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Efficient implementation of Ordered Dictionary

Search (S, k) Insert (S, x) Remove (S, x)

BinarySearchTree O(h) in worst case

O(h) in worst case O(h) in worst case

Treap O(log n) in expectation O(log n) in expectation O(log n) in expectation

Can we have a data structure supporting ordered dictionary

operations in O(log n) time, even in worst-case?




“Balanced” BST

e \What does it mean to be “balanced”?

Perfectly Balanced Almost Perfectly Balanced

Not Perfectly Balanced

41

41

13 32 50

9O |15 )X 26138 443 ] 60 B 88 [ 92 38 A 43| 60 B 88

An n-node BST is “balanced” if it has height O(log n).
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“Balanced” Binary Search Trees

e AVL tree (Adelson-Velsii & Landis, 1962)

e B-tree (Bayer & McCreight, 1970) — Not binary!
 Red-black tree (Bayer, 1972)

e Splay tree (Sleator & Tarjan, 1985)

e SKkip list (Pugh, 1989)

 Treap (Seidel & Aragon, 1996)

e and soon...
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Red-Black Iree
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Red-Black Tree (RB-Tree)

A Red-Black Tree (RB-Tree) is a BST in which each node has
a color, and satisfies the following properties:

> Every node is either red or black.

> The root is black.

> Every leaf (NIL) is black.

© INIL]NILENILINIL] 22 R 27

> [no-red-edge] If a node is red, then both its children are
black.

NIL m

> [black-height] For every node, all paths from the node to | eaf is sentinel node to

Its descendant leaves contain same number of black nodes. represent boundary conditions

(can link to the root), and will
be omitted later for simplicity.



Black Height

* (Call the number of black nodes on any simple = 13

path from, but not including, a node x down to a 8 17
leaf the black-height of the node, denoted by @@ @

bh(x). ) © © O

> Due to black-height property, from f @
the black-height perspective, RB- D WOWOWDW.
Trees are “perfectly balanced”. - =

NIL m NIL I NIL

13

@~

4

> Due to no-red-edge property, actual
height of a RB-Tree does not deviate a
lot from its black-height.

RB-Trees are well balanced!
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Height of RB-Trees

e Claim: In a RB-Tree, the subtree rooted at x contains at least th(x) — 1
iInternal nodes.

* Proof (via induction on height of x)

> [Basis] If x is a leaf, bh(x) = 0 and the claim holds.

» [Hypothesis] The claim holds for all nodes with height at most & — 1.
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Height of RB-Trees

e Claim: In a RB-Tree, the subtree rooted at x contains at least
2bM(X) _ Tinternal nodes.

> [Inductive Step] Consider a node x with height .z > 1. It must have
/\two children. So the number of internal nodes rooted at x is:
WHY?
> | + (2bh(x.left) - 1) i (zbh(x.right) - 1)

> 1 + (zbh(x)—l - 1) n (zbh(x)—l - 1)

— zbh(x) —1



Height of RB-Trees

e Claim: In a RB-Tree, the subtree rooted at x contains at least th(x) — 1
internal nodes. /

e Due to no-red-edge: i = height(root) < 2 - bh(root)
» > 20h(r00Y _ 1 > 23 | implying that & < 2 - 1g(n + 1).

Theorem The height of an n-node RB-Tree is O(log n)

Therefore, RB-Trees support Search, Min, Max, Predecessor, Successor

operations in worst-case O(log n) time! But, what about Insert and Remove?
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Insert node into an RB-Tree

Maintain black-height, fix no-red-edge if necessary.

Step 1: Color z as red and insert as if the RB-tree were a BST.

Step 2 Fix any violated properties.

g / o

Example: Insert element with key 2

RB-Tree Properties

v Each node is red or black
v Root is black

v/ Leaves are black

v/ No-red-edge property

v/ Black-height property
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Insert node into an RB-Tree

e Step 2: Fix any violated properties.

» Case 0: z becomes the root of the RB-Tree.

> Fix: simply recolor z to be black.

RB-Tree Properties

v Each node is red or black
v/ Root is black (easy fix)

v/ Leaves are black

Note: with the execution of algorithm, we change our focus of the node: v/ No-red-edge property
At the beginning, it is the node to be inserted. Later, it is the node that needs to

be changed to fix some property ! We refer to the currently focused node as 7 v/ Black-height property
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Insert node into an RB-Tree

Step 2: Fix any violated properties.

Too many )
red nodes!

— — E— — oy,

> 'Case 1| z’s parent is red (so z has black grandparent), and has red uncle y.

Example: Insert element with key 4

RB-Tree Properties

v Each node is red or black
v Root is black

v/ Leaves are black

v/ No-red-edge property (push up!)

v/ Black-height property ( )
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Insert node into an RB-Tree

« Case 1. 7’s parent is red (so z has black grandparent), and has red uncle y.

> FiX: recolor z's parent and uncle to black, recolor z’s grandparent to red

Too many Increase the
red nodes! black colors!
Y
Z #
5 - a in subtree rooted at C.

v Vi y ® Black-height
! BST and Black-height maintained. unchanged for

C .parent (if it exists).

new ¢ C

e Black-height property
satisfied for all nodes
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" Insert node into an RB-Tree

Step 2: Fix any violated properties.

Too many |}

— — E— — oy,

> 'Case 1| z’s parent is red (so z has black grandparent), and has red uncle y.

red nodes!

Example: Insert element with key 4

Increase the
black colors!

Effect: black-height property
maintained, and we “push-up”
violation of no-red-edge property.




g | Saes T Hﬁn

Z =
s/ Scliool of mteligent Software and Engine

Insert node into an RB-Tree

Step 2: Fix any violated properties.

a modest 4"““'_ _____
S > Case 2; 7’s parent is red, has black uncle y

red nodes

- (a): zis right child of its parent.

Example: Insert element with key 4

RB-Tree Properties

v Each node is red or black
v Root is black

v/ Leaves are black

v/ No-red-edge property (fix)

v/ Black-height property (
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Insert node into an RB-Tree

 Case 2(a): 7’s parent is red, has black uncle y, and z is right child of its parent.

> Fix: “left-rotate” at z’'s parent, and then turn to the case 2 (b) case!

a modest number of |
red nodes rotate to proper location!
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Insert node into an RB-Tree

Step 2: Fix any violated properties.

—— — m— —— m— oy,

a modest
S > Case 2; 7’s parent is red, has black uncle y

red nodes

- (a): zis right child of its parent.

Example: Insert element with key 4 left rotate

Effect: black-height property maintained,
transform to Case 2(b).
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Insert node into an RB-Tree

Step 2: Fix any violated properties.

a modest 4"““'_ _____
S > Case 2; 7’s parent is red, has black uncle y

red nodes

- (b): z is left child of its parent.

Example: Insert element with key 4

RB-Tree Properties

v Each node is red or black
v Root is black

v/ Leaves are black

v/ No-red-edge property (fix)

v/ Black-height property (
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Insert node into an RB-Tree

 Case 2(b): 7’s parent is red, has black uncle y, and z is left child of its parent.

> Fix: “right-rotate” at z's grandparent recolor z’s parent and grandparent

a modest
rotate' recolor'

S m e

number of
red nodes

o~
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Insert node into an RB-Tree

Step 2: Fix any violated properties.

—— — m— —— m— oy,

a modest
S > Case 2; 7’s parent is red, has black uncle y

red nodes

- (b): z is left child of its parent.

Example: Insert element with key 4 right rotate and recolor

We are done
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" Insert node into an RB Tree

Step 1: Color z as red and insert as if the RB-tree were a BST.

Step 2: Fix any violated properties.

> No-Fix-Needed: 7 has a black parent.

» Case 0: 7 becomes the root. - Fix: recolor z to be black.

> Case 1: 7’s parent is red, has red uncle.

- Fix: recoloring to push-up “no-red-edge” violation. P
> Case 2: 7’s parent is red, has black uncle.

> (@) zis right child of its parent.

- Fix: left-rotate 7’s parent to transform to Case 2(b).
> (b) zis left child of its parent.

- Fix: right-rotate z’s grandparent and recolor nodes, all properties satisfied.
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Insert node into an RB-Tree

Step 1: Color z as red and insert as if the RB-tree were a BST. - ----- O(h) = O(log n)

Step 2: Fix any violated properties.

> No-Fix-Needed: 7 has a black parent.  ~ 7777 O(1)

> Case 0: 7 becomes the root. - Fix: recolor zto be black. ------ O(1)

> Case 1: 7’s parent is red, has red uncle.

- Fix: recoloring to push-up “no-red-edge” violation.

> Case 2: 7’s parent is red, has black uncle. Rotation are limited and do not
change the tree shape a lot!

> (@) zis right child of its parent.

- Fix: left-rotate 7’s parent to transform to Case 2(b).

> (b) zis left child of its parent.

L : , E Time Complexity of Insert
- Fix: right-rotate z’s grandparent and recolor nodes, all properties satisfied.

operation : O(log n)
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*Remove node from an RB-Tree

e First execute the normal remove operation for BST
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Remove node from an RB-Tree

e To be convenien
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Remove node from an RB-Tree

If Z’s right child is an external node (leaf) , then z is
the node to be deleted structurally: subtree rooted

at z.left will replace z.

If Z’s right child is an internal node, then let y be the
min node in subtree rooted at z.right. Overwrite 7’s
info with y’s info, and y is the node to be deleted

structurally: subtree rooted at y.right will replace y.

Either way, only one structural deletion needed!

Apply the structural deletion, and repair violated
properties.

17

15 y 25

NIL NIL | NIL § NIL] NIL | 22 K 27
y=7z &

NIL
NIL J NIL I NIL I NIL
X

Call the node to be deleted structurally Y,

and let X be the node that will replace Y.
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" Remove node from an RB-Tree

Step 1: ldentify the structural deletion. Z

Step 2: Apply the structural deletion. (Maintain BST property.) 17

Step 3: Repair violated RB-tree properties. (Maintain BST property.) 15 RN 25

> If yis a red node: no violations.

NIL | NIL § NIL] NIL | 22 K 27
X

NIL

6

> If yis a black node and x is a red node: recolor x to black and Y=

done. L b NIL m NIL K NIL

> If yis a black node and x is a black node: 7 Each node is red or black

v Root is black
v/ Leaves are black

- y’s contribution to black-height removed, therefore, it

: . _ v No-red-edge property
violates black-height property — Need to fix! v Black-height property
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Remove node from an RB- Tree

o Step 1&2: Find & apply structural deletion. (Maintain BST property.)

> Let y be the structurally removed node, and x takes its place.

o Step 3: Repair violated RB-tree properties. (Maintain BST property.)

> Assume black x is left child of its parent after taking black y’s place.

» Focus on fixing black-height property. n{;g;“g;g f;*nt{;eb,fzgk

to increase the height!
* Case 1: x’s sibling w is red. '

» Fix: rotate and recolor.

> Effect: change x’s sibling’s color to black (i.e., transform to other
cases).
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Remove node from an RB- Tree

o Step 1&2: Find & apply structural deletion. (Maintain BST property.) x (BB)

> Let y be the structurally removed node, and x takes its place.

o Step 3: Repair violated RB-tree properties. (Maintain BST property.)

g . . . Too many
Assume x is left child of its parent. black nodas!

> Focus on fixing black-height property. Decrease the node of black node new x (BR or BB)

* Case 2: x’s sibling w is black, and both w’s children are black.
> Fix: recolor and push-up extra blackness in x.

> Effect: either we are done, or we have push-up x.
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Remove node from an RB- Tree

o Step 1&2: Find & apply structural deletion. (Maintain BST property.)
> Let y be the structurally removed node, and x takes its place.

o Step 3: Repair violated RB-tree properties. (Maintain BST property.)

> Assume x is left child of its parent. Trying to get the red

node and turn it black
to increase the height!

> Focus on fixing black-height property.

* Case 3: x’s sibling w is black, w’s left is red and w’s right is black.

» Fix: rotate and recolor.

> Effect: w.right becomes red (i.e., transform to last case).
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Remove node from an RB- Tree

o Step 1&2: Find & apply structural deletion. (Maintain BST property.)
> Let y be the structurally removed node, and x takes its place.

o Step 3: Repair violated RB-tree properties. (Maintain BST property.)
> Assume x is left child of its parent.
> Focus on fixing black-height property.

* Case 4: x’s sibling w is black, w.right is red.

» Fix: rotate and recolor.

» Effect: We are done!
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Remove node from an RB-Tree

o Step 1&2: Find & apply structural deletion. (Maintain BST property.) O(h) = O(log n)
= n

> Let y be the structurally removed node, and x takes its place.

» Step 3: Repair violated RB-tree properties. (Maintain BST property.)

> Assume black x is left child of its parent after taking black y’s place.

> Focus on fixing black-height property.

— - 0(1)
- Case 1: rotate and recolor; transform to other cases.

_ . appears at most O(h) times
- Case 2: recolor; done or push-up violations. Ot — Do s

- Case 3: rotate and recolor; transform to Case 4. — | e
o)
- Case 4. rotate and recolor; then done. Soe '

Time Complexity of Remove

operation : O(log n)
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Efficient implementation of Ordered Dictionary

Search (S, k) Insert (S, x) Remove (S, x)

BinarySearchTree O(h) in worst case

O(h) in worst case O(h) in worst case

I'reap O(logn) in expectation  O(logn) in expectation  O(logn) in expectation

RB-Tree O(logn) in worst case O(logn) in worst case O(logn) in worst case

Efficiency versus Simplicity
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Skip List




Skip List

Search (S, k) Insert (S, x) Remove (S, x)

SortedLinkedlList

 Why sorted linked-list is slow?

> To reach an element, you have to move from current position to
destination one element at a time.

Can we get faster?




Skip List

LR from: SMEFE  to: BRAS:

i} — (ol —f b ]

HMFX  BtEE XL REBR 28N eetERE dkin  Wlig gedst BBl EIER  fifERE RIESR BERAE

express

1X]

TP h LI TLE B RS

=

B

* Having express stops, we can quickly jump from one express stop to the next express stop.

* Then (if necessary) select the proper express stop to change to the normal stop, and finally jump to the destination.
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Skip List

* Getting back to the ordered linked list, we can represented it as two linked
ists — one for express stops and one for all stops.

/_ _____________________________

Forward and the next is smaller than target\I
I

[

I

I

| Forward and the next is larger than target :
I

I

\

backward and jump to the next level

What about multiple layers of “expressway”?



Skip List

* Build multiple “expressways”:Reduce number of elements by half at each level.

> This is just binary search: reduce search range by half at each level.

 This is very efficient: spend O(1) time at each level, and O(log n) levels in total.

Search can be done in O(log n) time.

Example: search for 15. _
Space Complexity ~ 2n




Skip List

Search (S, k) Insert (S, x) Remove (S, x)

SortedLinkedList O(n) O(n) O(1)

Static—-SkipList O(log n) ? ?

e Efficient Search with limited space overhead. But how to implement Insert and Remove?

&
)
&
.<—> eﬂ‘ «»E‘«-» &
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Example: Insert 7.

The real Skip List

Insert(l.x):
level .= 1, done := false
while !done

X =Yy
Insert x into level k list.
Flip a fair coin:
With probability 1/2 = done := true
With probability 1/2 = k:=k+ 1

&
22

oo [o—Hio- e le
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Example: Insert 7.

The real Skip List

Insert(l.x):
level .= 1, done := false
while !done

X =Yy
Insert x into level k list.
Flip a fair coin:
With probability 1/2 = done := true
With probability 1/2 = k:=k+ 1
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The real Skip List

Insert(l.x):
level .= 1, done := false
while !done

X:=Yy
Insert x into level k list.

Flip a fair coin:
With probability 1/2 = done := true
With probability 1/2 = k:=k+ 1

Example Insert 7.
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Example: Insert 7.

The real Skip List

Insert(l.x):
level .= 1, done := false
while !done

X =Yy
Insert x into level k list.
Flip a fair coin:

With probability 1/2 = done := true
With probability 1/2 = k:=k+ 1



Time complexity of Insert

» (1) in expectation.

while !done

> ((log n) with high probability.
1

nO)

X =Yy
Insert x into level £ list. i.e., with prob > 1

Flip a fair coin:
With probability 1/2 — done := true Max level of n-element SkipList

With probability 1/2 — k =k + 1
T PIODEREY . O(log 1) with high probability.

N 5 o
) YIS
N
S G
l Y
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YUAN JC



The real Skip List

N

« Consider the reverse of the path you took to find k.

* Note that you always move up if you can. (because you always enter a node
from its topmost level when doing a find)

 What’s the probability that you can move up at a give step of the reverse walk??
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The real Skip List

» Stepstogoupjlevels C(j) =

» Make one step, then make either
» C(j — 1) steps if this step went up [Pr = 0.5]
~ ((j) steps if this step went left [Pr = 0.3]

« Expected number of steps to walk up j levels is:

. C()=1+05-C(j—1)+0.5-C())
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The real Skip List

 Then we have
- C()=2+C( - 1)
» Expanding C(j) above getting C(j) = 2J

» Since there are O(lg n) levels expected, we have O(lg n) steps expected.
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Efficient implementation of Ordered Dictionary

_ Search (S, k) Insert (S, x) Remove (S, x)

BinarySearchTree O(h) in worst case O(h) in worst case O(h) in worst case

O(logn) in expectation  O(logn) in expectation  O(logn) in expectation
O(logn) in worst case O(logn) in worst case O(logn) in worst case
O(logn) in expectation  O(logn) in expectation = O(logn) in expectation

Efficiency versus Simplicity
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Further reading

e [CLRS] Ch.13

e [Morin] Ch.4
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