$\mathbf{A3}$

ddl: 2023/10/8 23:59

Note: $\lg n$ means $\log_2 n$ in this assignment.

1 Solving Recurrence

1.1 The Substitution Method

(From CLRS 4.3-1)

Use the substitution method to show that each of the following recurrences defined on the reals has the asymptotic solution specified:

- 1. T(n) = 2T(n/2 + 17) + n has solution $T(n) = O(n \lg n)$.
- 2. $T(n) = 2T(n/3) + \Theta(n)$ has solution $T(n) = \Theta(n)$.

Note: when proving the solution, it is helpful to read the Avoiding pitfalls section of CLRS 4.3.

1.2 The Recursion-tree Method

1.2.1 4.4-4 of CLRS

Use a recursion tree to justify a good guess for the solution to the recurrence $T(n) = T(\alpha n) + T((1 - \alpha)n) + \Theta(n)$, where α is a constant in the range $0 < \alpha < 1$.

1.2.2 1.8 of Algorithms by Erickson

Use recursion trees to solve each of the following recurrences:

1.
$$N(n) = 2N(n/2) + O(n/\lg n)$$

2. $Q(n) = \sqrt{2n}Q(\sqrt{2n}) + \sqrt{n}$

Note: A rigorous proof is not required, but an illustration of your ideas is necessary.

1.3 The Master Theorem

(From CLRS 4.5-1)

Use the master method to give tight asymptotic bounds for the following recurrences:

1.
$$T(n) = 2T(n/4) + \sqrt{n} \lg^2 n$$

2. $T(n) = 2T(n/4) + n^2$

2 Heap

2.1 Heap Sort Running Time

(From CLRS 6.4-5)

HEAPSORT(A, n)	
1	BUILD-MAX-HEAP (A, n)
2	for $i = n$ downto 2
3	exchange $A[1]$ with $A[i]$
4	A.heap-size = A.heap-size - 1
5	Max-Heapify $(A, 1)$

Given the psedocode of HEAPSORT, show that when all the elements of A are distinct, the best-case running time of HEAPSORT is $\Omega(n \lg n)$.