搜索树
 Search Trees

钮鍫涛
Nanjing University
2023 Fall

The slides are mainly adapted fiom the original ones shared by Chaodong Zheng and Kevin Wayne．Thanks for their supports！

The Dictionary Abstract Data Type

－A Dictionary（also symbol－table，relation，map）ADT is used to represent a set of elements with（usually distinct）key values．
－Each element has a key field and a data field．
－Operations the Dictionary ADT should support：

```
010025
```

Alice Female 114582
－Search (S, k) ：Find an element in S with key value k ．

Convention：the new value replaces the old one
－Remove（ S, k ）：Remove element with key value k from S ．

The Dictionary Abstract Data Type

－In typical applications，keys are from an ordered universe（Ordered Dictionary）：
－ $\operatorname{Min}(S)$ and $\operatorname{Max}(S)$ ：Find the element in S with minimum／maximum key．
－Successor（S，x）or Successor（ S, k ）：
－Find smallest element in S that is larger than $\mathrm{x} . \mathrm{key}$（or key k ）．
－Predecessor（ S, x ）or Predecessor（ S, k ）：
－Find largest element in S that is smaller than $\mathrm{x} . \mathrm{key}$（or key k ）．

Efficient implementation of Ordered Dictionary

	Search (S, k)	Insert (s, x)	Remove (S, x)
SimpleArray	$O(n)$	$O(1)$	$O(n)$
SimpleLinkedList	$O(n)$	$O(1)$	$O(1)$
SortedArray	$O(\log n)$	$O(n)$	$O(n)$
SortedLinkedList	$O(n)$	$O(n)$	$O(1)$
BinaryHeap	$O(n)$	$O(\log n)$	$O(\log n)$

－Data structure implementing all these operations efficiently？
－Efficient means within $O(\log n)$ time．

Binary Search Tree (BST)

- A binary search tree (BST) is a binary tree in which each node stores an element, and satisfies the binary-search-tree property (BST property):
- For every node x in the tree, if y is in the left subtree of x, then y. key $\leq x$. key; if y is in the right subtree of x, then y. key $\geq x$. key.

Binary Search Tree (BST)

- Given a BST T, let S be the set of elements stored in T, what is the sequence of the in-order traversal of T ?
- Elements of S in ascending order!

Search in BST

- Given a BST root x and key k, find an element with key k ?
- If x.key $=k$ then return x and we are done!
- If $x . k e y>k$ then recurse into the BST rooted at x.left.

- If x.key $<k$ then recurse into the BST rooted at x.right.

BSTSearch(x, k):

if $x=N U L L$ or $x . k e y=k$ return x
else if x.key $>k$ return BSTSearch(x.left, k) else return BSTSearch(x.right, k)

BSTSearchIter(x,k):
while $x!=$ NULL and $x . k e y!=k$
if $x . k e y>k$
$x=x$.left
else
$x=x$ right
return x

Complexity of Search in BST

- Worst-case time complexity of Search operation?
- $\Theta(h)$ where h is the height of the BST.
- How large can h be in an n-node BST?
- $\Theta(n)$, when the BST is like a "path".
- How small can h be in an n-node BST?
- $\Theta(\log n)$, when the BST is "well balanced".

32

Min and Max in BST

- How to find a minimum element in a BST?
- Keep going left until a node without left child.
- How to find a maximum element in a BST?
- Keep going right until a node without right child.
- Time complexity of Min and Max operation?

- $\Theta(h)$ in the worst-case where h is height.

Successor in BST

－BSTSuccessor（x）：Find the smallest element in the BST with key value larger than x．key．
－In－order traversal of BST lists the elements in sorted order．Where in the tree does the element following x reside？

If the right subtree rooted at x is non－empty：
The minimum element in BST rooted at x．right is what we want．

Otherwise：

The nearest ancestor of x whose left child is also ancestor of x ．

Successor in BST

－BSTSuccessor（x）：Find the smallest element in the BST with key value larger than x．key．
－In－order traversal of BST lists the elements in sorted order．

BSTSuccessor（ x, k ）：

if x ．right $!=N U L L$ return BSTMin（x．right）
$y:=x$ ．parent
while $y!=N U L L$ and y ．right $=x$
$x:=y$
$y:=y$. parent
return y
－Time complexity of BSTSuccessor？
－$\Theta(h)$ in the worst－case where h is the height．
－BSTPredecessor can be designed and analyzed similarly．

Operations change BST

－So far we＇ve seen operations that do not change the BST．
－Search，Min／Max，Successor／Predecessor．
－How about operations that will change the BST？
－Insert and Remove．

Insert in BST

- BSTInsert (T, z) : Add z to BST T. Notice, insertion should not break the BST property.
- Just like doing a search in T with key z.key. This search will fail and end at a leaf y. Insert z as left or right child of y.

Example: Insert element with key 36

Why above procedure is correct?

Insert in BST

－BSTInsert（T，z）：Add z to BST T ．Notice，insertion should not break the BST property．
－Just like doing a search in T with key z ．key．This search will fail and end at a leaf y ．Insert z as left or right child of y ．
－Time complexity of the Insert operation？
－$\Theta(h)$ in the worst－case where h is the height of T ．

－BSTRemove（ T, z ）：Remove element z from T ．Notice，removal should not break the BST property．
－Case 1：z has no child．
－Easy，simply remove z from the BST tree

$$
\ldots, z, q, A, \ldots
$$

\ldots, q, A, \ldots

Remove in BST

- BSTRemove (T, z) : Remove element z from T. Notice, removal should not break the BST property.
- Case 2: z has one single child.
- Elevate subtree rooted at z 's single child to take z 's position.

$\ldots, z, A, r, B, q, C, \ldots$
$\ldots, A, r, B, q, C, \ldots$

Remove in BST

－BSTRemove（ T, z ）：Remove element z from T ．Notice，removal should not break the BST property．
－Case 3a：z．right．left＝Null
－Case 3：z has two children．
－Case 3b：z．right．left \neq Null
－Which one should be here to replace node z ？
－The min value node in subtree rooted at z ．right．
－That is，replace node z with BSTSuccessor（z）．

－BSTSuccessor（z）can be：
－r if r ．left $=$ Null
－BSTMin（r．left）if r．left \neq Null

$$
\ldots, A, l, B, z, C, r, D, q, E \ldots
$$

Remove in BST

- BSTRemove (T, z) : Remove element z from T. Notice, removal should not break the BST property.
- Case 3a: z has two children and z.right.left $=$ Null

$\ldots, A, l, B, z, r, D, q, E \ldots$

$\ldots, A, l, B, r, D, q, E \ldots$

Remove in BST

- BSTRemove (T, z) : Remove element z from T. Notice, removal should not break the BST property.
- Case 3b: z has two children and z.right.left \neq Null

$\ldots, A, l, B, z, y, C^{\prime}, C \backslash C^{\prime}, r, D, q, E \ldots$

$$
\ldots, A, l, B, y, C^{\prime}, C \backslash C^{\prime}, r, D, q, E \ldots
$$

Remove in BST

- BSTRemove (T, z) : Remove element z from T. Notice, removal should not break the BST property.
- Case 1: z has no child. $\quad \Theta(1)$
- Easy, simply remove z from the BST tree
- Case 2: z has one single child. $\Theta(1)$
- Elevate subtree rooted at z's single child to take z's position.
- Case 3a: z has two children and z.right.left $=$ Null
- Case 3b: z has two children and z.right.left \neq Null $O(h)$

Worst-case time complexity of Remove operation is $\Theta(h)$.

Efficient implementation of Ordered Dictionary

	Search (s, k)	Insert (S, x)	Remove (S, x)
SimpleArray	$O(n)$	$O(1)$	$O(n)$
SimpleLinkedList	$O(n)$	$O(1)$	$O(1)$
SortedArray	$O(\log n)$	$O(n)$	$O(n)$
SortedLinkedList	$O(n)$	$O(n)$	$O(1)$
BinaryHeap	$O(n)$	$O(\log n)$	$O(\log n)$
BinarySearchTree	$O(h)$	$O(h)$	$O(h)$

－BST also supports other operations of Ordered Dictionary，in $O(h)$ time．
－But the height of a n－node BST varies between $\Theta(\log n)$ and $\Theta(n)$ ．

Height of BST

- Consider a sequence of Insert operations given by an adversary, the resulting BST can have height $\Theta(n)$.
- E.g., insert the elements in increasing order.
- What is the expected height of a randomly built BST?
- Build the BST from an empty BST with n Insert operations.
- Each of the n ! insertion orders is equally likely to happen.
- The expected height of a randomly built BST is $O(\log n)$.

> Why?

Treaps
\square

Treap：A randomized BST structure

－A Treap（Binary－Search－Tree＋Heap）is a binary tree in which each node has a key value，and a priority value（usually randomly assigned）．
－The key values must satisfy the BST－property：
－For each node y in left sub－tree of $x: y . k e y \leq x . k e y$
－For each node y in right sub－tree of $x: y . k e y \geq x$ ．key
－The priority values must satisfy the MinHeap－property：

－For each descendent y of x ：y ．priority $\geq x$ ．priority

Uniqueness of Treap

- Claim: Given a set of n nodes with distinct key values and distinct priority values, a unique Treap is determined.
- Proof by induction on n :
- [Basis]: The claim clearly holds when $n=0$.
- [Hypothesis]: The claim holds when $n \leq n^{\prime}-1$

Jnicuenesp

- [Inductive Step]:
- Given a set of n^{\prime} nodes, let r be the node with min priority. By MinHeapproperty, r has to be the root of the final Treap.
- Let L be set of nodes with key values less than r.key, and R be set of nodes with key values larger than r.key.
- By BST-property, in the final Treap, nodes in L must in left sub-tree of r, and nodes in R must in right sub-tree of r.
- By induction hypothesis, nodes in L lead to a unique Treap, and nodes in R lead to a unique Treap.

How to build Treap

- How do we build a Treap?
- Starting from an empty Treap, whenever we are given a node x that needs to be added, we assign a random priority for node x, and insert the node into the Treap.
- Alternative view of an n-node Treap: a BST built with n insertions, in the order of increasing priorities. (Why?)
- Then we only need to worry about BST property if build a Treap in this order.

How to build Treap

- A Treap is like a randomly built BST, regardless of the order of the insert operations! (Since we use random priorities!)
- A Treap has height $O(\log n)$ in expectation.
- Therefore, all ordered dictionary operations are efficient in expectation.
- Even if the operations are given by an adversary!

Insert in Treap

- Step 1: Assign a random priority to the node to be added.
- Step 2: Insert the node following BST-property.
- Step 3: Fix MinHeap-property (without violating BST-property).

Example: Insert element with key 33

Insert in Treap

- Step 1: Assign a random priority to the node to be added.
- Step 2: Insert the node following BST-property.
- Step 3: Fix MinHeap-property (without violating BST-property).

Example: Insert element with key 33

Insert in Treap

－Step 1：Assign a random priority to the node to be added．
－Step 2：Insert the node following BST－property．
－Step 3：Fix MinHeap－property（without violating BST－property）．

Insert in Treap

－Step 1：Assign a random priority to the node to be added．
－Step 2：Insert the node following BST－property．
－Step 3：Fix MinHeap－property（without violating BST－property）．

Insert in Treap

－Step 1：Assign a random priority to the node to be added．
－Step 2：Insert the node following BST－property．
－Step 3：Fix MinHeap－property（without violating BST－property）．

Rotation changes level of x and y ，but preserves BST property．

Insert in Treap

－Step 1：Assign a random priority to the node to be added．
－Step 2：Insert the node following BST－property．
－Step 3：Fix MinHeap－property（without violating BST－property）．

Insert in Treap

－Step 1：Assign a random priority to the node to be added．
－Step 2：Insert the node following BST－property．
－Step 3：Fix MinHeap－property（without violating BST－property）．

Remove in Treap

－Given a pointer to a node，how to remove it？Just invert the process of insertion！
－Step 1：Use rotations to push－down the node till it is a leaf．
－Step 2：Remove the leaf．

Summary on Treap

- A probabilistic data structure.
- Like a randomly built BST.
- Expected height is $O(\log n)$ even for adversarial operation sequence.
- Support ordered dictionary operations in $O(\log n)$ time, in expectation.

Question: How to design a data structure supporting ordered dictionary operations in $O(\log n)$ time, even in worst-case?

Further reading

- [CLRS] Ch. 12
- [Morin] Ch. 7 (7.2)
- [Sedgewick] Ch. 3

