

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne. Thanks for their supports!

选择 Selection

钮鑫涛 Nanjing University 2023 Fall

Order Statistics and Selection

- Given a set of *n* items, the *i*th orderset
 smallest element of it.
 - Minimum, maximum, median, ...
- The Selection Problem: given a set *i*, find the *i*th order statistic of *A*.

• Given a set of *n* items, the *i*th order statistic (顺序统计量) of it is the *i*th

• The Selection Problem: given a set A of n distinct numbers and an integer

Find Min/Max

- FindMin(A): min := A[1]**for** *i* := 2 **to** *A*.*length* min := A[i]return min
- So easy, sequential scan and keep *min/max* till now... • Make n - 1 comparisons, but is this the best we can do?
- Yes! Otherwise at least two elements could be the minimum.
 - Initially each element could be the minimum.
 - An adversary answers queries like "compare x with y".
 - Each comparison eliminates at most one element.

What if we want min and max?

- Go through the list twice, one for *min* and another for *max*.
- Can we do better? Surprisingly, yes!
 - Group items into pairs. (The first item becomes a "pair" if n is odd.)
 - For each of $\lfloor n/2 \rfloor$ pairs, find "local" *min* and *max*.
 - Among [n/2] "local" *min*, find global *min*; similarly find global *max*.

Total number of comparisons is at most $3 \cdot \lfloor n/2 \rfloor$

|n/2| comparisons

What if we want min and max?

- Is $3 \cdot \lfloor n/2 \rfloor$ the best we can do? Remarkably, yes!
 - An item has + mark if it can be max, and has mark if it can be min.
 - Initially each item has both + and -.
 - An adversary answers queries like "compare x with y".

 - Every other comparison removes at most one mark.
 - In total need to remove 2n 2 marks.

So $\geq 2n - 2 - 2 \cdot \lfloor n/2 \rfloor + \lfloor n/2 \rfloor = 2n - 2 - \lfloor n/2 \rfloor$ comparisons needed, which can be $3 \cdot \lfloor n/2 \rfloor$

• The adversary can find input such that: at most $\lfloor n/2 \rfloor$ comparisons each removes two marks;

General Selection Problem

- Find *i*th smallest element (i.e., *i*th order statistic)?
- Err... Sort them then return the *i*th entry?
- Sure but this takes $\Omega(n \log n)$ time...

RndQuickSort(A):

if A.size > 1

q := RandomPartition(A) RndQuickSort(A[1, ..., (q - 1)])RndQuickSort(A[(q + 1), ..., n]) Can we be faster?

General Selection Problem

- What if i = q?
 - A[q] is what we need.
- What if i < q?

Notice A[1...(q-1)] contains the smallest q - 1 elements in A.

- Find i^{th} order statistic in A[1...(q 1)].
- What if i > q?

Find $(i - q)^{\text{th}}$ order statistic in A[(q + 1)]

if A.size > 1q := RandomPartition(A)*RndQuickSort*(*A*[1, ... (*q* - 1)]) RndQuickSort(A[(q + 1), ..., n])

RndQuickSort(A):

$$)\ldots n].$$

This is Reduce-and-Conquer!

Randomized Selection

A Reduce-and-Conquer Algorithm

RndSelect(A, i): if A.size = 1**return** *A*[1] else q := RandomPartition(A)if i = qreturn A[q]else if i < q**return** *RndSelect*(*A*[1 ... (*q*-1)], *i*) else

- **Best-case** runtime? Choose the answer as the pivot in the first call (unlikely to happen).
 - $\Theta(n)$
- Worst-case runtime? Partition reduces array size by one each time (unlikely to happen).

•
$$\geq cn + c(n - 1) + \ldots + c(2) = \Theta$$

return $RndSelect(A[(q + 1) ... A.size], i - q) \bullet$ What is the average case?

Average performance of Randomized Selection

- What's unlikely to happen is either get the exactly right pivot or reduces the size just by one. Instead, what's likely to happen is: partition process reduces problem size by a **constant** factor.
- Call a partition good if it reduces problem size to at most 0.8*input_size.
- Let the random variable C_i be the cost since the last good partition to the *i*th good partition.
- At most $\log_{1.25} n$ good partitions can occur.
- $\mathbb{E}[C_i] \leq \Theta(1) \cdot 0.8^{i-1} n$

$$\mathbb{E}[T(n)] \leq \mathbb{E}\left[\sum_{i=1}^{\log_{1.25}n} C_i\right] = \sum_{i=1}^{\log_{1.25}n} \mathbb{E}[C_i] =$$

= O(n)

Why?

RndQuickSort vs RndSelect

RndQuickSort(A):

if A.size > 1

q := RandomPartition(A) RndQuickSort(A[1, ..., (q - 1)]) RndQuickSort(A[(q + 1), ..., n])

RndSelect(A, i):

```
if A.size = 1

return A[1]

else

q := RandomPartition(A)

if i = q

return A[q]

else if i < q

return RndSelect(A[1 ... (q-1)], i)

else
```

return $RndSelect(A[(q + 1) \dots A.size], i - q)$

We are not done with selection...

- Can we guarantee worst-case runtime of O(n)?
- The reason that RndSelect could be slow is that RandomPartition might return an **unbalanced** partition.
- Needs a partition procedure that guarantees to be **balanced**. (without using too much time; O(n) time to be specific).

```
RndSelect(A, i):
if A.size = 1
   return A[1]
else
   q := RandomPartition(A)
   if i = q
      return A[q]
   else if i < q
      return RndSelect(A[1 ... (q-1)], i)
   else
      return RndSelect(A[(q + 1) \dots A.size], i - q)
```


Median of medians

- Divide elements into n/5 groups, each containing 5 elements, call these groups $G_1, G_2, \ldots, G_{n/5}$.
- Find the medians of these n/5 groups, let M be this set of medians.
- Find the median of M, call it m^* .

Finding median of medians

- groups $G_1, G_2, ..., G_{n/5}$.
- Find the medians of these n/5 groups, let M be this set of medians.
- Find the median of M, call it m^* .
 - Idea: Use QuickSelect, recursively.

• Divide elements into n/5 groups, each containing 5 elements, call these

Trivial, O(n) time

Sort each group, then find the medians. Cost is $(n/5) \cdot \Theta(1) = \Theta(n)$.

Finding median of medians

O(n)

QuickSelect(A, i):

if A.size = 1

return *A*[1]

else

 $m := MedianOfMedians(A)_{...}$ q := PartitionWithPivot(A, m)if i = qreturn A[q]else if i < qreturn QuickSelect(A[1...(q-1)], i)else **return** *QuickSelect*(*A*[(*q*+1)...*A.size*, *i* - *q*]) T(0.7n)

MedianOfMedians(A):

if A.size = 1

return *A*[1]

 $\langle G_1, G_2, \dots, G_{n/5} \rangle := CreateGroups(A)$

for i := 1 to n/5

 $Sort(G_i)$

 $M := GetMediansFromSortedGroups(G_1, G_2, \dots, G_{n/5})$

return QuickSelect(M, (n/5)/2)

T(0.2n)

M is $\frac{1}{2}$ of A !

 $T(n) \le T(0.7n) + T(0.2n) + O(n)$

Time complexity

O(n) in total

Time complexity

QuickSelect(A, i):

if A.size = 1

return *A*[1]

else

- m := MedianOfMedians(A)q := PartitionWithPivot(A, m)if i = qreturn A[q]else if i < qreturn QuickSelect(A[1...(q-1)], i)else return QuickSelect(A[(q+1)...A.size], i - q])
- $T(n) \le T(0.7n) + T(0.2n) + O(n)$

MedianOfMedians(A): if A.size = 1return A[1] $\langle G_1, G_2, \dots, G_{n/5} \rangle := CreateGroups(A)$ for i := 1 to n/5 $Sort(G_i)$ $M := GetMediansFromSortedGroups(G_1, G_2, \dots, G_{n/5})$ return QuickSelect(M, (n/5)/2)

You can verify this by the substitution method. (I.e., assume $T(n) \leq cn$ and then verify.)

Complexity of general selection

- QuickSelect uses O(n) time/comparisons.
- Solving general selection needs at least *n* 1 comparisons.
 - Since finding min/max needs at least n 1 comparisons.
- So the lower and upper bounds match asymptotically.
- But if we care about constants, needs (much) more efforts.

Further reading

• [CLRS] Ch.9

