选择

 Selection钮釦涛
Nanjing University
2023 Fall

The slides are mainly adapted fiom the original ones shared by Chaodong Zheng and Kevin Wayne．Thanks for their supports！

Order Statistics and Selection

－Given a set of n items，the $i^{\text {th }}$ order statistic（顺序统计量）of it is the $i^{\text {th }}$ smallest element of it．
－Minimum，maximum，median，．．．
－The Selection Problem：given a set A of n distinct numbers and an integer i ，find the $i^{\text {th }}$ order statistic of A ．

Find Min／Max

－So easy，sequential scan and keep min／max till now．．．

FindMin（A）：

$\min :=A[1]$
for $i:=2$ to A．length
－Make n－ 1 comparisons，but is this the best we can do？ if $A[i]<\min$ $\min :=A[i]$
return min
－Yes！Otherwise at least two elements could be the minimum．
－Initially each element could be the minimum．
－An adversary answers queries like＂compare x with y＂．
－Each comparison eliminates at most one element．

What if we want min and max？

－Go through the list twice，one for min and another for max．
－Can we do better？Surprisingly，yes！
－Group items into pairs．（The first item becomes a＂pair＂if n is odd．）
－For each of $[n / 2\rceil$ pairs，find＂local＂min and max．
－Among $\lceil n / 2\rceil$＂local＂min，find global min；similarly find global max．

What if we want min and max？

－Is $3 \cdot\lfloor n / 2\rfloor$ the best we can do？Remarkably，yes！
－An item has＋mark if it can be max，and has－mark if it can be min．
－Initially each item has both＋and－．
－An adversary answers queries like＂compare x with y＂．
－The adversary can find input such that：at most $\lfloor n / 2\rfloor$ comparisons each removes two marks；
－Every other comparison removes at most one mark．
－In total need to remove $2 n-2$ marks．

$$
\text { So } \geq 2 n-2-2 *\lfloor n / 2\rfloor+\lfloor n / 2\rfloor=2 n-2-\lfloor n / 2\rfloor \text { comparisons needed, which can be } 3 \cdot\lfloor n / 2\rfloor
$$

General Selection Problem

－Find $i^{\text {th }}$ smallest element（i．e．，$i^{\text {th }}$ order statistic）？
－Err．．．Sort them then return the $i^{\text {th }}$ entry？
－Sure but this takes $\Omega(n \log n)$ time．．．
RndQuickSort（A）：

```
if A.size > 1
    q:= RandomPartition(A)
    RndQuickSort(A[1, ..(q-1)])
    RndQuickSort(A[(q+1), ..,n])
```


General Selection Problem

－What if $i=q$ ？
－$A[q]$ is what we need．

> Notice $A[1 \ldots(q-1)]$ contains the smallest $q-1$ elements in A.
－Find $i^{\text {th }}$ order statistic in $A[1 \ldots(q-1)]$ ．

```
RndQuickSort(A):
if A.size > 1
    q:= RandomPartition(A)
    RndQuickSort(A[1, .. (q-1)])
    RndQuickSort(A[(q+1), ..,n])
```

－What if $i>q$ ？
Find $(i-q)^{\text {th }}$ order statistic in $A[(q+1) \ldots n]$ ．

Randomized Selection

A Reduce－and－Conquer Algorithm

－Best－case runtime？Choose the answer as
RndSelect（A，i）： the pivot in the first call（unlikely to happen）．
A．size $=1$

$$
\text { return } A[1]
$$

－$\Theta(n)$
else

```
q:= RandomPartition(A)
if i=q
        return }A[q
else if i<q
    return RndSelect(A[1 ...(q-1)],i)
```

 else
 return RndSelect \((A[(q+1) \ldots A . \operatorname{size}], i-q) \bullet\) What is the average case?

Average performance of Randomized Selection

－What＇s unlikely to happen is either get the exactly right pivot or reduces the size just by one．Instead，what＇s likely to happen is：partition process reduces problem size by a constant factor．
－Call a partition good if it reduces problem size to at most 0.8^{*} input＿size．
－Let the random variable C_{i} be the cost since the last good partition to the $i^{\text {th }}$ good partition．
find some order statistic in n items．
find some order statistic in
$0.8 n$ items．
find some order statistic in
$0.8 n-1$ items．
－At most $\log _{1.25} n$ good partitions can occur．
－ $\mathbb{E}\left[C_{i}\right] \leq \Theta(1) \cdot 0.8^{i-1} n \quad$ Why？
－ $\mathbb{E}[T(n)] \leq \mathbb{E}\left[\sum_{i=1}^{\log _{1.25} n} C_{i}\right]=\sum_{i=1}^{\log _{1.25} n} \mathbb{E}\left[C_{i}\right]=O(n)$

RndQuickSort vs RndSelect

RndQuickSort（A）：
if A．size＞ 1
$q:=$ RandomPartition（A）
RndQuickSort（A［1，．．（q－1）］）
RndQuickSort（A［（q＋1），$\ldots, n])$

RndSelect（A，i）：

```
if A.size = 1
    return A[1]
else
    q:= RandomPartition(A)
    if i=q
        return A[q]
    else if i<q
        return RndSelect(A[1 \ldots(q-1)],i)
    else
        return RndSelect(A[(q+1) ...A.size],i-q)
```


We are not done with selection．．．

－Can we guarantee worst－case runtime of $O(n)$ ？
－The reason that RndSelect could be slow is that RandomPartition might return an unbalanced partition．
－Needs a partition procedure that guarantees to be balanced．（without using too much time；$O(n)$ time to be specific）．

RndSelect（A，i）：

if A．size $=1$ return $A[1]$
else
$q:=$ RandomPartition (A)
if $i=q$
return $A[q]$
else if $i<q$
return RndSelect（A［1 ．．．$(q-1)], i)$ else
return $\operatorname{RndSelect}(A[(q+1) \ldots$ A．size $], i-q)$

Median of medians

－Divide elements into $n / 5$ groups，each containing 5 elements，call these groups $G_{1}, G_{2}, \ldots G_{n / 5}$ ．
－Find the medians of these $n / 5$ groups，let M be this set of medians．
－Find the median of M ，call it m^{*} ．

Finding median of medians

－Divide elements into $n / 5$ groups，each containing 5 elements，call these groups $G_{1}, G_{2}, \ldots G_{n / 5}$ ．

Trivial，$O(n)$ time
－Find the medians of these $n / 5$ groups，let M be this set of medians．
－Find the median of M ，call it m^{*} ．
－Idea：Use QuickSelect，recursively．

Finding median of medians

QuickSelect（A，i）：

```
if A.size = 1
    return A[1]
else _........................O(n)
        m:= MedianOfMedians(A)
        q:= PartitionWithPivot(A,m)
        if }i=
        return A[q]
        else if }i<
        return QuickSelect(A[1...(q-1)], i)
        else
        return QuickSelect(A[(q+1)...A.size, i-q])
```

MedianOfMedians(A):
if A.size $=1$
$O(n)$
return $A[1]$
$<G_{1}, G_{2}, \ldots G_{n / 5}>:=$ CreateGroups (A)
for $i:=1$ to $n / 5$
$\operatorname{Sort}\left(G_{i}\right)$
$M:=$ GetMediansFromSortedGroups $\left(G_{1}, G_{2}, \ldots G_{n / 5}\right)$
return QuickSelect(M, (n/5)/2)
$T(0.2 n)$
M is $\frac{1}{5}$ of A !
$T(0.7 n)$

$$
T(n) \leq T(0.7 n)+T(0.2 n)+O(n)
$$

Time complexity

Time complexity

QuickSelect（A，i）：

```
if A.size = 1
    return A[1]
else
        m:= MedianOfMedians(A)
        q := PartitionWithPivot(A,m)
        if i=q
        return }A[q
    else if }i<
        return QuickSelect(A[1...(q-1)], i)
    else
        return QuickSelect(A[(q+1)...A.size],i-q])
```


MedianOfMedians（A）：

```
if A.size =1
        return A[1]
<G, G},\mp@subsup{G}{2}{},\ldots\mp@subsup{G}{n/5}{}>:=C\mathrm{ CreateGroups(A)
for i:= 1 to n/5
        Sort(G
M := GetMediansFromSortedGroups( }\mp@subsup{G}{1}{},\mp@subsup{G}{2}{},\ldots.\mp@subsup{G}{n/5}{}
return QuickSelect(M,(n/5)/2)
```

－$T(n) \leq T(0.7 n)+T(0.2 n)+O(n)$
－$T(n)=O(n)$

You can verify this by the substitution method． （l．e．，assume $T(n) \leq c n$ and then verify．）

Complexity of general selection

－QuickSelect uses $O(n)$ time／comparisons．
－Solving general selection needs at least $n-1$ comparisons．
－Since finding min／max needs at least $n-1$ comparisons．
－So the lower and upper bounds match asymptotically．
－But if we care about constants，needs（much）more efforts．

Further reading

- [CLRS] Ch. 9

