
智能软件与⼯程学院
School of Intelligent Software and Engineering

搜索树 (续)
Search Trees Cont'd

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne.Thanks for their supports!

钮鑫涛
Nanjing University

2023 Fall

智能软件与⼯程学院
School of Intelligent Software and Engineering

Efficient implementation of Ordered Dictionary

Search(S,k) Insert(S,x) Remove(S,x)

BinarySearchTree

Treap

 in worst caseO(h) in worst caseO(h) in worst caseO(h)

 in expectation O(log n) in expectation O(log n) in expectation O(log n)

Can we have a data structure suppor1ng ordered dic1onary
opera1ons in 1me, even in worst-case?O(log n)

智能软件与⼯程学院
School of Intelligent Software and Engineering

“Balanced” BST

• What does it mean to be “balanced”?

Perfectly Balanced

41

20 65

13 32 50 91

9 15 26 38 43 60 88 92

Almost Perfectly Balanced

41

20 65

13 32 50 91

9 15 38 43 60 88

Not Perfectly Balanced

41

20 65

13 32

9 15

An -node BST is “balanced” if it has height .n O(log n)

智能软件与⼯程学院
School of Intelligent Software and Engineering

“Balanced” Binary Search Trees
• AVL tree (Adelson-Velsii & Landis, 1962)

• B-tree (Bayer & McCreight, 1970) — Not binary!

• Red-black tree (Bayer, 1972)

• Splay tree (Sleator & Tarjan, 1985)

• Skip list (Pugh, 1989)

• Treap (Seidel & Aragon, 1996)

• and so on …

智能软件与⼯程学院
School of Intelligent Software and Engineering

Red-Black Tree

智能软件与⼯程学院
School of Intelligent Software and Engineering

Red-Black Tree (RB-Tree)
• A Red-Black Tree (RB-Tree) is a BST in which each node has

a color, and satisfies the following properties:

‣ Every node is either red or black.

‣ The root is black.

‣ Every leaf (NIL) is black.

‣ [no-red-edge] If a node is red, then both its children are
black.

‣ [black-height] For every node, all paths from the node to
its descendant leaves contain same number of black nodes.

13

8 17

1 11 15 25

6 22 27NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL NIL NIL

Leaf is sentinel node to
represent boundary conditions
(can link to the root), and will
be omitted later for simplicity.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Black Height
• Call the number of black nodes on any simple

path from, but not including, a node x down to a
leaf the black-height of the node, denoted by
bh(x).

13

8 17

1 11 15 25

6 22 27NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL NIL NIL

bh = 2

bh = 2

bh = 1 bh = 1

bh = 1

bh = 1

bh = 2

bh = 1

bh = 1

bh = 1

138 17

1 11 15 256 22 27

‣ Due to black-height property, from
the black-height perspective, RB-
Trees are “perfectly balanced”.

‣ Due to no-red-edge property, actual
height of a RB-Tree does not deviate a
lot from its black-height.

RB-Trees are well balanced!

智能软件与⼯程学院
School of Intelligent Software and Engineering

Height of RB-Trees

• Claim: In a RB-Tree, the subtree rooted at x contains at least
internal nodes.

• Proof (via induction on height of x)

‣ [Basis] If x is a leaf, and the claim holds.

‣ [Hypothesis] The claim holds for all nodes with height at most .

2bh(x) − 1

bh(x) = 0

h − 1

智能软件与⼯程学院
School of Intelligent Software and Engineering

WHY?

Height of RB-Trees
• Claim: In a RB-Tree, the subtree rooted at x contains at least

internal nodes.

‣ [Inductive Step] Consider a node with height . It must have
two children. So the number of internal nodes rooted at is:

2bh(x) − 1

x h ≥ 1
x

≥ 1 + (2bh(x.left) − 1) + (2bh(x.right) − 1)

≥ 1 + (2bh(x)−1 − 1) + (2bh(x)−1 − 1)

= 2bh(x) − 1

智能软件与⼯程学院
School of Intelligent Software and Engineering

Height of RB-Trees
• Claim: In a RB-Tree, the subtree rooted at x contains at least

internal nodes.

• Due to no-red-edge:

‣ , implying that .

2bh(x) − 1

h = height(root) ≤ 2 ⋅ bh(root)

n ≥ 2bh(root) − 1 ≥ 2h
2 − 1 h ≤ 2 ⋅ lg(n + 1)

Theorem The height of an -node RB-Tree is n O(log n)

Therefore, RB-Trees support Search, Min, Max, Predecessor, Successor
operations in worst-case time! But, what about Insert and Remove?O(log n)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Maintain black-height, fix no-red-edge if necessary.
Insert node into an RB-Tree

• Step 1: Color z as red and insert as if the RB-tree were a BST.

• Step 2: Fix any violated properties.

Example: Insert element with key 2

11

3 14

1 7 15

2 5 8

RB-Tree Properties

Each node is red or black

Root is black

Leaves are black

No-red-edge property

Black-height property

‣ No fix is needed if z has a black parent after insertion.

z

Few red
nodes

智能软件与⼯程学院
School of Intelligent Software and Engineering

Insert node into an RB-Tree
• Step 2: Fix any violated properties.

RB-Tree Properties

Each node is red or black

Root is black

Leaves are black

No-red-edge property

Black-height property

‣ Case 0: z becomes the root of the RB-Tree.

‣ Fix: simply recolor z to be black.

A

α β

z A

α β

z

Note: with the execution of algorithm, we change our focus of the node:
At the beginning, it is the node to be inserted. Later, it is the node that needs to
be changed to fix some property ! We refer to the currently focused node as z

(easy fix)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Insert node into an RB-Tree
• Step 2: Fix any violated properties.

Example: Insert element with key 4

11

3 14

1 7 15

4

5 8

‣ Case 1: z’s parent is red (so z has black grandparent), and has red uncle y.

z
y

RB-Tree Properties

Each node is red or black

Root is black

Leaves are black

No-red-edge property (push up!)

Black-height property (Maintain)

Too many
red nodes!

智能软件与⼯程学院
School of Intelligent Software and Engineering

Insert node into an RB-Tree
• Case 1: z’s parent is red (so z has black grandparent), and has red uncle y.

‣ Fix: recolor z’s parent and uncle to black, recolor z’s grandparent to red

C

D

B

A

α

β γ

δ ϵ

y

BST and Black-height maintained.

z

C
D

B

A

α

β γ

δ ϵ

y
new z

C

DB

A

α β

γ δ ϵ

y

z

C
DB

A

α β

γ δ ϵ

y

z

new z

Black-height property
satisfied for all nodes
in subtree rooted at .

Black-height
unchanged for
C.parent (if it exists).

C

Too many
red nodes!

Increase the
black colors!

智能软件与⼯程学院
School of Intelligent Software and Engineering

Insert node into an RB-Tree

Example: Insert element with key 4

11

3 14

1 7 15

4

5 8

new z

11

3 14

1 7 15

4

5 8

z
y Effect: black-height property

maintained, and we “push-up”
violation of no-red-edge property.

• Step 2: Fix any violated properties.

‣ Case 1: z’s parent is red (so z has black grandparent), and has red uncle y.Too many
red nodes!

Increase the
black colors!

智能软件与⼯程学院
School of Intelligent Software and Engineering

Insert node into an RB-Tree
• Step 2: Fix any violated properties.

Example: Insert element with key 4

‣ Case 2: z’s parent is red, has black uncle y
- (a): z is right child of its parent.

RB-Tree Properties

Each node is red or black

Root is black

Leaves are black

No-red-edge property (fix)

Black-height property (Maintain)

11

3 14

1 7 15

4

5 8

y

z

a modest
number of
red nodes

智能软件与⼯程学院
School of Intelligent Software and Engineering

Case 2(b)

Insert node into an RB-Tree
• Case 2(a): z’s parent is red, has black uncle y, and z is right child of its parent.

‣ Fix: “left-rotate” at z’s parent, and then turn to the case 2 (b) case!

C

B

A

α

β γ

δ y
z

A B C

C

B

A

α β γ δ

z

C

B

A

α β

γ

δ y

z C

B

A

α β γ δ

z

A B C

a modest number of
red nodes rotate to proper location!

智能软件与⼯程学院
School of Intelligent Software and Engineering

Insert node into an RB-Tree

Example: Insert element with key 4

11

3

14

1

7

15

4

5

8z

y
11

3 14

1 7 15

4

5 8

z

y

 Effect: black-height property maintained,
transform to Case 2(b).

left rotate

• Step 2: Fix any violated properties.

‣ Case 2: z’s parent is red, has black uncle y
- (a): z is right child of its parent.

a modest
number of
red nodes

智能软件与⼯程学院
School of Intelligent Software and Engineering

Insert node into an RB-Tree

Example: Insert element with key 4

11

3

14

1

7

15

4

5

8z

RB-Tree Properties

Each node is red or black

Root is black

Leaves are black

No-red-edge property (fix)

Black-height property (Maintain)

y

• Step 2: Fix any violated properties.

‣ Case 2: z’s parent is red, has black uncle y
- (b): z is left child of its parent.

a modest
number of
red nodes

智能软件与⼯程学院
School of Intelligent Software and Engineering

Insert node into an RB-Tree
• Case 2(b): z’s parent is red, has black uncle y, and z is left child of its parent.

‣ Fix: “right-rotate” at z’s grandparent, recolor z’s parent and grandparent.

C

B

A

α β

γ

δ y

z
C

B

A

α β γ δ

z C

B

A

α β γ δ

z

a modest
number of
red nodes

rotate! recolor!

智能软件与⼯程学院
School of Intelligent Software and Engineering

Insert node into an RB-Tree

Example: Insert element with key 4

7

1

113

14

4

5 8

15

We are done

11

3

14

1

7

15

4

5

8z

y
7

1

113

14

4

5 8

15

• Step 2: Fix any violated properties.

‣ Case 2: z’s parent is red, has black uncle y
- (b): z is left child of its parent.

a modest
number of
red nodes

right rotate and recolor

智能软件与⼯程学院
School of Intelligent Software and Engineering

Insert node into an RB-Tree
Step 1: Color z as red and insert as if the RB-tree were a BST.

Step 2: Fix any violated properties.

‣ No-Fix-Needed: z has a black parent.

‣ Case 0: z becomes the root. - Fix: recolor z to be black.

‣ Case 1: z’s parent is red, has red uncle.

- Fix: recoloring to push-up “no-red-edge” violation.

‣ Case 2: z’s parent is red, has black uncle.

‣ (a) z is right child of its parent.

- Fix: left-rotate z’s parent to transform to Case 2(b).

‣ (b) z is left child of its parent.

- Fix: right-rotate z’s grandparent and recolor nodes, all properties satisfied.

11
3 14

1 7 15

4

5 8

z

11
3 14

1 7 15

4

5 8

z

11
7 14

3 8 15

4

5
1

z

7
3 11

1 5 14

4 15

8

Case 1

Case 2(a)

Case 2(b)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Insert node into an RB-Tree

Time Complexity of Insert
operation : O(log n)

Step 1: Color z as red and insert as if the RB-tree were a BST.

Step 2: Fix any violated properties.

‣ No-Fix-Needed: z has a black parent.

‣ Case 0: z becomes the root. - Fix: recolor z to be black.

‣ Case 1: z’s parent is red, has red uncle.

- Fix: recoloring to push-up “no-red-edge” violation.

‣ Case 2: z’s parent is red, has black uncle.

‣ (a) z is right child of its parent.

- Fix: left-rotate z’s parent to transform to Case 2(b).

‣ (b) z is left child of its parent.

- Fix: right-rotate z’s grandparent and recolor nodes, all properties satisfied.

O(h) = O(log n)

O(1)

O(1)

appears at most times O(h) →O(log n)

O(1)

Rotation are limited and do not
change the tree shape a lot!

智能软件与⼯程学院
School of Intelligent Software and Engineering

*Remove node from an RB-Tree
• First execute the normal remove operation for BST

q

A

z

…, z, q, A, …

q

A

…, q, A, …

q

Cz

…, z, A, y, B, q, C, …

y

BA

…, A, y, B, q, C, …

q

C
y

BA

q

Ez

y

D

l

BA

…, A, l, B, z, y, D, q, E …

q

Ey

Dl

BA
…, A, l, B, y, D, q, E …

q

Ez

r

D
C

l

BA

…, A, l, B, z, y, C’, C\C’, r, D, q, E …
C′

y

x

q

Ey

r

D
C

l

BA

…, A, l, B, y, C’, C\C’, r, D, q, E …
C′

x

智能软件与⼯程学院
School of Intelligent Software and Engineering

Remove node from an RB-Tree
• To be convenient

q
Cz

…, z, y, C’, C\C’, r, B, q, C, …

r

B

…, y, C’, C\C’, r, B, q, C, …

q

C
r

B
C

C′

x

C

C′

y

x

y

q

Cz

…, z, y, B, q, C, …

y

B

…, y, B, q, C, …

q

C
y

B

智能软件与⼯程学院
School of Intelligent Software and Engineering

Remove node from an RB-Tree
• If z’s right child is an external node (leaf) , then z is

the node to be deleted structurally: subtree rooted
at z.left will replace z.

• If z’s right child is an internal node, then let y be the
min node in subtree rooted at z.right. Overwrite z’s
info with y’s info, and y is the node to be deleted
structurally: subtree rooted at y.right will replace y.

• Either way, only one structural deletion needed!

• Apply the structural deletion, and repair violated
properties.

13

8 17

1 11 15 25

6 22 27NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL NIL NIL

z

z

y

x

x

Call the node to be deleted structurally y,

and let x be the node that will replace y.

y =

智能软件与⼯程学院
School of Intelligent Software and Engineering

Remove node from an RB-Tree
• Step 1: Identify the structural deletion.

• Step 2: Apply the structural deletion. (Maintain BST property.)

• Step 3: Repair violated RB-tree properties. (Maintain BST property.)

‣ If y is a red node: no violations.

‣ If y is a black node and x is a red node: recolor x to black and
done.

‣ If y is a black node and x is a black node:

- y’s contribution to black-height removed, therefore, it
violates black-height property Need to fix!→

13

8 17

1 11 15 25

6 22 27NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL NIL NIL

z

z

y

x

x

y =

Each node is red or black

Root is black
Leaves are black
No-red-edge property
Black-height property

智能软件与⼯程学院
School of Intelligent Software and Engineering

Remove node from an RB-Tree
• Step 1&2: Find & apply structural deletion. (Maintain BST property.)

‣ Let y be the structurally removed node, and x takes its place.

• Step 3: Repair violated RB-tree properties. (Maintain BST property.)

‣ Assume black x is left child of its parent after taking black y’s place.

‣ Focus on fixing black-height property.

• Case 1: x’s sibling w is red.

‣ Fix: rotate and recolor.

‣ Effect: change x’s sibling’s color to black (i.e., transform to other
cases).

B

D

C E

A

α β

γ δ ϵ ζ

 (BB)x w

D

C

E

A

α β γ δ

ϵ ζ (BB)x

B

new w

Trying to get the red
node and turn it black
to increase the height!

智能软件与⼯程学院
School of Intelligent Software and Engineering

Remove node from an RB-Tree

• Step 1&2: Find & apply structural deletion. (Maintain BST property.)

‣ Let y be the structurally removed node, and x takes its place.

• Step 3: Repair violated RB-tree properties. (Maintain BST property.)

‣ Assume x is left child of its parent.

‣ Focus on fixing black-height property.

• Case 2: x’s sibling w is black, and both w’s children are black.

‣ Fix: recolor and push-up extra blackness in x.

‣ Effect: either we are done, or we have push-up x.

B

D

C E

A

α β

γ δ ϵ ζ

 (BB)x w

(R or B)

B

D

C E

A

α β

γ δ ϵ ζ

new (BR or BB)x

Too many
black nodes!

Decrease the node of black node

智能软件与⼯程学院
School of Intelligent Software and Engineering

Remove node from an RB-Tree
• Step 1&2: Find & apply structural deletion. (Maintain BST property.)

‣ Let y be the structurally removed node, and x takes its place.

• Step 3: Repair violated RB-tree properties. (Maintain BST property.)

‣ Assume x is left child of its parent.

‣ Focus on fixing black-height property.

• Case 3: x’s sibling w is black, w’s left is red and w’s right is black.

‣ Fix: rotate and recolor.

‣ Effect: w.right becomes red (i.e., transform to last case).

B

D

C E

A

α β

γ δ ϵ ζ

 (BB)x w

(R or B)

B

D

C

E

A

α β γ

δ
ϵ ζ

new w

(R or B)

Trying to get the red
node and turn it black
to increase the height!

 (BB)x

智能软件与⼯程学院
School of Intelligent Software and Engineering

Remove node from an RB-Tree
• Step 1&2: Find & apply structural deletion. (Maintain BST property.)

‣ Let y be the structurally removed node, and x takes its place.

• Step 3: Repair violated RB-tree properties. (Maintain BST property.)

‣ Assume x is left child of its parent.

‣ Focus on fixing black-height property.

• Case 4: x’s sibling w is black, w.right is red.

‣ Fix: rotate and recolor.

‣ Effect: We are done!

B

D

C E

A

α β

γ δ ϵ ζ

 (BB)x

D

C

E

A

α β γ δ

ϵ ζ
 x

B

(R or B)

w

智能软件与⼯程学院
School of Intelligent Software and Engineering

Remove node from an RB-Tree
• Step 1&2: Find & apply structural deletion. (Maintain BST property.)

‣ Let y be the structurally removed node, and x takes its place.

• Step 3: Repair violated RB-tree properties. (Maintain BST property.)

‣ Assume black x is left child of its parent after taking black y’s place.

‣ Focus on fixing black-height property.

- Case 1: rotate and recolor; transform to other cases.

- Case 2: recolor; done or push-up violations.

- Case 3: rotate and recolor; transform to Case 4.

- Case 4: rotate and recolor; then done.

O(h) = O(log n)

appears at most times O(h)
O(h) = O(log n)

O(1)

Time Complexity of Remove
operation : O(log n)

O(1)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Efficient implementation of Ordered Dictionary

Search(S,k) Insert(S,x) Remove(S,x)

BinarySearchTree

Treap

RB-Tree

 in worst caseO(h) in worst caseO(h) in worst caseO(h)

 in expectation O(log n) in expectation O(log n) in expectation O(log n)

 in worst caseO(log n) in worst caseO(log n) in worst caseO(log n)

Efficiency versus Simplicity

智能软件与⼯程学院
School of Intelligent Software and Engineering

Skip List

智能软件与⼯程学院
School of Intelligent Software and Engineering

Skip List

• Why sorted linked-list is slow?

‣ To reach an element, you have to move from current position to
destination one element at a time.

Search(S,k) Insert(S,x) Remove(S,x)

SortedLinkedList O(n) O(n) O(1)

Can we get faster?

智能软件与⼯程学院
School of Intelligent Software and Engineering

Skip List

• Having express stops, we can quickly jump from one express stop to the next express stop.

• Then (if necessary) select the proper express stop to change to the normal stop, and finally jump to the destination.

苏州新区 鸿福路 兴贤桥北 ⻁疁路 建通桥 华通花园南 通安站 树⼭站 ⽩⻰桥 恩顾⼭ 漓江路 航船浜 ⻰塘港路 南京⼤学

苏州新区 兴贤桥北 建通桥 通安站 ⽩⻰桥 漓江路 ⻰塘港路

from: 苏州新区 to: 南京⼤学

express

local

智能软件与⼯程学院
School of Intelligent Software and Engineering

Skip List
• Getting back to the ordered linked list, we can represented it as two linked

lists — one for express stops and one for all stops.

22 ∞4 6 11

1 5 8 15

 Example: search for 8. Search cost is reduced by half!

What about multiple layers of “expressway”?

−∞

Forward and the next is smaller than target

Forward and the next is larger than target

backward and jump to the next level

智能软件与⼯程学院
School of Intelligent Software and Engineering

Skip List
• Build multiple “expressways”: Reduce number of elements by half at each level.

‣ This is just binary search: reduce search range by half at each level.

• This is very efficient: spend time at each level, and levels in total.O(1) O(log n)

22 ∞

4
6

11
1 5 8 15

 Example: search for 15.

−∞

Search can be done in time.
Space Complexity

O(log n)
≈ 2n

智能软件与⼯程学院
School of Intelligent Software and Engineering

Skip List

• Efficient Search with limited space overhead. But how to implement Insert and Remove?

Search(S,k) Insert(S,x) Remove(S,x)

SortedLinkedList

Static-SkipList ? ?

O(n) O(n) O(1)

O(log n)

22 ∞

4
6

11
1 5 8 15

−∞

智能软件与⼯程学院
School of Intelligent Software and Engineering

The real Skip List

22 ∞

4 11
1 5 8 15

−∞

Insert(L,x):
level := 1, done := false
while !done

 x := y
 Insert x into level k list.
 Flip a fair coin:

With probability 1/2 done := true
With probability 1/2 k := k + 1

→
→

Lvl:

4

3

2

1

 Example: Insert 7.

智能软件与⼯程学院
School of Intelligent Software and Engineering

The real Skip List

22 ∞

4 11
1 5 8 15

−∞

Insert(L,x):
level := 1, done := false
while !done

 x := y
 Insert x into level k list.
 Flip a fair coin:

With probability 1/2 done := true
With probability 1/2 k := k + 1

→
→

Lvl:

4

3

2

1

 Example: Insert 7.

7

智能软件与⼯程学院
School of Intelligent Software and Engineering

The real Skip List

22 ∞

4 11
1 5 8 15

−∞

Insert(L,x):
level := 1, done := false
while !done

 x := y
 Insert x into level k list.
 Flip a fair coin:

With probability 1/2 done := true
With probability 1/2 k := k + 1

→
→

Lvl:

4

3

2

1

 Example: Insert 7.

7

智能软件与⼯程学院
School of Intelligent Software and Engineering

The real Skip List

22 ∞

4 11
1 5 8 15

−∞

Insert(L,x):
level := 1, done := false
while !done

 x := y
 Insert x into level k list.
 Flip a fair coin:

With probability 1/2 done := true
With probability 1/2 k := k + 1

→
→

Lvl:

4

3

2

1

 Example: Insert 7.

7

智能软件与⼯程学院
School of Intelligent Software and Engineering

The real Skip List

22 ∞

4 11
1 5 8 15

−∞

Insert(L,x):
level := 1, done := false
while !done

 x := y
 Insert x into level k list.
 Flip a fair coin:

With probability 1/2 done := true
With probability 1/2 k := k + 1

→
→

Lvl:

4

3

2

1

 Example: Insert 7.

7

Time complexity of Insert

‣ in expectation.

‣ with high probability.

i.e., with prob

O(1)

O(log n)
≥ 1 −

1
nΘ(1)

Max level of -element SkipList

‣ with high probability.

n

O(log n)

But search time is affected
with such Insert!

(“Every level reduce
search range by half”)

智能软件与⼯程学院
School of Intelligent Software and Engineering

The real Skip List

• Consider the reverse of the path you took to find .

• Note that you always move up if you can. (because you always enter a node
from its topmost level when doing a find)

k

0.5

• What’s the probability that you can move up at a give step of the reverse walk?

k

智能软件与⼯程学院
School of Intelligent Software and Engineering

The real Skip List
• Steps to go up levels =

• Make one step, then make either

‣ steps if this step went up

‣ steps if this step went left

• Expected number of steps to walk up levels is:

‣

j C(j)

C(j − 1) [Pr = 0.5]

C(j) [Pr = 0.5]

j

C(j) = 1 + 0.5 ⋅ C(j − 1) + 0.5 ⋅ C(j)

智能软件与⼯程学院
School of Intelligent Software and Engineering

The real Skip List

• Then we have

‣

• Expanding above getting

• Since there are levels expected, we have steps expected.

C(j) = 2 + C(j − 1)

C(j) C(j) = 2j

O(lg n) O(lg n)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Efficient implementation of Ordered Dictionary

Search(S,k) Insert(S,x) Remove(S,x)

BinarySearchTree

Treap

RB-Tree

SkipList

 in worst caseO(h) in worst caseO(h) in worst caseO(h)

 in expectation O(log n) in expectation O(log n) in expectation O(log n)

 in worst caseO(log n) in worst caseO(log n) in worst caseO(log n)

Efficiency versus Simplicity

 in expectation O(log n) in expectation O(log n) in expectation O(log n)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Further reading
• [CLRS] Ch.13

• [Morin] Ch.4

