

搜索树 Search Trees

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne. Thanks for their supports!

钮鑫涛 Nanjing University 2023 Fall

The Dictionary Abstract Data Type

- elements with (usually distinct) key values.
 - Each element has a key field and a data field.
- Operations the Dictionary ADT should support:
 - Search (S,k): Find an element in S with key value k.
 - Insert(S,x): Add x to S. (What if element with same key exists?)
 - Remove (S, x): Remove element x from S, assuming x is in S.
 - Remove (S,k): Remove element with key value k from S.

• A **Dictionary** (also **symbol-table**, **relation**, **map**) ADT is used to represent a **set** of

Convention: the new value replaces the old one

The Dictionary Abstract Data Type

- In typical applications, keys are from an ordered universe (Ordered Dictionary):
 - Min(S) and Max(S): Find the element in S with minimum/maximum key.
 - Successor(S,x) or Successor(S,k):
 - Find smallest element in ${\tt S}$ that is larger than x . key (or key k).
 - Predecessor(S,x) or Predecessor(S,k):
 - Find largest element in ${\tt S}$ that is smaller than x . key (or key k).

Efficient implementation of Ordered Dictionary

	Search(S,k)	Insert(S,x)	Remove(S,x)
SimpleArray	O(n)	<i>O</i> (1)	O(n)
SimpleLinkedList	O(n)	<i>O</i> (1)	<i>O</i> (1)
SortedArray	$O(\log n)$	O(n)	O(n)
SortedLinkedList	O(n)	<i>O</i> (<i>n</i>)	<i>O</i> (1)
BinaryHeap	O(n)	$O(\log n)$	$O(\log n)$

- Data structure implementing all these operations efficiently? lacksquare
 - Efficient means within $O(\log n)$ time.

Binary Search Tree (BST)

- A binary search tree (BST) is a binary tree in which each node stores an element, and satisfies the binary-search-tree property (BST property):
 - For every node x in the tree, if y is in the left subtree of x, then $y \cdot key \le x \cdot key$; if y is in the right subtree of x, then $y \cdot key \ge x \cdot key$.

Binary Search Tree (BST)

- Given a BST *T*, let *S* be the set of elements stored in *T*, what is the sequence of the in-order traversal of *T*?
 - Elements of S in ascending order!

Inorder traversal: 13, 20, 32, 41, 50, 65, 91

Search in BST

- Given a BST root x and key k, find an element with key k?
 - If $x \cdot key = k$ then return x and we are done!
 - If x.key > k then **recurse** into the BST rooted at *x.left*.

• If $x \cdot k e y < k$ then **recurse** into the BST rooted at $x \cdot right$. BSTSearchIter(x,k): BSTSearch(x,k): while x := NULL and $x \cdot key := k$ if x = NULL or x.key = kif x.key > kreturn *x* x = x.leftelse if x.key > ktail recursion \rightarrow iterative version **return** *BSTSearch*(*x.left*, *k*) else else x = x.right**return** BSTSearch(x.right, k) return *x*

Complexity of Search in BST

- Worst-case time complexity of Search operation?
 - $\Theta(h)$ where h is the height of the BST.
- How large can h be in an n-node BST?
 - $\Theta(n)$, when the BST is like a "path".
- How small can *h* be in an *n*-node BST?
 - $\Theta(\log n)$, when the BST is "well balanced".

- How to find a minimum element in a BST?
 - Keep going left until a node without left child.
- How to find a maximum element in a BST?
 - Keep going right until a node without right child.
- Time complexity of Min and Max operation?
 - $\Theta(h)$ in the worst-case where h is height.

Min and Max in BST

Successor in BST

- larger than *x.key*.
- does the element following x reside?

If the right subtree rooted at x is non-empty: The minimum element in BST rooted at *x.right* is what we want.

• **BSTSuccessor(x)**: Find the smallest element in the BST with key value

In-order traversal of BST lists the elements in sorted order. Where in the tree

Otherwise: The nearest ancestor of x whose left child is also ancestor of x.

Successor in BST

• **BSTSuccessor(x)**: Find the smallest element in the BST with key value larger than *x.key*.

In-order traversal of BST lists the elements in sorted order.

```
BSTSuccessor(x,k):
if x.right != NULL
   return BSTMin(x.right)
y := x.parent
while y = NULL and y.right = x
   x := y
  y := y.parent
return y
```

- Time complexity of BSTSuccessor?
 - $\Theta(h)$ in the worst-case where h is the height.

BSTPredecessor can be designed and analyzed similarly.

Operations change BST

- So far we've seen operations that do not change the BST.
 - Search, Min/Max, Successor/Predecessor.
- How about operations that will change the BST?
 - Insert and Remove.

Insert in **BST**

- **BSTInsert(T,z)**: Add *z* to BST *T*. Notice, insertion should not break the BST property.
- Just like doing a search in *T* with key *z.key*. This search will fail and end at a leaf *y*. Insert *z* as left or right child of *y*.

Why above procedure is correct?

Insert in **BST**

- BSTInsert(T, z): Add z to BST T. Notice, insertion should not break the BST property.
- Just like doing a search in *T* with key *z.key*. This search will fail and end at a leaf *y*. Insert *z* as left or right child of *y*.
- Time complexity of the Insert operation?
 - $\Theta(h)$ in the worst-case where h is the height of T.

- BSTRemove (T, z): Remove elem not break the BST property.
- Case 1: z has no child.
 - Easy, simply remove z from the BST tree

• **BSTRemove (T,z)**: Remove element z from T. Notice, removal should

- break the BST property.
- **Case 2**: *z* has one single child.
 - Elevate subtree rooted at z's single child to take z's position.

• **BSTRemove (T, z)**: Remove element z from T. Notice, removal should not

- break the BST property.
- Case 3: z has two children.

- Which one should be here to replace node z ?
 - The min value node in subtree rooted at *z*.*right*.
- That is, replace node z with BSTSuccessor(z).

• **BSTRemove (T, z)**: Remove element z from T. Notice, removal should not

- Case 3a: z.right.left = Null
- **Case 3b**: *z.right.left* \neq *Null*

- BSTSuccessor(z) can be:
 - r if r.left = Null
 - BSTMin(r.left) if $r.left \neq Null$

- break the BST property.
- **Case 3a**: *z* has two children and *z*.*right.left* = *Null*

• **BSTRemove (T, z)**: Remove element z from T. Notice, removal should not

- break the BST property.

- **BSTRemove (T, z)**: Remove element z from T. Notice, removal should not break the BST property.
- **Case 1**: *z* has no child. $\Theta(1)$ ullet
 - Easy, simply remove z from the BST tree
- **Case 2**: *z* has one single child. $\Theta(1)$
 - Elevate subtree rooted at z's single child to take z's position.
- **Case 3a**: *z* has two children **and** *z*.*right.left* = *Null*
- **Case 3b**: *z* has two children and *z*.*right*.*left* \neq *Null*

Worst-case time complexity of Remove operation is $\Theta(h)$.

 $\Theta(1)$ O(h)

Efficient implementation of Ordered Dictionary

	Search(S,k)	Insert(S,x)	Remove(S,x)
SimpleArray	O(n)	<i>O</i> (1)	O(n)
SimpleLinkedList	O(n)	<i>O</i> (1)	<i>O</i> (1)
SortedArray	$O(\log n)$	O(n)	O(n)
SortedLinkedList	O(n)	O(n)	<i>O</i> (1)
BinaryHeap	O(n)	$O(\log n)$	$O(\log n)$
BinarySearchTree	O(h)	O(h)	O(h)

• BST also supports other operations of **Ordered Dictionary**, in O(h) time.

• But the height of a *n*-node BST varies between $\Theta(\log n)$ and $\Theta(n)$.

Height of BST

- Consider a sequence of Insert operations given by an adversary, the resulting BST can have height $\Theta(n)$.
 - ---- How to build it?
- E.g., insert the elements in increasing order. • What is the expected height of a randomly built BST?
 - Build the BST from an empty BST with n Insert operations.
 - Each of the n! insertion orders is equally likely to happen.
- The expected height of a randomly built BST is $O(\log n)$.

Why?

Treap: A randomized BST structure

- A Treap (Binary-Search-Tree + Heap) is a binary tree in which each node has a key value, and a priority value (usually randomly assigned).
- The **key values** must satisfy the **BST**-property:
 - For each node y in left sub-tree of x: $y key \le x key$
 - For each node y in right sub-tree of x: $y key \ge x key$
- The **priority values** must satisfy the **MinHeap**-property:
 - For each descendent y of x: y.priority $\geq x.priority$

A Treap is not necessarily a complete binary tree. (Thus it is not a **BinaryHeap**.)

Uniqueness of Treap

- **Claim:** Given a set of *n* nodes with distinct key values and distinct priority values, a **unique** Treap is determined.
- Proof by induction on *n*:
 - [Basis]: The claim clearly holds when n = 0.
 - [Hypothesis]: The claim holds when $n \leq n' 1$

Uniqueness of Treap

- [Inductive Step]:
 - Given a set of n' nodes, let r be the node with **min priority**. By **MinHeap**-property, r has to be the root of the final Treap.
 - Let *L* be set of nodes with key values less than *r.key*, and *R* be set of nodes with key values larger than *r.key*.
 - By **BST**-property, in the final Treap, nodes in L must in left sub-tree of r, and nodes in R must in right sub-tree of r.
 - By induction hypothesis, nodes in L lead to a unique Treap, and nodes in R lead to a unique Treap.

How to build Treap

- How do we build a Treap?
 - the node into the Treap.
 - order of increasing priorities. (Why?)
 - this order.

• Starting from an empty Treap, whenever we are given a node x that needs to be added, we assign a random priority for node x, and insert

Alternative view of an n-node Treap: a BST built with n insertions, in the

- Then we only need to worry about BST property if build a Treap in

How to build Treap

- insert operations! (Since we use random priorities!)
- A Treap has height $O(\log n)$ in expectation.

 - Even if the operations are given by an adversary!

• A Treap is like a randomly built BST, regardless of the order of the

Therefore, all ordered dictionary operations are efficient in expectation.

- Step 1: Assign a random priority to the node to be added.
- Step 2: Insert the node following BST-property.
- Step 3: Fix MinHeap-property (without violating BST-property).

Example: Insert element with key 33

- Step 1: Assign a random priority to the node to be added.
- Step 2: Insert the node following BST-property.
- Step 3: Fix MinHeap-property (without violating BST-property).

Example: Insert element with key 33

- Step 1: Assign a random priority to the node to be added.
- Step 2: Insert the node following BST-property.
- Step 3: Fix MinHeap-property (without violating BST-property).

Rotation changes level of x and y, but preserves **BST** property.

- Step 1: Assign a random priority to the node to be added.
- Step 2: Insert the node following BST-property.
- Step 3: Fix MinHeap-property (without violating BST-property).

Rotation changes level of x and y, but preserves **BST** property.

- Step 1: Assign a random priority to the node to be added.
- Step 2: Insert the node following BST-property.
- Step 3: Fix MinHeap-property (without violating BST-property).

Rotation changes level of x and y, but preserves **BST** property.

- Step 1: Assign a random priority to the node to be added.
- Step 2: Insert the node following BST-property.
- Step 3: Fix MinHeap-property (without violating BST-property).

- Step 1: Assign a random priority to the node to be added.
- Step 2: Insert the node following BST-property.
- Step 3: Fix MinHeap-property (without violating BST-property).

Use rotations to push-up violating nodes until MinHeap-property restored.

Summary on Treap

- A probabilistic data structure.
- Like a randomly built BST.

Question: How to design a data structure supporting ordered dictionary operations in $O(\log n)$ time, even in worst-case?

• Expected height is $O(\log n)$ even for adversarial operation sequence.

• Support ordered dictionary operations in $O(\log n)$ time, in expectation.

Further reading

- [CLRS] Ch.12
- [Morin] Ch.7 (7.2)
- [Sedgewick] Ch.3

ROBERT SEDGEWICK | KEVIN WAYNE