
智能软件与⼯程学院
School of Intelligent Software and Engineering

排序
Sorting

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne.Thanks for their supports! We also use some materials from stanford-cs161.

钮鑫涛
Nanjing University

2023 Fall

智能软件与⼯程学院
School of Intelligent Software and Engineering

Bogosort: The stupid sort

Not Sorted! Sorted!

A
2 3 4

5

🤔

3
5 A 4

2

Shuffle

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Sorting Problem
• Sort numbers into ascending order.

• We can actually sort a collection of any type of data, as long as a total order is defined for that type
of data.

• That is, for any distinct data items and , we compare them, i.e., we can determine:

‣ , otherwise, , where “<” is a binary relation:

- E.g., in Java, to use Collections.sort(List<DataType> list,
Comparator<DataType> comparator) for sorting, you should implement the
comparator and define the following function in it:

public int compare(DataType item1, DataType item2)

• We can also sort partially ordered items (more on this later).

n

a b

a < b, or b < a a = b

智能软件与⼯程学院
School of Intelligent Software and Engineering

Sorting algorithms till now
• Insertion Sort: gradually in crease size of sorted part.

‣ time, space

• Merge Sort: example of divide-and-conquer

‣ time, space

• Heap Sort: leverage the heap data structure

‣ time, space

O(n2) O(1)

O(n log n) O(n)

O(n log n) O(1)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Characteristics of sorting algorithms

• In-place (原地): a sorting algorithm is in-place if extra space is
needed beyond input.

• Stability (稳定): a sorting algorithm is stable if numbers with the same
value appear in the output array in the same order as they do in the input
array.

O(1)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Sorting algorithms till now

Insertion Sort: gradually in
crease size of sorted part.

‣ time, space

‣ In-place, and stable.

O(n2) O(1)

Counterexample for stability: <2a, 2b, 1>:
It is already a max heap, then
1. 2a is extracted, and placed in the end
2. 2b is extracted, and placed in the end but

one index
At last, we get <1, 2b, 2a>

Merge Sort: example of
divide-and-conquer

‣ time,
space

‣ Not in-place, but stable.

O(n log n) O(n)

Heap Sort: leverage the heap
data structure

‣ time, space

‣ In-place, but not stable.

O(n log n) O(1)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Elementary sorting

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Selection Sort Algorithm
• Basic idea: pick out minimum element from input, then recursively sort

remaining elements, and finally concatenate the minimum element with
sorted remaining elements.

SelectionSortRec(A):
if |A| = 1
return A

else
min := GetMinElement(A)
A’ := RemoveElement(A, min)
return Concatenate(min, SelectionSortRec(A’))

SelectionSort(A):
for i := 1 to A.length

minIdx := i
for j := i + 1 to A.length
if A[j] < A[minIdx]

minIdx := j
Swap(i, minIdx)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Analysis of SelectionSort

• Why it is correct? (What is the loop invariant?)

‣ After the iteration, the first items are sorted, and they are the
smallest elements in the original array.

• Time complexity for sorting items?

‣

ith i i

n

n−1

∑
i=1

(Θ(1) + Θ(n − i)) = Θ(n2)

SelectionSort(A):
for i := 1 to A.length

minIdx := i
for j := i + 1 to A.length
if A[j] < A[minIdx]

minIdx := j
Swap(i, minIdx)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Analysis of SelectionSort

• Space complexity?

‣ extra space, thus in-place

• Stability?

‣ Not stable! Swap operation can mess up
relative order

- Counterexample for stability: <2a, 2b, 1>

O(1)

SelectionSort(A):
for i := 1 to A.length

minIdx := i
for j := i + 1 to A.length
if A[j] < A[minIdx]

minIdx := j
Swap(i, minIdx)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Before we move on
SelectionSortRec(A):
if |A| = 1
return A

else
min := GetMinElement(A)
A’ := RemoveElement(A, min)
return Concatenate(min, SelectionSortRec(A’))

SelectionSort(A):
for i := 1 to A.length

minIdx := i
for j := i + 1 to A.length
if A[j] < A[minIdx]

minIdx := j
Swap(i, minIdx)

Get the minimal element and extract it?
Similar operations: HeapGetMax, HeapExtractMax

智能软件与⼯程学院
School of Intelligent Software and Engineering

Before we move on
SelectionSortRec(A):
if |A| = 1
return A

else
min := GetMinElement(A)
A’ := RemoveElement(A, min)
return Concatenate(min, SelectionSortRec(A’))

SelectionSortRecVariant(A):
if |A| = 1
return A

else
max := GetMaxElement(A)
A’ := RemoveElement(A, max)
return Concatenate(SelectionSortRec(A’), max)

Let A get organized as a heap, then it leads to the faster
HeapSort algorithm.

The choice of data structure affects the performance of
algorithms!

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Bubble Sort Algorithm
• Basic idea: repeatedly step through the array, compare adjacent pairs and

swaps them if they are in the wrong order. Thus, larger elements "bubble" to
the “top”.

BubbleSort(A):
for i := A.length down to 2
for j := 1 to i - 1
if A[j] > A[j+1]

Swap(A[j], A[j+1])

智能软件与⼯程学院
School of Intelligent Software and Engineering

Analysis of BubbleSort

• Correctness:

‣ What is the invariant?

• Time complexity:

‣ Θ(n2)

BubbleSort(A):
for i := A.length down to 2
for j := 1 to i - 1
if A[j] > A[j+1]

Swap(A[j], A[j+1])

• Space complexity:

‣

• Stability:

‣ Stable

Θ(1)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Improving BubbleSort
BubbleSort(A):
for i := A.length down to 2
for j := 1 to i - 1
if A[j] > A[j+1]

Swap(A[j], A[j+1])

• What if in one iteration we never swap data items?

‣ Then A[1…i] are sorted, and we are done! (Why?)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Improving BubbleSort
• When the input is mostly sorted, this variant

performs much better.

‣ Particularly, when the input is sorted, this variant
has runtime.

- Other algorithms that also have this property,
E.g., InsertionSort.

‣ Nonetheless, the worst case performance is still
.

- E.g., when input is reversely sorted.

O(n)

Θ(n2)

BubbleSortImporved(A):
n := A.length
repeat

 swapped := false
for j := 1 to n - 1
if A[j] > A[j+1]

Swap(A[j], A[j+1])
swapped := true

n := n - 1
until swapped = false

智能软件与⼯程学院
School of Intelligent Software and Engineering

Improving BubbleSort
n = 5

3 2 1 8 9 12 15

2 3 1 8 9 12 15

2 1 3 8 9 12 15

2 1 3 8 9 12 15

2 1 3 8 9 12 15

Swap

Swap

 No Swap

 No Swap

BubbleSortImporved(A):
n := A.length
repeat

 swapped := false
for j := 1 to n - 1
if A[j] > A[j+1]

Swap(A[j], A[j+1])
swapped := true

n := n - 1
until swapped = false

swapped = true

智能软件与⼯程学院
School of Intelligent Software and Engineering

Improving BubbleSort
n = 4

2 1 3 8 9 12 15

1 2 3 8 9 12 15

1 2 3 8 9 12 15

1 2 3 8 9 12 15

Swap

 No Swap

BubbleSortImporved(A):
n := A.length
repeat

 swapped := false
for j := 1 to n - 1
if A[j] > A[j+1]

Swap(A[j], A[j+1])
swapped := true

n := n - 1
until swapped = false

swapped = true

 No Swap

智能软件与⼯程学院
School of Intelligent Software and Engineering

Improving BubbleSort
n = 3

1 2 3 8 9 12 15

1 2 3 8 9 12 15

1 2 3 8 9 12 15

 No Swap

 No Swap

BubbleSortImporved(A):
n := A.length
repeat

 swapped := false
for j := 1 to n - 1
if A[j] > A[j+1]

Swap(A[j], A[j+1])
swapped := true

n := n - 1
until swapped = false

swapped = false

智能软件与⼯程学院
School of Intelligent Software and Engineering

Improving BubbleSort
n = 5

3 2 1 8 9 12 15

2 3 1 8 9 12 15

2 1 3 8 9 12 15

2 1 3 8 9 12 15

2 1 3 8 9 12 15

Swap

Swap

 No Swap

 No Swap

BubbleSortImporved(A):
n := A.length
repeat

 swapped := false
for j := 1 to n - 1
if A[j] > A[j+1]

Swap(A[j], A[j+1])
swapped := true

n := n - 1
until swapped = false

The last swap index is 2, and then the following items has no
swap, indicating that the following items are already sorted!

智能软件与⼯程学院
School of Intelligent Software and Engineering

Improving BubbleSort
n = 5

3 2 1 8 9 12 15

2 3 1 8 9 12 15

2 1 3 8 9 12 15

2 1 3 8 9 12 15

2 1 3 8 9 12 15

Swap

Swap

 No Swap

 No Swap

BubbleSortImporved(A):
n := A.length
repeat

 swapped := false
for j := 1 to n - 1
if A[j] > A[j+1]

Swap(A[j], A[j+1])
swapped := true

n := n - 1
until swapped = false

The last swap index is 2, and then the following items has no
swap, indicating that the following items are already sorted! Therefore, in the next step, n should be 2

智能软件与⼯程学院
School of Intelligent Software and Engineering

Improving BubbleSort
‣ We can be more aggressive when reducing after each iteration: in A[1…n],

items after the last swap are all in correct sorted position.
n

BubbleSortImporved(A):
n := A.length
repeat

 swapped := false
for j := 1 to n - 1
if A[j] > A[j+1]

Swap(A[j], A[j+1])
swapped := true

n := n - 1
until swapped = false

BubbleSortImporvedFurther(A):
n := A.length
repeat

 lastSwapIdx := -1
for j := 1 to n - 1
if A[j] > A[j+1]

Swap(A[j], A[j+1])
lastSwapIdx := j + 1

n := lastSwapIdx - 1
until n <= 1

智能软件与⼯程学院
School of Intelligent Software and Engineering

Improving BubbleSort
n = 5

3 2 1 8 9 12 15

2 3 1 8 9 12 15

2 1 3 8 9 12 15

2 1 3 8 9 12 15

2 1 3 8 9 12 15

lastSwapIdx = 2

BubbleSortImporvedFurther(A):
n := A.length
repeat

 lastSwapIdx := -1
for j := 1 to n - 1
if A[j] > A[j+1]

Swap(A[j], A[j+1])
lastSwapIdx := j + 1

n := lastSwapIdx - 1
until n <= 1

lastSwapIdx = 3

智能软件与⼯程学院
School of Intelligent Software and Engineering

Improving BubbleSort
n = 2

2 1 3 8 9 12 15 lastSwapIdx = 2

BubbleSortImporvedFurther(A):
n := A.length
repeat

 lastSwapIdx := -1
for j := 1 to n - 1
if A[j] > A[j+1]

Swap(A[j], A[j+1])
lastSwapIdx := j + 1

n := lastSwapIdx - 1
until n <= 1

1 2 3 8 9 12 15

1 2 3 8 9 12 15

n = 1 break loop→

智能软件与⼯程学院
School of Intelligent Software and Engineering

Comparison of simple sorting algorithms
• Insertion

‣ swaps, and comparisons -> worst

‣ swaps, and comparisons -> on average

• Selection

‣ swaps, and comparisons

• Bubble

‣ swaps, and comparisons

n(n − 1)/2 n ⋅ (n − 1)/2

n(n − 1)/4 n ⋅ (n − 1)/4

n − 1 n ⋅ (n − 1)/2

n ⋅ (n − 1)/2 n ⋅ (n − 1)/2

Insertion-Sort(A):
for i := 2 to A.length
 key := A[i]
 j := i - 1
 while j > 0 and A[j] > key
 A[j + 1] := A[j]
 j := j - 1
 A[j + 1] := key
return A

Recall the insertion sort….

智能软件与⼯程学院
School of Intelligent Software and Engineering

Improving Insertion Sorting

• Insertion sorting is effective when:

‣ Input size is small

‣ The input array is nearly sorted (resulting in few comparisons and
swaps)

• Insertion sorting is ineffective when:

‣ Elements must move far in array

智能软件与⼯程学院
School of Intelligent Software and Engineering

Improving Insertion Sorting
• Allow elements to move large steps

• Bring elements close to final location

‣ Make array almost sorted

• Idea: for some decreasing step size , e.g. (), the sequence
must end with 1 (to ensure the correctness of sorting)

‣ For each step, sort the array so elements separated by exactly
elements apart are in order.

h . . . ,8,4,2,1

h

智能软件与⼯程学院
School of Intelligent Software and Engineering

*Shell’s method for sorting

Let’s first see an example of ShellSort: sort 16 integers.

[Pass 1] Group elements of distance 8 together, end up
with eight groups each of size two. Sort these groups
individually.

[Pass 2] Group elements of distance 4 together, end up
with four groups each of size four. Sort these groups
individually.

[Pass 3] Group elements of distance 2 together, end up
with two groups each of size eight. Sort these groups
individually.

[Pass 4] Group elements of distance 1, this is just an
ordinary sort on all elements.

503 87 512 61 908 170 897 275 653 426 154 509 612 677 765 703

503 87 154 61 612 170 765 275 653 426 512 509 908 677 897 703

503 87 154 61 612 170 512 275 653 426 765 509 908 677 897 703

154 61 503 87 512 170 612 275 653 426 765 509 897 677 908 703

61 87 154 170 275 426 503 509 512 612 653 677 703 765 897 908

智能软件与⼯程学院
School of Intelligent Software and Engineering

General framework of ShellSort

• To sort n items, define a set of decreasing distances
{ } with and .

• ShellSort then go through passes, for the pass:

‣ Divide items into groups each of size about , and the
group contains items with index ⋯

‣ For each of the groups, sort the items in that group. (uses
InsertionSort.)

d1, d2, . . . , dk d1 < n dk = 1

k ith

di n/di jth

j, j + di, j + 2di, j + 3di,

di
Donald L. Shell

智能软件与⼯程学院
School of Intelligent Software and Engineering

Benefit of ShellSort

• In a sequence of items ⟨ ⟩, if and , then the pair
() is call an inversion.

• The process of sorting is to correct all inversions!

• Earlier passes in ShellSort reduce number of inversions, making the
sequence “closer” to being sorted.

• InsertionSort performs better (i.e., faster) as the input sequence
becomes “closer” to being sorted.

a1, a2, ⋯, an i < j ai > aj
ai, aj

智能软件与⼯程学院
School of Intelligent Software and Engineering

Ideal versus Reality
• Unfortunately, ShellSort is not that fast, at least when using Shell’s original distances…

• Upper bound on the runtime of ShellSort:

‣ Assume we have items where is some power of two.

‣ The distances are .

‣ For the pass, we run instances of InsertionSort, each having to sort items.

‣ So the total run,me is

• Will ShellSort actually perform so poor?

n n

n/2, n/4, . . . , 1

ith n/2i 2i

(lg n)−1

∑
i=1

(n/2i ⋅ O(22i)) = O(n2)

智能软件与⼯程学院
School of Intelligent Software and Engineering

ShellSort can be slow!
• When using Shell’s original distances, the runtime of ShellSort can be

 for certain input sequences.

• Example: input is , where are in even positions, and are
in odd positions.

• Then, before the last pass, no pair () where and are of different
parity is ever compared!

• In the last pass, work has to be done!

Θ(n2)

[n] [n/2] [n]\[n/2]

ai, aj i j

Θ(n2)

8 0 9 1 10 2 11 3 12 4 13 5 14 6 15 7

智能软件与⼯程学院
School of Intelligent Software and Engineering

Choice of distances matters, a lot!

智能软件与⼯程学院
School of Intelligent Software and Engineering

Quick Sort

智能软件与⼯程学院
School of Intelligent Software and Engineering

A unified view of many sorting algorithms

• Divide the input into size 1 and size n - 1.

‣ InsertionSort, easy to divide, combine needs efforts.

‣ SelectionSort, divide needs efforts, easy to combine.

• Divide the input into two parts each of same size.

‣ MergeSort, easy to divide, combine needs efforts.

• Divide the input into two parts of approximately same size.

‣ QuickSort, divide needs efforts, easy to combine.

 Divide problem into subproblems. Conquer subproblems recursively. Combine solutions of subproblems.

智能软件与⼯程学院
School of Intelligent Software and Engineering

The QuickSort Algorithm
• Basic idea:

‣ Given an array A of n items.

- Choose one item x in A as the pivot.

- Use the pivot to partition the input into B and
C, so that items in B are ≤ x, and items in C
are > x.

- Recursively sort B and C.

- Output ⟨B, x, C⟩.
Tony Hoare

QuickSortAbs(A):
x := GetPivot(A)
<B, C> := Partition(A, x)
QuickSortAbs(B)
QuickSortAbs(C)
return Concatenate(B, x, C)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Choosing the pivot
• Ideally the pivot should partition the input into two parts of roughly the

same size (we’ll see why later).

‣ Select the “middle" element, the “first” element, or the “last” element?

‣ Or using “Median-of-three” technique, e.g., , median of

{ }?

• For every simple deterministic method of choosing pivot, we can
construct corresponding “bad input”.

• For now just use the last item as the pivot.

A[1], A[n], A[n/2]
A[1], A[n], A[n/2]

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Partition Procedure

• Allocate array B of size n.

• Sequentially go through A[1… (n-1)], put small items at the left side of B,
and large items at the right side of B.

• Finally put the pivot in the (only) remaining position.

• time, space, unstable.Θ(n) Θ(n)

Partition (A):
x := A[n], l := 1, r := n
for i := 1 to n - 1
 if A[i] <= x
 B[l] := A[i]
 l++

 else
 B[r] := A[i]
 r--

B[l] := x
return < B, l >

• Can we do better, and how？

智能软件与⼯程学院
School of Intelligent Software and Engineering

In-place Partition Procedure

• Basic idea: sequentially go through
A, use swap operations to move
small items to the left part of A; thus
the right part of A naturally contains
large items.

InplacePartition(A, p, r):
i := p - 1
for j := p to r - 1
 if A[j] <= A[r]
 i := i + 1
 Swap(A[i], A[j])

Swap(A[i+1], A[r])
return i + 1

2 8 7 1 3 5 6 4

i pj r

2 8 7 1 3 5 6 4

i pj r

2 8 7 1 3 5 6 4

i p j r

2 8 7 1 3 5 6 4

i p j r

 A[j] > A[r]

 A[j] > A[r]

 i ++, swap(A[i], A[j])

A[j] ≤ A[r]

智能软件与⼯程学院
School of Intelligent Software and Engineering

In-place Partition Procedure

• Basic idea: sequentially go through
A, use swap operations to move
small items to the left part of A; thus
the right part of A naturally contains
large items.

InplacePartition(A, p, r):
i := p - 1
for j := p to r - 1
 if A[j] <= A[r]
 i := i + 1
 Swap(A[i], A[j])

Swap(A[i+1], A[r])
return i + 1

2 8 7 1 3 5 6 4

i p j r

2 1 7 8 3 5 6 4

ip j r

2 1 7 8 3 5 6 4

p j r

2 1 3 8 7 5 6 4

ip j r

i

 i ++, swap(A[i], A[j])

A[j] ≤ A[r]

i ++, swap(A[i], A[j])

A[j] ≤ A[r]

智能软件与⼯程学院
School of Intelligent Software and Engineering

In-place Partition Procedure

• Basic idea: sequentially go through
A, use swap operations to move
small items to the left part of A; thus
the right part of A naturally contains
large items.

InplacePartition(A, p, r):
i := p - 1
for j := p to r - 1
 if A[j] <= A[r]
 i := i + 1
 Swap(A[i], A[j])

Swap(A[i+1], A[r])
return i + 1

2 1 3 8 7 5 6 4

ip j r

2 1 3 8 7 5 6 4

ip j r

ip j r

2 1 3 4 7 5 6 8

 A[j] > A[r]

 A[j] > A[r]

Swap(A[i+1], A[r])

break loop

智能软件与⼯程学院
School of Intelligent Software and Engineering

Analysis of In-place Partition Procedure

• Claim: at the beginning of any iteration, for any index k:

‣ If , then ;

‣ If , then ;

‣ If , then .

k ∈ [p, i] A[k] ≤ A[r]

k ∈ [i + 1,j − 1] A[k] > x

k = r A[k] = A[r]

Correctness
InplacePartition(A, p, r):
i := p - 1
for j := p to r - 1
 if A[j] <= A[r]
 i := i + 1
 Swap(A[i], A[j])

Swap(A[i+1], A[r])
return i + 1

• Proof: we use induction.

‣ [Basis] Trivially holds. x

i pj r

x

ip j r

≤ x > x unrestricted

智能软件与⼯程学院
School of Intelligent Software and Engineering

Analysis of In-place Partition Procedure

InplacePartition(A, p, r):
i := p - 1
for j := p to r - 1
 if A[j] <= A[r]
 i := i + 1
 Swap(A[i], A[j])

Swap(A[i+1], A[r])
return i + 1

Correctness

• Proof: we use induction.

‣ [Basis] Trivially holds.

‣ [Inductive step] Assume at the beginning of some iteration we
have and , and the stated properties hold. In this
iteration:

i = ̂i j = ̂j

y a x

i = ̂ip j = ̂j r

y z x

i = ̂ip j = ̂j r

a y x

ip
̂j r

y z x

ip j r

or

x

̂ip ̂j r

a ≤ x z > x

智能软件与⼯程学院
School of Intelligent Software and Engineering

Analysis of In-place Partition Procedure

InplacePartition(A, p, r):
i := p - 1
for j := p to r - 1
 if A[j] <= A[r]
 i := i + 1
 Swap(A[i], A[j])

Swap(A[i+1], A[r])
return i + 1

Correctness

• Proof: we use induction.

‣ [Basis] Trivially holds.

‣ [Inductive step] Assume at the beginning of some iteration we
have and , and the stated properties hold. Then they
hold after this iteration.

- eventually, when :

- Swap and

i = ̂i j = ̂j

j = r

A[i + 1] A[r]
During execution, we only swap items, no addition /deletion.

So InplacePartition correctly partitions the input array.

y x

ip j r

x y

ip
j r

智能软件与⼯程学院
School of Intelligent Software and Engineering

The QuickSort Algorithm

• Performance of InplacePartition:

‣ time (i.e., linear time);

‣ space; unstable.

Θ(|r − p |)

O(1)

InplacePartition(A, p, r):
i := p - 1
for j := p to r - 1
 if A[j] <= A[r]
 i := i + 1
 Swap(A[i], A[j])

Swap(A[i+1], A[r])
return i + 1

QuickSort(A, p, r):
if p < r

q := InplacePartition(A, p, r)
QuickSort(A, p, q - 1)
QuickSort(A, q + 1, r)

• Performance of QuickSort?

 Note: Although quicksort sorts in-place, the amount of
memory it use aside from the array being sorted is not
constant.
Since each recursive call requires additional amount of
space on the runtime stack. How many of them?

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance of QuickSort
• Cost at each level is: , where is number of pivots removed in lower

level Partition.

‣ If the partition is “balanced”, then there will be few levels.

‣ If the partition is “balanced”, then will increase rapidly.

c0(n − m) m

m
n

n1,1
(n − 1) − n1,1 = n1,2

n2,1 (n1,1 − 1) − n2,1 = n2,2 (n1,2 − 1) − n2,3 = n2,4n2,3

level cost ≈ c0n

level cost ≈ c0n

level cost ≈ c0n

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance of QuickSort
Best caseWorst case

n

0 n − 1

0 n − 2

0 n − 3

2

0 1

n

≤ n/2 ≤ n/2

≤ n/4 ≤ n/4 ≤ n/4 ≤ n/4

≤ n/8 ≤ n/8 ≤ n/8 ≤ n/8 ≤ n/8 ≤ n/8 ≤ n/8 ≤ n/8

1 1 1 1 1 1 1 1 1 1 1……

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance of QuickSort
• Recurrence for the worse-case runtime of QuickSort:

‣ T(n) = max
0≤q≤n−1

(T(q) + T(n − q − 1)) + c0n

• Guess , and we now verify:

‣

 =

Tn ≤ cn2

T(n) ≤ max
0≤q≤n−1

(cq2 + c(n − q − 1)2) + c0n

c ⋅ max
0≤q≤n−1

(q2 + (n − q − 1)2) + c0n

≤ c(n − 1)2 + c0n = cn2 − c(2n − 1) + c0n

≤ cn2

when q = 0 or q = n - 1

QuickSort(A, p, r):
if p < r

q := InplacePartition(A, p, r)
QuickSort(A, p, q - 1)
QuickSort(A, q + 1, r)

→ T(n) = O(n2)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance of QuickSort
• “Balanced” partition gives best case performance.

‣ implies
.

• Partition does not need to be perfectly balanced,
we only need each split to be constant
proportionality.

‣ where
.

T(n) ≤ T(n/2) + T(n/2) + Θ(n)
T(n) = O(n log n)

T(n) ≤ T(dn) + T((1 − d)n) + Θ(n)
d = Θ(1)

QuickSort(A, p, r):
if p < r

q := InplacePartition(A, p, r)
QuickSort(A, p, q - 1)
QuickSort(A, q + 1, r)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance of QuickSort
n

1
10

n
1

100
n

9
100

n

level cost: cn

level cost: cn

level cost: cn

 log10 n
9

10
n

9
100

n
81

100
n

81
1000

n
729
1000

n

1

 log10/9 n

1

level cost: cn

level cost: ≤ cn

level cost: ≤ cn

O(n log n)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance of QuickSort
• The performance of the best is , while the worst is

‣ What about the performance in general?

Θ(n log n) Θ(n2)

• Average-case analysis: the expected time of algorithm over all inputs of
size (i.e.,) :

‣ In order to perform a probabilistic analysis, we must use knowledge of, or
make assumptions about, the distribution of (something about) the
inputs.

n 𝒳n A(n) = ∑
x∈𝒳n

T(x) ⋅ Pr(x)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance of QuickSort

• For QuickSort, particular values in the array are not important, instead,
the relative ordering of the values is what matters (since QuickSort is
comparison-based).

• Therefore, it is important to focus on the permutation of input numbers. A
readable assumption is that all permutations of the input numbers are
equally likely.

‣ To make the analysis simple, we also assume that the elements are
distinct (duplicate values will be discussed later).

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance of QuickSort

• Before making rigorous analysis, we can first gain some intuition about the
average performance.

‣ When QuickSort runs on a random input array, we expect that some
of the splits will be reasonably well balanced and that some will be fairly
unbalanced.

‣ In the average case, Partition produces a mix of “good” and “bad”
splits. That is, in a recursion tree, the good and bad splits are distributed
randomly throughout the tree.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance of QuickSort

• Further, for the sake of intuition, suppose that the good and bad splits alternate levels in the tree,
and that the good splits are best case splits and the bad splits are worst-case splits.

‣ As an example in the above, the “mixed” Partition produces two “(n-1)/2” subarrays at the
cost of = , while the “balanced” Partition does so at the cost of .

‣ The cost of “bad” Partition can be absorbed by recent “good” Partition, without affecting
time complexity asymptotically —> “mixed” Partition is at most constant factor worse than
“balanced” Partition.

‣ Therefore, the average runtime of QuickSort is (rigorously proved later).

Θ(n) + Θ(n − 1) Θ(n) Θ(n)

O(n log n)

n

0 n − 1

(n − 1)/2 − 1 (n − 1)/2

Θ(n)
n

(n − 1)/2 (n − 1)/2

Θ(n)

Mixed Balanced

智能软件与⼯程学院
School of Intelligent Software and Engineering

Randomized QuickSort
• Picking “good” pivot is important for the performance? but how do we do it?

‣ On choosing pivot: first, middle, last, median of three, …?

• Any simple deterministic mechanism could fail! (If the input is given by an
“adversary” that knows the algorithm.)

• Choose pivot (uniformly) at random!

‣ Since the choice is randomly made, there is a good chance
(constant probability) that we choose a “good” pivot.

• The above claim holds even if the input is given by an
“adversary” that knows the algorithm (but not the random bits
the algorithm uses).

RandQuickSort(A, p, r):
if p < r

i := Random(p, r)
Swap (A[r], A[i])
q := InplacePartition(A, p, r)
RandQuickSort(A, p, q - 1)
RandQuickSort(A, q + 1, r)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Randomized QuickSort
RandQuickSort(A, p, r):
if p < r

i := Random(p, r)
Swap (A[r], A[i])
q := InplacePartition(A, p, r)
RandQuickSort(A, p, q - 1)
RandQuickSort(A, q + 1, r)

InplacePartition(A, p, r):
i := p - 1
for j := p to r - 1
 if A[j] <= A[r]
 i := i + 1
 Swap(A[i], A[j])

Swap(A[i+1], A[r])
return i + 1

Two calls

Constant time

O(number of comparsions)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Randomized QuickSort
• Cost of a call to RndQuickSort:

‣ Choose a pivot in time;

‣ Run InplacePartition, the cost
is .

‣ Need to call RndQuickSort twice,
the calling process (not the subrou,nes
themselves) needs time.

Θ(1)

O(number of comparsions)

Θ(1)

• Total cost of RndQuickSort:

‣ Time for choosing pivots , since each
node can be pivot at most once!

‣ All calls to InplacePartition,
.

‣ Total time for call RndQuickSort ,
since each time a pivot is chosen, two
RndQuickSort calls are made.

O(n)

O(total number of comparions)

O(2n)

In an execution of RndQuickSort, the cost is + O(n) O(total number of comparions)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Randomized QuickSort

• Each of pair of items is compared at most once! (Items only compare with pivots, and each item can be the
pivot at most once.)

• For ease of analysis, we let’s index the elements of the array A by their position in the sorted output, rather
than their position in the input.

‣ For all the elements, we refer them to be with .

• Let = { is ever compared to }, here is an indicator random variable

•
= =

z1, z2, . . . zn, z1 < z2 < . . . < zn

Xij I zi zj I I(H) = {1 H happens
0 H not happen

𝔼[X] = 𝔼
n−1

∑
i=1

n

∑
j=i+1

Xij

n−1

∑
i=1

n

∑
j=i+1

𝔼[Xij]
n−1

∑
i=1

n

∑
j=i+1

Pr(Xij = 1)

Cost of RndQuickSort is , where is a random variable denoting the
number of comparisons happened in InplacePartition throughout entire execution.

O(n + X) X

智能软件与⼯程学院
School of Intelligent Software and Engineering

Randomized QuickSort
• Let , where , let be the first item in that is

chosen as a pivot. Then are compared iff = or = . (Items from stay in
same split until some pivot is chosen from).

•

• , let ,

Zij = {z |z ∈ A, zi ≤ z ≤ zj} i ≤ j ̂zij Zij

zi zj ̂zij zi ̂zij zj Zij

Zij

Pr(Xij = 1) = Pr(̂zij = zi) + Pr(̂zij = zj) =
2

j − i + 1

𝔼[X] =
n−1

∑
i=1

n

∑
j=i+1

2
j − i + 1

k = j − i 𝔼[X] =
n−1

∑
i=1

n−i

∑
k=1

2
k + 1

<
n−1

∑
i=1

n

∑
k=1

2
k

智能软件与⼯程学院
School of Intelligent Software and Engineering

Randomized QuickSort
• Harmonic series

‣

‣ 1 +

‣

Hn =
n

∑
k=1

1
k

∫
n

1

1
x

dx <
n

∑
k=1

1
k

< ∫
n

2

1
x − 1

dx

ln n <
n

∑
k=1

1
k

< 1 + ln n

y =
1

x − 1
y =

1
x

0 1 2 3 4 5

1

智能软件与⼯程学院
School of Intelligent Software and Engineering

Randomized QuickSort
• Harmonic series

‣ ~

• Hence,

• Combined the fact that in the best case (balanced partition each time)
randomized quick sort is , the expected running time is .

• In fact, runtime of RndQuickSort is with high probability!

Hn =
n

∑
k=1

1
k

ln n

𝔼[X] <
n−1

∑
i=1

n

∑
k=1

2
k

< 2nHn < 2n(1 + ln n) = O(n lg n)

Θ(n lg n) Θ(n lg n)

O(n log n)

智能软件与⼯程学院
School of Intelligent Software and Engineering

A bit more on QuickSort

• What if there are many duplicates?

‣ Maintain four regions as we go through the array

‣ End up with three regions (“<”, “=”, and “>”), and only recurse into two of
them (“<” and “>”): the more the duplicates, the less to recurse, and the
better the algorithm!

< pivot = pivot	 > pivot

智能软件与⼯程学院
School of Intelligent Software and Engineering

A bit more on QuickSort

• Stop recursion once the array is too small.

‣ Recursion has overhead, QuickSort is slow on small arrays.

‣ Usually using InsertionSort for ≈ 10 elements, resulting in fewer
swaps, comparisons or other operations on such small arrays.

- The ideal 'threshold' will vary based on the details of the specific
implementation.

智能软件与⼯程学院
School of Intelligent Software and Engineering

A bit more on QuickSort
• “Random pivot selection” and “Median of three” can be combined!

‣ The expected number of comparisons needed to sort n elements with
random pivot selection is .

‣ Combining “Median-of-three pivoting” (i.e., randomly selecting three
elements and let the median of them to be the pivot) brings this down to
about , but at the expense of a three-percent increase in the
expected number of swaps.

‣ According to Bentley, Jon L.; McIlroy, M. Douglas (1993). "Engineering a
sort function". Software: Practice and Experience. 23 (11): 1249–1265.

2n ln n =
2n

log2e
⋅ log2n ≈ 1.386n log2 n

1.188n log2 n

智能软件与⼯程学院
School of Intelligent Software and Engineering

A bit more on QuickSort
• Multiple pivots?

‣ Early studies do not give promising results, until Dual-Pivot variant
proposed by Yaroslavskiy in 2009 seems slightly faster.

‣ This variant is used in Java for sorting. (Since Java 7.)

‣ According to “Average Case Analysis of Java 7's Dual Pivot Quicksort”.
(Best Paper of ESA 2012)

< pivot1 pivot1 ≤ . ≤pivot2 > pivot2

智能软件与⼯程学院
School of Intelligent Software and Engineering

Summary on QuickSort

• A widely-used efficient sorting algorithm

• Easy to understand! (divide-and-conquer…)

• Moderately hard to implement correctly. (partition…)

• Harder to analyze. (randomization…)

• Challenging to optimize. (theory and practice…)

智能软件与⼯程学院
School of Intelligent Software and Engineering

The sorting algorithmsn lg n
• QuickSort, MergeSort and HeapSort are all with , which is better?

‣ HeapSort is non-recursive, minimal auxiliary storage requirement (good for
embedded system), but with poor locality of reference, the access of elements is not
linear, resulting many caches being missed! It is the slowest among three algorithms

‣ In most (not all) tests, QuickSort turns out to be faster than MergeSort. This is
because although QuickSort performs 39% more comparisons than MergeSort,
but much less movement (copies) of array elements.

‣ MergeSort is a stable sorting, and can take advantage of partially pre-sorted input.
Further, MergeSort is more efficient at handling slow-to-access sequential media.

O(n lg n)

智能软件与⼯程学院
School of Intelligent Software and Engineering

External sorting

智能软件与⼯程学院
School of Intelligent Software and Engineering

*External Sorting

• External sorting is required when the data being sorted do not fit into the
main memory of a computing device and instead they must reside in the
slower external memory, usually a disk drive.

• Since I/O is rather expensive (at the order of 1-10 milliseconds), the overall
execution cost may be far dominated by the I/O, the target of algorithm
design is to reduce I/Os.

• One challenge to previous internal sorting algorithms is that how to merge
big files with small memory!

智能软件与⼯程学院
School of Intelligent Software and Engineering

External merge problem

• Input: 2 sorted lists (with M and N pages)

• Output: 1 merged sorted list (with M+N pages)

• Can we efficiently (in terms of I/O) merge the two lists using a buffer of
size at least 3?

‣ Yes, and by using only 2(M+N) I/Os !

智能软件与⼯程学院
School of Intelligent Software and Engineering

Key (Simple) Idea
• To find an element that is no larger than all elements in two lists, one only

needs to compare minimum elements from each list

If:

Then:

A1 ≤ A2 ≤ . . . ≤ An

B1 ≤ B2 ≤ . . . ≤ Bm

min(A1, B1) ≤ Ai, for 1 ≤ i ≤ n

min(A1, B1) ≤ Bj, for 1 ≤ j ≤ m

• Each time put the current minimum elements back to disk

智能软件与⼯程学院
School of Intelligent Software and Engineering

External merge algorithm

List 1

List 2

1, 5 8, 13 18, 20

3, 19 21, 22 24, 25

Merged

List

disk memory

Read

Write

One page

智能软件与⼯程学院
School of Intelligent Software and Engineering

External merge algorithm

List 1

List 2

1, 58, 13 18, 20

3, 1921, 22 24, 25

Merged

List

disk memory

Read

Write

Read 1 page from each lis

智能软件与⼯程学院
School of Intelligent Software and Engineering

External merge algorithm

List 1

List 2

58, 13 18, 20

1921, 22 24, 25

Merged

List

disk memory

Read

Write

merge from the 2 pages
until a new page is filled

1,3

智能软件与⼯程学院
School of Intelligent Software and Engineering

External merge algorithm

List 1

List 2

58, 13 18, 20

1921, 22 24, 25

Merged

List

disk memory

Read

Write

Write this page to disk

1,3

智能软件与⼯程学院
School of Intelligent Software and Engineering

External merge algorithm

List 1

List 2

5

8, 13 18, 20

1921, 22 24, 25

Merged

List

disk memory

Read

Write

keep merging until one
frame becomes empty

1,3

智能软件与⼯程学院
School of Intelligent Software and Engineering

External merge algorithm

List 1

List 2

5

8, 1318, 20

1921, 22 24, 25

Merged

List

disk memory

Read

Write

Since 5 < 19, we know we
should read from the first list

1,3

智能软件与⼯程学院
School of Intelligent Software and Engineering

External merge algorithm

List 1

List 2

5, 8

1318, 20

1921, 22 24, 25

Merged

List

disk memory

Read

Write

Continue merging

1,3

智能软件与⼯程学院
School of Intelligent Software and Engineering

External merge algorithm

List 1

List 2

5, 8

18, 20

1921, 22 24, 25

Merged

List

disk memory

Read

Write

Write to disk again

1,3

13

智能软件与⼯程学院
School of Intelligent Software and Engineering

External merge algorithm

List 1

List 2

5, 8
13

18, 20

1921, 22 24, 25

Merged

List

disk memory

Read

Write

And so on …

1,3

智能软件与⼯程学院
School of Intelligent Software and Engineering

External merge algorithm

List 1

List 2

5, 8Merged

List

disk memory

Read

Write

Finally

1,3 13, 18

19, 20 21, 22 24, 25

智能软件与⼯程学院
School of Intelligent Software and Engineering

External merge cost

• We can merge 2 lists of arbitrary length with only 3 buffer pages.

‣ I/O cost = 2

• When we have B+1 buffer pages, we can merge B lists with the same I/O
cos

(M + N)

智能软件与⼯程学院
School of Intelligent Software and Engineering

External merge sort

• How to deal with unsorted large files?

‣ 1. Split into chunks small enough to sort in memory (“runs”)

‣ 2. Merge pairs (or groups) of runs using the external merge algorithm

‣ 3. Keep merging the resulting runs (each time = a “pass”) until left with
one sorted file!

智能软件与⼯程学院
School of Intelligent Software and Engineering

2-Way Sort

Unsorted

file 40, 3 8, 34 23, 12

2, 13 5, 17 25, 15

disk memory

Read

Write

智能软件与⼯程学院
School of Intelligent Software and Engineering

2-Way Sort

40, 3 8, 34 23, 12

2, 13 5, 17 25, 15

disk memory

Read

Write

Split into chunks that
fit in memory

智能软件与⼯程学院
School of Intelligent Software and Engineering

2-Way Sort

40, 3

8, 34

23, 12

2, 13 5, 17 25, 15

disk memory

Read

Write

read each chunk in memory

智能软件与⼯程学院
School of Intelligent Software and Engineering

2-Way Sort

3, 8

12, 23

34, 40

2, 13 5, 17 25, 15

disk memory

Read

Write

sort in memory

智能软件与⼯程学院
School of Intelligent Software and Engineering

2-Way Sort

3, 8 12, 23 34, 40

2, 13 5, 17 25, 15

disk memory

Read

Write

write back to disk

each sorted sub-file is called a run

智能软件与⼯程学院
School of Intelligent Software and Engineering

2-Way Sort

3, 8 12, 23 34, 40

2, 5 13, 15 17, 25

disk memory

Read

Write

same for the other chunk

Now we have 2 runs

智能软件与⼯程学院
School of Intelligent Software and Engineering

2-Way Sort

3, 8 12, 23 34, 40

2, 5 13, 15 17, 25

disk memory

Read

Write

final step: use the external

sort merge algorithm to

merge the 2 runs

智能软件与⼯程学院
School of Intelligent Software and Engineering

Calculating the I/O cost
• In our example there are 3 buffer pages, and 6 pages

• Pass 0: creating the runs

‣ 1 read + 1 write for every page

‣ total cost = 6 ∗ (1 + 1) = 12 I/Os

• Pass 1: external merge sort

‣ total cost = 2 ∗ (3 + 3) = 12 I/Os

• So 24 I/Os in total

智能软件与⼯程学院
School of Intelligent Software and Engineering

I/O Cost: Simplified Version
• Assume for now that we initially create N runs, each run consisting of a

single page

pass 0: N runs, each 1 page
pass 1: merge into N/2 runs, each two pages
pass 2: merge into N/4 runs, each with 4 pages

• We need passes to sort the whole file, each pass needs 2𝑁 I/Os

• Total I/O cost =

⌈log2 N⌉ + 1

2N(⌈log2 N⌉ + 1)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Can we do better?

• The 2-way merge algorithm only uses 3 buffer pages

• What if we have more available memory?

‣ Use as much of the available memory as possible in every pass

‣ Reducing the number of passes reduces I/O

智能软件与⼯程学院
School of Intelligent Software and Engineering

External sort: I/O cost

• Suppose we have 𝐵 ≥ 3 buffer pages available

1. Increase length of initial runs. Sort B+1 at a time!

‣ At the beginning, we can split the N pages into runs of
length B and sort these in memory

‣ IO cost:

2N(⌈log2 N⌉ + 1) 2N(⌈log2
N
B

⌉ + 1)
Starting with runs

of length 1
Starting with runs

of length B

智能软件与⼯程学院
School of Intelligent Software and Engineering

External sort: I/O cost

• Suppose we have 𝐵 ≥ 3 buffer pages available

2. Perform a (B-1)—way merge.

‣ On each pass, we can merge groups of (B-1) runs at a time,
instead of merging pairs of runs!

‣ IO cost:

2N(⌈log2 N⌉ + 1) 2N(⌈log2
N
B

⌉ + 1)
Starting with runs

of length 1
Starting with runs

of length B

2N(⌈logB−1
N
B

⌉ + 1)

Performing B-1—way merge

智能软件与⼯程学院
School of Intelligent Software and Engineering

Further reading
• [CLRS] Ch.7, Appendix C on probability theory

• [Weiss] Ch. 7 (7.4, 7.12)

• [Deng] Ch.12 (12.3)

• [TAPCP] Ch.5 (5.2.1 in vol. 3)

