


‣ This variant is used in Java for sorting. (Since Java 7.)


‣ According to “Average Case Analysis of Java 7's Dual Pivot Quicksort”. 
(Best Paper of ESA 2012)

< pivot1  pivot1 ≤ .  ≤pivot2 > pivot2
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Summary on QuickSort

• A widely-used efficient sorting algorithm


• Easy to understand! (divide-and-conquer…)


• Moderately hard to implement correctly. (partition…)


• Harder to analyze. (randomization…)


• Challenging to optimize. (theory and practice…)
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The  sorting algorithmsn lg n
• QuickSort,  MergeSort and HeapSort are all with , which is better?


‣ HeapSort is non-recursive, minimal auxiliary storage requirement (good for 
embedded system), but with poor locality of reference, the access of elements is not 
linear, resulting many caches being missed! It is the slowest among three algorithms


‣ In most (not all) tests, QuickSort turns out to be faster than MergeSort. This is 
because although QuickSort performs 39% more comparisons than MergeSort, 
but much less movement (copies) of array elements. 


‣ MergeSort is a stable sorting, and can take advantage of partially pre-sorted input. 
Further, MergeSort is more efficient at handling slow-to-access sequential media.

O(n lg n)
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External sorting
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*External Sorting

• External sorting is required when the data being sorted do not fit into the 
main memory of a computing device and instead they must reside in the 
slower external memory, usually a disk drive. 


• Since I/O is rather expensive (at the order of 1-10 milliseconds), the overall 
execution cost may be far dominated by the I/O,  the target of algorithm 
design is to reduce I/Os.


• One challenge to previous internal sorting algorithms is that how to merge 
big files with small memory! 
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External merge problem

• Input: 2 sorted lists (with M and N pages)


• Output: 1 merged sorted list (with M+N pages)


• Can we efficiently (in terms of I/O) merge the two lists using a buffer of 
size at least 3?


‣ Yes, and by using only 2(M+N) I/Os !



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Key (Simple) Idea
• To find an element that is no larger than all elements in two lists, one only 

needs to compare minimum elements from each list

If: 
 

 

Then: 
 

 

A1 ≤ A2 ≤ . . . ≤ An

B1 ≤ B2 ≤ . . . ≤ Bm

min(A1, B1) ≤ Ai, for 1 ≤ i ≤ n

min(A1, B1) ≤ Bj, for 1 ≤ j ≤ m

• Each time put the current minimum elements back to disk
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External merge algorithm

List 1

List 2

1, 5 8, 13 18, 20

3, 19 21, 22 24, 25

Merged

List

disk memory

Read

Write

One page
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External merge algorithm

List 1

List 2

1, 58, 13 18, 20

3, 1921, 22 24, 25

Merged

List

disk memory

Read

Write

Read 1 page from each lis
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External merge algorithm

List 1

List 2

58, 13 18, 20

1921, 22 24, 25

Merged

List

disk memory

Read

Write

merge from the 2 pages 
until a new page is filled

1,3
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External merge algorithm

List 1

List 2

58, 13 18, 20

1921, 22 24, 25

Merged

List

disk memory

Read

Write

Write this page to disk

1,3
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External merge algorithm

List 1

List 2

5

8, 13 18, 20

1921, 22 24, 25

Merged

List

disk memory

Read

Write

keep merging until one 
frame becomes empty

1,3
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External merge algorithm

List 1

List 2

5

8, 1318, 20

1921, 22 24, 25

Merged

List

disk memory

Read

Write

Since 5 < 19, we know we 
should read from the first list

1,3
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External merge algorithm

List 1

List 2

5, 8

1318, 20

1921, 22 24, 25

Merged

List

disk memory

Read

Write

Continue merging

1,3
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External merge algorithm

List 1

List 2

5, 8

18, 20

1921, 22 24, 25

Merged

List

disk memory

Read

Write

Write to disk again

1,3

13
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External merge algorithm

List 1

List 2

5, 8
13

18, 20

1921, 22 24, 25

Merged

List

disk memory

Read

Write

And so on …

1,3
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External merge algorithm

List 1

List 2

5, 8Merged

List

disk memory

Read

Write

Finally

1,3 13, 18

19, 20 21, 22 24, 25
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External merge cost

• We can merge 2 lists of arbitrary length with only 3 buffer pages.


‣  I/O cost = 2 


• When we have B+1 buffer pages, we can merge B lists with the same I/O 
cos

(M + N)



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

External merge sort

• How to deal with unsorted large files?


‣ 1. Split into chunks small enough to sort in memory (“runs”)


‣ 2. Merge pairs (or groups) of runs using the external merge algorithm


‣ 3. Keep merging the resulting runs (each time = a “pass”) until left with 
one sorted file!
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2-Way Sort

Unsorted

file 40, 3 8, 34 23, 12

2, 13 5, 17 25, 15

disk memory

Read

Write
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2-Way Sort

40, 3 8, 34 23, 12

2, 13 5, 17 25, 15

disk memory

Read

Write

Split into chunks that 
fit in memory
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2-Way Sort

40, 3

8, 34

23, 12

2, 13 5, 17 25, 15

disk memory

Read

Write

read each chunk in memory
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2-Way Sort

3, 8

12, 23

34, 40

2, 13 5, 17 25, 15

disk memory

Read

Write

sort in memory
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2-Way Sort

3, 8 12, 23 34, 40

2, 13 5, 17 25, 15

disk memory

Read

Write

write back to disk

each sorted sub-file is called a run
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2-Way Sort

3, 8 12, 23 34, 40

2, 5 13, 15 17, 25

disk memory

Read

Write

same for the other chunk

Now we have 2 runs



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

2-Way Sort

3, 8 12, 23 34, 40

2, 5 13, 15 17, 25

disk memory

Read

Write

final step: use the external

sort merge algorithm to


merge the 2 runs
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Calculating the I/O cost
• In our example there are 3 buffer pages, and 6 pages


• Pass 0: creating the runs


‣ 1 read + 1 write for every page


‣ total cost = 6 ∗ ( 1 + 1 ) = 12 I/Os


• Pass 1: external merge sort


‣ total cost = 2 ∗ (3 + 3) = 12 I/Os


• So 24 I/Os in total
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I/O Cost: Simplified Version
• Assume for now that we initially create N runs, each run consisting of a 

single page

pass 0: N runs, each 1 page 
pass 1: merge into N/2 runs, each two pages 
pass 2: merge into N/4 runs, each with 4 pages

• We need  passes to sort the whole file, each pass needs 2𝑁 I/Os


• Total I/O cost = 

⌈log2 N⌉ + 1

2N(⌈log2 N⌉ + 1)
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Can we do better?

• The 2-way merge algorithm only uses 3 buffer pages


• What if we have more available memory?


‣ Use as much of the available memory as possible in every pass


‣ Reducing the number of passes reduces I/O
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External sort: I/O cost

• Suppose we have 𝐵 ≥ 3 buffer pages available

1. Increase length of initial runs. Sort B+1 at a time!

‣ At the beginning, we can split the N pages into runs of 
length B and sort these in memory


‣ IO cost:

2N(⌈log2 N⌉ + 1) 2N(⌈log2
N
B

⌉ + 1)
Starting with runs 

of length 1
Starting with runs 

of length B
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External sort: I/O cost

• Suppose we have 𝐵 ≥ 3 buffer pages available

2. Perform a (B-1)—way merge.

‣ On each pass, we can merge groups of (B-1) runs at a time, 
instead of merging pairs of runs!


‣ IO cost:

2N(⌈log2 N⌉ + 1) 2N(⌈log2
N
B

⌉ + 1)
Starting with runs 

of length 1
Starting with runs 

of length B

2N(⌈logB−1
N
B

⌉ + 1)

Performing B-1—way merge
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Further reading
• [CLRS] Ch.7, Appendix C on probability theory


• [Weiss] Ch. 7 (7.4, 7.12)


• [Deng]  Ch.12 (12.3)


• [TAPCP] Ch.5 (5.2.1 in vol. 3) 


