

搜索树(续) Search Trees Cont'd

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne. Thanks for their supports!

钮鑫涛 Nanjing University 2023 Fall

Efficient implementation of Ordered Dictionary

	Search(S,k)	<pre>Insert(S,x)</pre>	Remove(S,x)
BinarySearchTree	O(h) in worst case	O(h) in worst case	O(h) in worst case
Treap	$O(\log n)$ in expectation	$O(\log n)$ in expectation	$O(\log n)$ in expectation

Can we have a data structure supporting ordered dictionary operations in $O(\log n)$ time, even in worst-case?

"Balanced" BST

What does it mean to be "balanced"?

An *n*-node BST is "balanced" if it has height $O(\log n)$.

Almost Perfectly Balanced Not Perfectly Balanced

"Balanced" Binary Search Trees

- AVL tree (Adelson-Velsii & Landis, 1962)
- B-tree (Bayer & McCreight, 1970) Not binary!
- **Red-black tree** (Bayer, 1972)
- Splay tree (Sleator & Tarjan, 1985)
- Skip list (Pugh, 1989)
- Treap (Seidel & Aragon, 1996)
- and so on ...

Red-Black Tree

Service and the

- A **Red-Black** Tree (RB-Tree) is a BST in which each node has a color, and satisfies the following properties:
 - Every node is either red or black.
 - The root is black.
 - Every leaf (NIL) is black.
 - [no-red-edge] If a node is red, then both its children are black.
 - [black-height] For every node, all paths from the node to its descendant leaves contain same number of black nodes.

Red-Black Tree (RB-Tree)

Black Height

- Call the number of black nodes on any simple path from, but not including, a node x down to a leaf the **black-height** of the node, denoted by bh(x).
 - Due to black-height property, from the black-height perspective, RB-Trees are "perfectly balanced".
 - Due to <u>no-red-edge property</u>, actual height of a RB-Tree does not deviate a lot from its black-height.

RB-Trees are well balanced!

Height of RB-Trees

- internal nodes.
- **Proof** (via induction on height of x)
 - **[Basis]** If x is a leaf, bh(x) = 0 and the claim holds.

• Claim: In a RB-Tree, the subtree rooted at x contains at least $2^{bh(x)} - 1$

• [Hypothesis] The claim holds for all nodes with height at most h - 1.

Height of RB-Trees

- **Claim**: In a RB-Tree, the subtree rooted at *x* contains at least $2^{bh(x)} 1$ internal nodes.
- [Inductive Step] Consider a node x with height $h \ge 1$. It must have two children. So the number of internal nodes rooted at x is: WHY?

$$\geq 1 + (2^{bh(x.left)} - 1) + (2^{bh(x.left)}) + ($$

 $\geq 1 + (2^{bh(x)-1} - 1) + (2^{bh(x)-1} - 1)$

 $= 2^{bh(x)} - 1$

bh(x.right) - 1)

Height of RB-Trees

- Claim: In a RB-Tree, the subtree rooted at x contains at least $2^{bh(x)} 1$ internal nodes.
- Due to **no-red-edge**: $h = height(root) \le 2 \cdot bh(root)$

•
$$n \ge 2^{bh(root)} - 1 \ge 2^{\frac{h}{2}} - 1$$
, in

Theorem The height of an *n*-node RB-Tree is $O(\log n)$

Therefore, RB-Trees support Search, Min, Max, Predecessor, Successor operations in worst-case $O(\log n)$ time! But, what about Insert and Remove?

- nplying that $h \leq 2 \cdot \lg(n+1)$.

Insert node into an RB-Tree Maintain black-height, fix no-red-edge if necessary.

- Step 1: Color z as red and insert as if the RB-tree were a BST.
- Step 2: Fix any violated properties. Few red • No fix is needed if z has a **black** parent after insertion. nodes

Example: Insert element with key 2

No-red-edge property

- Step 2: Fix any violated properties.
 - Case 0: z becomes the root of the RB-Tree.
 - **Fix**: simply recolor z to be black.

Note: with the execution of algorithm, we change our **focus** of the node: At the beginning, it is the node to be inserted. Later, it is the node that needs to be changed to fix some property ! We refer to the currently focused node as z

RB-Tree Properties

Each node is red or black

Root is black (easy fix)

Leaves are black

No-red-edge property

Black-height property

Too many

red nodes!

Insert node into an RB-Tree

- Step 2: Fix any violated properties.

• **Case 1**: z's parent is **red** (so z has **black** grandparent), and has **red** uncle y.

RB-Tree Properties

Each node is red or black

Root is black

Leaves are black

No-red-edge property (push up!)

Black-height property (Maintain)

- **Case 1**: z's parent is red (so z has black grandparent), and has red uncle y.
 - Fix: recolor z's parent and uncle to **black**, recolor z's grandparent to red

Too many

red nodes!

Insert node into an RB-Tree

- Step 2: Fix any violated properties.

• **Case 1**: z's parent is **red** (so z has **black** grandparent), and has **red** uncle y.

Effect: black-height property maintained, and we "push-up" violation of no-red-edge property.

- Step 2: Fix any violated properties.
- a modest number of red nodes
- Case 2: z's parent is red, has black uncle y
 - (a): z is right child of its parent.

Example: Insert element with key 4

15

RB-Tree Properties

Each node is red or black

Root is black

Leaves are black

✓ No-red-edge property (fix)

Black-height property (Maintain)

Fix: "left-rotate" at z's parent, and then turn to the case 2 (b) case!

• Case 2(a): z's parent is red, has black uncle y, and z is right child of its parent.

- Step 2: Fix any violated properties.
- a modest number of red nodes
- Case 2: z's parent is red, has black uncle y
 - (a): z is right child of its parent.

- Step 2: Fix any violated properties.
- a modest number of red nodes
- Case 2: z's parent is red, has black uncle y - (b): z is left child of its parent.

15

RB-Tree Properties

Each node is red or black

Root is black

Leaves are black

✓ No-red-edge property (fix)

Black-height property (Maintain)

• Case 2(b): z's parent is red, has black uncle y, and z is left child of its parent.

• Fix: "right-rotate" at z's grandparent, recolor z's parent and grandparent.

- Step 2: Fix any violated properties.
- a modest number of red nodes
- Case 2: z's parent is red, has black uncle y
 - (b): z is left child of its parent.

Step 1: Color z as red and insert as if the RB-tree were a BST.

Step 2: Fix any violated properties.

- No-Fix-Needed: z has a black parent.
- **<u>Case 0</u>**: *z* becomes the root. **Fix:** recolor *z* to be black.
- **<u>Case 1</u>**: *z*'s parent is red, has red uncle.
 - **Fix:** recoloring to push-up "no-red-edge" violation.
- Case 2: z's parent is red, has black uncle.
 - (a) z is right child of its parent.
 - Fix: left-rotate z's parent to transform to Case 2(b).
 - (b) z is left child of its parent.
 - **Fix:** right-rotate z's grandparent and recolor nodes, all properties satisfied.

Step 1: Color z as red and insert as if the RB-tree were a BST. $----O(h) = O(\log n)$

Step 2: Fix any violated properties.

- No-Fix-Needed: z has a black parent.
- Case 0: z becomes the root. Fix: recolor z to be black.
- **Case 1**: *z*'s parent is red, has red uncle.
 - **Fix:** recoloring to push-up "no-red-edge" violation.
- Case 2: z's parent is red, has black uncle.
 - (a) z is right child of its parent.
 - **Fix:** left-rotate z's parent to transform to Case 2(b).
 - (b) z is left child of its parent.
 - **Fix:** right-rotate z's grandparent and recolor nodes, all properties satisfied.

Time Complexity of Insert operation : $O(\log n)$

First execute the normal remove operation for BST

*Remove node from an RB-Tree

• To be convenient

- If z's right child is an external node (leaf), then z is the node to be deleted structurally: subtree rooted at *z*.*left* will replace *z*.
- If z's right child is an internal node, then let y be the min node in subtree rooted at *z.right*. Overwrite *z*'s info with y's info, and y is the node to be deleted **structurally**: subtree rooted at *y*.*right* will replace *y*.
- Either way, only **one** structural deletion needed!
- Apply the structural deletion, and repair violated properties.

Call the node to be deleted structurally \mathcal{V} , and let X be the node that will replace Y.

- Step 1: Identify the structural deletion.
- Step 2: Apply the structural deletion. (Maintain BST property.)
- Step 3: Repair violated RB-tree properties. (Maintain BST property.)
- If y is a red node: no violations.
- If y is a black node and x is a red node: recolor x to black and y = z done.
- If y is a black node and x is a black node:
 - y's contribution to **black-height** removed, therefore, it violates **black-height** property \rightarrow Need to fix!

Each node is red or black
Root is black
Leaves are black
No-red-edge property
Black-height property

- Step 1&2: Find & apply structural deletion. (Maintain BST property.)
 - Let y be the structurally removed node, and x takes its place.
- Step 3: Repair violated RB-tree properties. (Maintain BST property.)
 - Assume <u>black</u> x is left child of its parent <u>after</u> taking <u>black</u> y's place.
 - Focus on fixing black-height property.
- Case 1: *x*'s sibling *w* is **red**.
 - ► Fix: rotate and recolor.
 - Effect: change x's sibling's color to black (i.e., transform to other cases).

 χ (BB) ${\mathcal W}$ α E δ ϵ Trying to get the red node and turn it black to increase the height! 5 χ (BB) Cnew *W* δ α

- Step 1&2: Find & apply structural deletion. (Maintain BST property.)
 - Let y be the structurally removed node, and x takes its place.
- Step 3: Repair violated RB-tree properties. (Maintain BST property.)
 - Assume x is left child of its parent.
 - Focus on fixing black-height property.
- Case 2: x's sibling w is **black**, and both w's children are **black**.
 - Fix: recolor and push-up extra blackness in x.
 - Effect: either we are done, or we have push-up x.

- Step 1&2: Find & apply structural deletion. (Maintain BST property.)
 - Let y be the structurally removed node, and x takes its place.
- Step 3: Repair violated RB-tree properties. (Maintain BST property.)
 - Assume x is left child of its parent.
 - Focus on fixing black-height property.
- Case 3: x's sibling w is **black**, w's left is **red** and w's right is **black**.
 - Fix: rotate and recolor.
 - Effect: w.right becomes red (i.e., transform to last case).

Remove node from an RB-Tree (R or B) χ (BB) ${\mathcal W}$ Step 1&2: Find & apply structural deletion. (Maintain BST property.) • Let y be the structurally removed node, and x takes its place. α Step 3: Repair violated RB-tree properties. (Maintain BST property.) δ γ ϵ

- - Assume x is left child of its parent.
 - Focus on fixing black-height property.
- Case 4: *x*'s sibling *w* is **black**, *w.right* is **red**.
 - Fix: rotate and recolor.
 - Effect: We are done!

 \mathcal{X} Cα

- Step 1&2: Find & apply structural deletion. (Maintain BST property.)
 - Let y be the structurally removed node, and x takes its place.
- Step 3: Repair violated RB-tree properties. (Maintain BST property.)
 - Assume <u>black</u> x is left child of its parent <u>after</u> taking <u>black</u> y's place.
 - Focus on fixing black-height property.
 - Case 1: rotate and recolor; transform to other cases.
 - Case 2: recolor; done or push-up violations.
 - Case 3: rotate and recolor; transform to Case 4.
 - Case 4: rotate and recolor; then done.

 $O(h) = O(\log n)$

Efficient implementation of Ordered Dictionary

	Search(S,k)	Insert(S,x)	Remove(S,x)
BinarySearchTree	O(h) in worst case	O(h) in worst case	O(h) in worst case
Treap	$O(\log n)$ in expectation	$O(\log n)$ in expectation	$O(\log n)$ in expectation
RB-Tree	$O(\log n)$ in worst case	$O(\log n)$ in worst case	$O(\log n)$ in worst case

- Why sorted linked-list is slow?
 - To reach an element, you have to move from current position to destination one element at a time.

Can we get faster?

Skip List

Insert(S,x)	Remove(S,x)
O(n)	<i>O</i> (1)

- Having express stops, we can quickly jump from one express stop to the next express stop.

Skip List

• Then (if necessary) select the proper express stop to change to the normal stop, and finally jump to the destination.

Skip List

• Getting back to the ordered linked list, we can represented it as two linked lists — one for express stops and one for all stops.

What about multiple layers of "expressway"?

- Build multiple "expressways": Reduce number of elements by half at each level.
 - This is just binary search: reduce search range by half at each level.
- This is very efficient: spend O(1) time at each level, and $O(\log n)$ levels in total.

Example: search for 15.

Skip List

Search can be done in $O(\log n)$ time. Space Complexity $\approx 2n$

	Search(S,k)	Insert(S,x)	Remove(S,x)
SortedLinkedList	O(n)	O(n)	<i>O</i> (1)
Static-SkipList	$O(\log n)$?	?

Skip List

Insert(L,x):

level := 1, *done* := *false* while !done

x := y

Insert x into level k list. Flip a fair coin:

Insert(L,x):

level := 1, *done* := *false* while !done

x := y

Insert x into level k list. Flip a fair coin:

Insert(L,x):

level := 1, *done* := *false* while !done

x := y

Insert x into level k list. Flip a fair coin:

Insert(L,x):

level := 1, *done* := *false* while !done

x := y

Insert x into level k list. Flip a fair coin:

With probability $1/2 \rightarrow done := true$ With probability $1/2 \rightarrow k := k + 1$

But search time is affected with such Insert!

("Every level reduce search range by half" Insert(L,x): *level* := 1, *done* := *false* while !done

x := y

Insert x into level k list. Flip a fair coin:

With probability $1/2 \rightarrow k := k + 1$

Time complexity of Insert

- O(1) in expectation.
- $O(\log n)$ with high probability. i.e., with prob $\geq 1 - \frac{1}{n^{\Theta(1)}}$

Max level of *n*-element SkipList

 $O(\log n)$ with high probability.

- Consider the **reverse** of the path you took to find k.
- Note that you always move up if you can. (because you always enter a node from its topmost level when doing a find)
- What's the probability that you can move up at a give step of the reverse walk?

- Steps to go up *j* levels C(j) =
- Make one step, then make either
 - C(i-1) steps if this step went up [Pr = 0.5]
 - C(i) steps if this step went left [Pr = 0.5]
- Expected number of steps to walk up *j* levels is:
 - $C(j) = 1 + 0.5 \cdot C(j-1) + 0.5 \cdot C(j)$

- Then we have
 - C(j) = 2 + C(j 1)
- Expanding C(j) above getting C

$$j(j) = 2j$$

• Since there are $O(\lg n)$ levels expected, we have $O(\lg n)$ steps expected.

Efficient implementation of Ordered Dictionary

	Search(S,k)	Insert(S,x)	Remove(S,x)
BinarySearchTree	O(h) in worst case	O(h) in worst case	O(h) in worst case
Treap	$O(\log n)$ in expectation	$O(\log n)$ in expectation	$O(\log n)$ in expectation
RB-Tree	$O(\log n)$ in worst case	$O(\log n)$ in worst case	$O(\log n)$ in worst case
SkipList	$O(\log n)$ in expectation	$O(\log n)$ in expectation	$O(\log n)$ in expectation

Efficiency versus Simplicity

Further reading

- [CLRS] Ch.13
- [Morin] Ch.4

