搜索树（续） Search Trees Cont＇d

钮崟涛
Nanjing University
2023 Fall

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne．Thanks for their supports！

Efficient implementation of Ordered Dictionary

	Search (S, k)	$\operatorname{Insert}(\mathrm{S}, \mathrm{x})$	Remove (S, x)
BinarySearchTree	$O(h)$ in worst case	$O(h)$ in worst case	$O(h)$ in worst case
Treap	$O(\log n)$ in expectation	$O(\log n)$ in expectation	$O(\log n)$ in expectation

Can we have a data structure supporting ordered dictionary operations in $O(\log n)$ time，even in worst－case？

"Balanced" BST

- What does it mean to be "balanced"?

Perfectly Balanced

Almost Perfectly Balanced

Not Perfectly Balanced

An n-node BST is "balanced" if it has height $O(\log n)$.

＂Balanced＂Binary Search Trees

－AVL tree（Adelson－Velsii \＆Landis，1962）
－B－tree（Bayer \＆McCreight，1970）－Not binary！
－Red－black tree（Bayer，1972）
－Splay tree（Sleator \＆Tarjan，1985）
－Skip list（Pugh ，1989）
－Treap（Seidel \＆Aragon，1996）
－and so on ．．．

Red-Black Tree
 1
 4-920 corctianestanin

$x_{2}+2+20$ -

 $\begin{array}{r}3 \\ -4 \\ \hline\end{array}$

Red-Black Tree

Red－Black Tree（RB－Tree）

－A Red－Black Tree（RB－Tree）is a BST in which each node has a color，and satisfies the following properties：
－Every node is either red or black．
－The root is black．
－Every leaf（NIL）is black．
－［no－red－edge］If a node is red，then both its children are black．
－［black－height］For every node，all paths from the node to its descendant leaves contain same number of black nodes．

Leaf is sentinel node to
represent boundary conditions （can link to the root），and will be omitted later for simplicity．

Black Height

－Call the number of black nodes on any simple path from，but not including，a node x down to a leaf the black－height of the node，denoted by $b h(x)$ ．
－Due to black－height property，from the black－height perspective，RB－ Trees are＂perfectly balanced＂．

－Due to no－red－edge property，actual height of a RB－Tree does not deviate a lot from its black－height．

Height of RB-Trees

- Claim: In a RB-Tree, the subtree rooted at x contains at least $2^{b h(x)}-1$ internal nodes.
- Proof (via induction on height of x)
- [Basis] If x is a leaf, $b h(x)=0$ and the claim holds.
- [Hypothesis] The claim holds for all nodes with height at most $h-1$.

Height of RB-Trees

- Claim: In a RB-Tree, the subtree rooted at x contains at least $2^{b h(x)}-1$ internal nodes.
- [Inductive Step] Consider a node x with height $h \geq 1$. It must have two children. So the number of internal nodes rooted at x is:
WHY?

$$
\begin{aligned}
& \geq 1+\left(2^{b h(x . l e f t)}-1\right)+\left(2^{b h(x . r i g h t)}-1\right) \\
& \geq 1+\left(2^{b h(x)-1}-1\right)+\left(2^{b h(x)-1}-1\right) \\
& =2^{b h(x)}-1
\end{aligned}
$$

Height of RB－Trees

－Claim：In a RB－Tree，the subtree rooted at x contains at least $2^{b h(x)}-1$ internal nodes．
－Due to no－red－edge：$h=h e i g h t($ root $) \leq 2 \cdot b h($ root $)$
－$n \geq 2^{b h(\text { root })}-1 \geq 2^{\frac{h}{2}}-1$ ，implying that $h \leq 2 \cdot \lg (n+1)$ ．

Theorem The height of an n－node RB－Tree is $O(\log n)$

Therefore，RB－Trees support Search，Min，Max，Predecessor，Successor operations in worst－case $O(\log n)$ time！But，what about Insert and Remove？

Insert node into an RB－Tree

Maintain black－height，fix no－red－edge if necessary．
－Step 1：Color z as red and insert as if the RB－tree were a BST．
－Step 2：Fix any violated properties．
－No fix is needed＇if z has a black parent after insertion．

Example：Insert element with key 2

RB－Tree Properties

Insert node into an RB－Tree

－Step 2：Fix any violated properties．
－Case 0：z becomes the root of the RB－Tree．
－Fix：simply recolor z to be black．

RB－Tree Properties

\checkmark Each node is red or blackRoot is black（easy fix）
Leaves are black
Note：with the execution of algorithm，we change our focus of the node：
No－red－edge property At the beginning，it is the node to be inserted．Later，it is the node that needs to be changed to fix some property ！We refer to the currently focused node as z

Black－height property

Insert node into an RB－Tree

－Step 2：Fix any violated properties．
Too many
red nodes！ \rightarrow Case 1：z＇s parent is red（so z has black grandparent），and has red uncle y ．

Example：Insert element with key 4

RB－Tree Properties

```
V Each node is red or black
\ Root is black
Leaves are black
No-red-edge property (push up!)
Black-height property (Maintain)
```


Insert node into an RB－Tree

－Case 1：z＇s parent is red（so z has black grandparent），and has red uncle y ．
－Fix：recolor z＇s parent and uncle to black，recolor z＇s grandparent to red

Insert node into an RB－Tree

－Step 2：Fix any violated properties．
Too many
red nodes！ Case 1：z＇s parent is red（so z has black grandparent），and has red uncle y ．

Example：Insert element with key 4

> Increase the black colors!

Effect：black－height property maintained，and we＂push－up＂ violation of no－red－edge property．

Insert node into an RB－Tree

－Step 2：Fix any violated properties．
a modest number of red nodes
－Case 2：z＇s parent is red，has black uncle y
－（a）：z is right child of its parent．

Example：Insert element with key 4

RB－Tree Properties

$\sqrt{ }$ Each node is red or black
$\sqrt{ }$ Root is black
Leaves are black
No－red－edge property（fix）
Black－height property（Maintain）

Insert node into an RB-Tree

- Case 2(a): z 's parent is red, has black uncle y, and z is right child of its parent.
- Fix: "left-rotate" at z's parent, and then turn to the case 2 (b) case!
a modest number of red nodes

A B C

```
rotate to proper location!
```


Insert node into an RB－Tree

－Step 2：Fix any violated properties．
a modest number of red nodes
－Case 2：z＇s parent is red，has black uncle y
－（a）：z is right child of its parent．

Example：Insert element with key 4

left rotate

Insert node into an RB－Tree

－Step 2：Fix any violated properties．
a modest number of red nodes
－Case 2：z＇s parent is red，has black uncle y
－（b）：z is left child of its parent．

Example：Insert element with key 4

RB－Tree Properties

$\sqrt{ }$ Each node is red or black
$\sqrt{ }$ Root is black
Leaves are black
No－red－edge property（fix）
Black－height property（Maintain）

Insert node into an RB－Tree

－Case 2（b）：z＇s parent is red，has black uncle y ，and z is left child of its parent．
－Fix：＂right－rotate＂at z＇s grandparent，recolor z＇s parent and grandparent．

Insert node into an RB－Tree

－Step 2：Fix any violated properties．
a modest number of red nodes
－Case 2：z＇s parent is red，has black uncle y
－（b）：z is left child of its parent．

Insert node into an RB－Tree

Step 1：Color z as red and insert as if the RB－tree were a BST．

Step 2：Fix any violated properties．
－No－Fix－Needed：z has a black parent．
－Case 0：z becomes the root．－Fix：recolor z to be black．
－Case 1：z＇s parent is red，has red uncle．
－Fix：recoloring to push－up＂no－red－edge＂violation．
－Case 2：z＇s parent is red，has black uncle．
－（a）z is right child of its parent．
－Fix：left－rotate z＇s parent to transform to Case 2（b）．
－（b）z is left child of its parent．
－Fix：right－rotate z＇s grandparent and recolor nodes，all properties satisfied．

Insert node into an RB－Tree

Step 1：Color z as red and insert as if the RB－tree were a BST．$-\cdots--O(h)=O(\log n)$
Step 2：Fix any violated properties．
－No－Fix－Needed：z has a black parent．－－－－－－O（1）
－Case 0：z becomes the root．－Fix：recolor z to be black．－－－－－－$O(1)$
－Case 1：z＇s parent is red，has red uncle．
－Fix：recoloring to push－up＂no－red－edge＂violation．
－Case 2：z＇s parent is red，has black uncle．
－（a）z is right child of its parent．
－Fix：left－rotate z＇s parent to transform to Case 2（b）．

```
----- appears at most O(h) times }->O(\operatorname{log}n
```

（b）z is left child of its parent．
－Fix：right－rotate z＇s grandparent and recolor nodes，all properties satisfied．

＊Remove node from an RB－Tree

－First execute the normal remove operation for BST

Remove node from an RB－Tree

－To be convenient

$$
\ldots, z, y, B, q, C, \ldots \quad \ldots, y, B, q, C, \ldots
$$

智能软件与工程学院

Remove node from an RB－Tree

－If z＇s right child is an external node（leaf），then z is the node to be deleted structurally：subtree rooted at z ．left will replace z ．
－If z＇s right child is an internal node，then let y be the min node in subtree rooted at z ．right．Overwrite z＇s info with y＇s info，and y is the node to be deleted structurally：subtree rooted at y ．right will replace y ．
－Either way，only one structural deletion needed！
－Apply the structural deletion，and repair violated properties．

Call the node to be deleted structurally y ， and let x be the node that will replace y ．

Remove node from an RB-Tree

Step 1: Identify the structural deletion.
Step 2: Apply the structural deletion. (Maintain BST property.)
Step 3: Repair violated RB-tree properties. (Maintain BST property.)

- If y is a red node: no violations.
- If y is a black node and x is a red node: recolor x to black and done.
- If y is a black node and x is a black node:

- y's contribution to black-height removed, therefore, it violates black-height property \rightarrow Need to fix!

[^0]
Remove node from an RB-Tree

- Step 1\&2: Find \& apply structural deletion. (Maintain BST property.)
- Let y be the structurally removed node, and x takes its place.
- Step 3: Repair violated RB-tree properties. (Maintain BST property.)
- Assume black x is left child of its parent after taking black y's place.
- Focus on fixing black-height property.

- Case 1: x 's sibling w is red.
- Fix: rotate and recolor.
- Effect: change x 's sibling's color to black (i.e., transform to other cases).

Remove node from an RB-Tree

- Step 1\&2: Find \& apply structural deletion. (Maintain BST property.)
- Let y be the structurally removed node, and x takes its place.
- Step 3: Repair violated RB-tree properties. (Maintain BST property.)
- Assume x is left child of its parent.
- Focus on fixing black-height property.

Decrease the node of black node

- Case 2: x 's sibling w is black, and both w 's children are black.
- Fix: recolor and push-up extra blackness in x.
- Effect: either we are done, or we have push-up x.

Remove node from an RB-Tree

- Step 1\&2: Find \& apply structural deletion. (Maintain BST property.)
- Let y be the structurally removed node, and x takes its place.
- Step 3: Repair violated RB-tree properties. (Maintain BST property.)
- Assume x is left child of its parent.
- Focus on fixing black-height property.
- Case 3: x 's sibling w is black, w 's left is red and w 's right is black.
- Fix: rotate and recolor.

Trying to get the red node and turn it black to increase the height!

- Effect: w.right becomes red (i.e., transform to last case).

Remove node from an RB－Tree

－Step 1\＆2：Find \＆apply structural deletion．（Maintain BST property．）
－Let y be the structurally removed node，and x takes its place．
－Step 3：Repair violated RB－tree properties．（Maintain BST property．）
－Assume x is left child of its parent．
－Focus on fixing black－height property．
－Case 4：x＇s sibling w is black，w．right is red．
－Fix：rotate and recolor．
－Effect：We are done！

Remove node from an RB－Tree

－Step 1\＆2：Find \＆apply structural deletion．（Maintain BST property．）

$$
O(h)=O(\log n)
$$

－Let y be the structurally removed node，and x takes its place．
－Step 3：Repair violated RB－tree properties．（Maintain BST property．）
－Assume black x is left child of its parent after taking black y＇s place．
－Focus on fixing black－height property．

－Case 1：rotate and recolor；transform to other cases．
－Case 2：recolor；done or push－up violations．
appears at most $O(h)$ times

$$
O(h)=O(\log n)
$$

－Case 3：rotate and recolor；transform to Case 4.
－Case 4：rotate and recolor；then done．

$O(1)$

Efficient implementation of Ordered Dictionary

	Search (S, k)	Insert (S, x)	Remove (S, x)
BinarySearchTree	$O(h)$ in worst case	$O(h)$ in worst case	$O(h)$ in worst case
Treap	$O(\log n)$ in expectation	$O(\log n)$ in expectation	$O(\log n)$ in expectation
RB－Tree	$O(\log n)$ in worst case	$O(\log n)$ in worst case	$O(\log n)$ in worst case

. ,

Skip List

	Search (\mathbf{S}, k)	Insert (S, x)	Remove (S, x)
SortedLinkedList	$O(n)$	$O(n)$	$O(1)$

－Why sorted linked－list is slow？
－To reach an element，you have to move from current position to destination one element at a time．

Can we get faster？

Skip List

- Having express stops, we can quickly jump from one express stop to the next express stop.
- Then (if necessary) select the proper express stop to change to the normal stop, and finally jump to the destination.

Skip List

－Getting back to the ordered linked list，we can represented it as two linked lists－one for express stops and one for all stops．

Example：search for 8 ．Search cost is reduced by half！
Forward and the next is smaller than target
Forward and the next is larger than target

What about multiple layers of＂expressway＂？

Skip List

－Build multiple＂expressways＂：Reduce number of elements by half at each level．
－This is just binary search：reduce search range by half at each level．
－This is very efficient：spend $O(1)$ time at each level，and $O(\log n)$ levels in total．

Search can be done in $O(\log n)$ time．
Space Complexity $\approx 2 n$

Skip List

	Search (\mathbf{S}, k)	Insert (S, x)	Remove (S, x)
SortedLinkedList	$O(n)$	$O(n)$	$O(1)$
Static－SkipList	$O(\log n)$	$?$	$?$

－Efficient Search with limited space overhead．But how to implement Insert and Remove？

The real Skip List

$\underline{\operatorname{Insert}(L, x):}$
level $:=1$ ，done $:=$ false
while ！done
$x:=y$
Insert x into level k list．
Flip a fair coin：
With probability $1 / 2 \rightarrow$ done $:=$ true
With probability $1 / 2 \rightarrow k:=k+1$

The real Skip List

$\underline{\operatorname{Insert}(L, x):}$
level $:=1$ ，done $:=$ false
while ！done
$x:=y$
Insert x into level k list．
Flip a fair coin：
With probability $1 / 2 \rightarrow$ done $:=$ true
With probability $1 / 2 \rightarrow k:=k+1$

The real Skip List

$\underline{\operatorname{Insert}(L, x):}$
level $:=1$ ，done $:=$ false
while ！done
$x:=y$
Insert x into level k list．
Flip a fair coin：
With probability $1 / 2 \rightarrow$ done $:=$ true
With probability $1 / 2 \rightarrow k:=k+1$

The real Skip List

$\underline{\operatorname{Insert}(L, x):}$
level $:=1$ ，done $:=$ false
while ！done
$x:=y$
Insert x into level k list．
Flip a fair coin：
With probability $1 / 2 \rightarrow$ done $:=$ true
With probability $1 / 2 \rightarrow k:=k+1$

The real Skip List

The real Skip List

- Consider the reverse of the path you took to find k.
- Note that you always move up if you can. (because you always enter a node from its topmost level when doing a find)
- What's the probability that you can move up at a give step of the reverse walk?

The real Skip List

- Steps to go up j levels $C(j)=$
- Make one step, then make either
- $C(j-1)$ steps if this step went up $[\operatorname{Pr}=0.5]$
- $C(j)$ steps if this step went left $[\operatorname{Pr}=0.5]$
- Expected number of steps to walk up j levels is:
- $C(j)=1+0.5 \cdot C(j-1)+0.5 \cdot C(j)$

The real Skip List

- Then we have
- $C(j)=2+C(j-1)$
- Expanding $C(j)$ above getting $C(j)=2 j$
- Since there are $O(\lg n)$ levels expected, we have $O(\lg n)$ steps expected.

Efficient implementation of Ordered Dictionary

	Search (S, k)	Insert (S, x)	Remove (S, x)
BinarySearchTree	$O(h)$ in worst case	$O(h)$ in worst case	$O(h)$ in worst case
Treap	$O(\log n)$ in expectation	$O(\log n)$ in expectation	$O(\log n)$ in expectation
RB－Tree	$O(\log n)$ in worst case	$O(\log n)$ in worst case	$O(\log n)$ in worst case
SkipList	$O(\log n)$ in expectation	$O(\log n)$ in expectation	$O(\log n)$ in expectation

Further reading

- [CLRS] Ch. 13
- [Morin] Ch. 4

[^0]: \checkmark Each node is red or black
 \checkmark Root is black
 \checkmark Leaves are black
 \checkmark No-red-edge property
 \checkmark Black-height property

