7p
D N
O 1z
(U g2 2
T §m4
= 2o
Y=l
% G

/] he slides are main[y ac{aptec{ f;zom the o’zigina/ ones shared by Chaoclong ZAeng and Kevin*

5T#%Fbr

ent Soﬁ"ware and fngineering

BRI

School of Qnteﬂig

D1
Jm
&l

3
OD&bkhk T 30 R4 e

Y. EEERGFS TiEFbx

?’w Qg School (f Qnt‘e[ﬁ'gent Sofrware and fngineering

Efficient implementation of Ordered Dictionary

BinarySearchTree
Treap

RB-Tree

SkipList

Search (S, k) Insert (S, x)

O(h) in worst case O(h) in worst case

Remove (S, x)

O(h) in worst case

O(logn) in expectation @ O(logn) in expectation

O(log n) in expectation

O(logn) in worst case O(logn) in worst case

O(logn) in worst case

O(logn) in expectation @ O(logn) in expectation

O(log n) in expectation

Can we be faster?

(if we only care about Search/Insert/Remove)

E %ﬁb‘ij\#'ﬁ_-ﬁ%ﬁm
¢/ School of Intelligent Software and Engine

Search/Insert/Remove in O(1) time

» Assume keys are distinct integers from universe U = {0,1,....m — 1}

» Easy, just allocate an array of sizem = | U|.

Search/Insert/Remove can be done in O(1) time

Direct-address Tables Any potential issue?

0 0 0 0 0
1 Insert(2) 1 Insert(3) 1 Search(2) 1 Remove(3) 1 Search(3)

OO B~ W N
OO B~ W N
OO B~ W N
OO B~ W N
o B~ W DN

OO B~ W N

ﬁ‘é‘fFMﬁF 5 __&—L_%I?m
oof of telligent Softare and Engin

- Search/Insert/Remove in O(1) time

» Assume keys are distinct integers from universe U = {0,1,....m — 1}

» Easy, just allocate an array of sizem = | U|.

» Search/Insert/Remove can be done in O(1) time

e Potential Issues:

> What if keys are distinct, but not integers (e.g., strings).

- “Everything is number.” This is especially true for
modern computers...

Pythagoras

Direct-address Tables

 Direct-address table: allocate an array of sizem = | U|.

» Search/Insert/Remove can be done in O(1) time.

 The real problem: the universe can be large, very large!
> E.g., U is the set of 64-bit integers.

 The space complexity is unacceptable!

3
O&abthk T FO 4=
| BEERS IREF R
4‘5’; School (f Qnt‘e[ﬁ'gent Sofrware and fngineering

Hashing

* Huge universe U of possible keys.
 Much smaller number n of actual keys.
e Only wanttospendm =~ n (i.e., m < | U|) space.

> Meanwhile support very fast Search/Insert/Remove.

Hash function i : U — [m]

h(k) decides index of slot for storing key &

0 N O O b WO DN 2 O

Hashing

Design hash function 2 : U — [m]

Use /(k) as the index of slog for storing element with key k
Assume computing £ is always fast. (E.g., in O(1) time.)
Assume /1 maps distinct keys to distinct indices. - ---------

Search/Insert/Remove can be done in O(1) time!

But is this possible?

__
-
—

0 N O O b WO DN 2 O

Collisions in hashing

e Hash function h : U — [m]

» Two distinct keys k; and k, collide if: h(k,) = h(k,)

e Collisions are unavoidable! How to cope with collisions?

> Proof: m << | U| and pigeonhole principle. hx) = 0

0 N O O b WO DN 2 O

3
OD&bkhk T 30 R4 e

Y. EEERGFS TiEFbx

?’w Qg School (f Qnt‘e[ﬁ'gent Sofrware and fngineering

Chaining

 Each bucket 1 stores a pointer to a linked list L.

o All keys that are hashed to index 1 go to L.

Hash Table

h(ky) = hiks) = h(kg) = 2

-0

Space Cost:

e O(m) for pointers;

e O(n) for actual elements.

Hashing with Chaining

e Search(k) wherekisakey.--------- Time depends on length of the linked list!

Search can cost ®(n) in worst-case. (All keys hash to same value.)

» Compute h(k)
» Go through the corresponding list to search item with key k.

e Insert(x) where xis a pointertoanitem. -------- O(1) Note: we assume computing h takes O(1) time.
» Compute h(x . key)

> |Insert x to the head of the corresponding list.

e Remove (x) where x Is a pointer to an item.--------- O(1)

> Simply remove x from the linked list.

3
0 &btk T £O R4 1S
PV.| SEREHS TiEFbr
7‘5 4435 School of Qnt@[ﬁgent Sofrware and Engineering

The “Simple Uniform Hashing” Assumption

e [et’s be optimistic (for now):

> Every key is equally likely to map to every bucket.

> Keys are mapped independently.

 Recall hash function 4 is fixed and deterministic:
> Making assumptions regarding input keys’ distribution!
 Why this helps?

> Each key goes to a randomly chosen bucket, if there are enough number of buckets
(w.r.t. actual number of keys to be stored), each bucket will not have too many keys.

ﬁ EAfﬁF'ﬁ *E—T—Bﬂ:
ool of Inte

" Performance of hashing with chaining

e Consider a hash table containing m buckets, storing 7 keys.

e Define load factor a = n/m

> This is the expected number of keys in each bucket.

» Intuitively, Search will on average cost O(1 + a):
> (1) for computing hash value;

» O(a) for traversing linked list.

ﬁ EAT'-LF '3 *E%Bﬂ:
ool of Inte

" Performance of hashing with chaining

» m buckets, storing n keys, load factor @ = n/m.

« Expected cost of unsuccessful search is ®(1 + o).

» Cost: compute hash value + traverse entire linked list in a bucket.

> The key being searched is equally likely to map to every bucket.

> O(1) + O(a) =01 + a)

“b‘fFMﬁF '3 __&—L_%I?m

Z -
& =
Y/ School of Meelligent and Engine

Performance of hashing with chaining

» Expected cost of successful search is ®(1 + a), too!

» Cost: compute hash value + traverse linked list in a bucket till key found.

n

, 1
> Let C; be the cost for finding the i inserted element X;. We want to compute — - Z =[C]
n
i=1

> Let X;; be an indicator random variable taking value 1 if and only if h(x;. key) = h(xj . key)

1 n n

1 n
;'Z"[Ci]=;‘2"[(1 ZX

i=1 i=1 j=i+1

By linearity of WHY?

expectation

)—— Z(1+Z

J= l+1

ﬁ EAfﬁF'ﬁ *E—T—Bﬂ:
ool of Inte

" Performance of hashing with chaining

o Consider a hash table containing m buckets, storing n keys, and load
factor &« = n/m.

« Expected cost of is O(1 + a) for the Search operation.

» If m = ®(n), hash table costs ®(n) space, but Search/Insert/
Remove all take O(1) time, on average.

ﬁ EAfﬁF'ﬁ *E—T—Bﬂ:
ool of Inte

" Performance of hashing with chaining

 *What is the expected maximum cost for Search?
» Search for a key that maps to the heaviest bucket.

> That is: expected length of the longest linked list.

> Alternatively: throw n balls into m bins uniformly at random, what is the
max number of balls in a bin, in expectation?

lgn
lglgn

).

If m = O(n), the answer is O(

Reality bites

e “Simple Uniform Hashing” does not hold!
> Keys are not that random (they usually have patterns).

- Patterns in keys can induce patterns in hash functions, unless you
are very, very careful.

» Once h is fixed and known, you can find a set of “bad” keys that hash
to same value.

O&abthk T FO 4=
| BEERGHSIREZFR
2z School (f Qnt‘e[ﬁ'gent Sofrware and fngineering

Design hash functions

3

0 &btk T £O R4 1S
PV.| SEREHS TiEFbr
7‘5 4435 School of Qnt@[ﬁgent Sofrware and Engineering

Some bad hash functions

 Assume keys are English words.

 One bucket for each letter (i.e., 26 buckets).

» Hash function: /i(w) = first letter in word w.
» E.g., h("test") = ¢

* Problem?

> Many words start with s, few words start with x.

TEFr

- Some bad hash functions

 Assume keys are English words.

* One bucket for each number in [26 - 50].

» Hash function: A(w) = sum of indices of letters in w.

- E.g., h("hat") =8 + 1 + 20 = 29
e Problem?

» Most of the words are short words.

TEFr

The Division Method

 Common technigue when designing hash functions

» Hash function: (k) = k mod m
- E.g.,ifm=13,h(24) = 11

> Two keys k; and would collide if kK, = k, (mod m)

The Division Method

» Hash function: h(k) = k mod m
> E.g.,ifm=13,h(24) =11

 How to pick m? (Say we want to store n keys)
> |dea: letr = |lgn]|,setm=2". ----——— Bad Idea!
» Computing h(k) is very fast: h(k) = k — ((k > r) <KL r)
> But we are only using rightmost 7 bits of the input key.

- Not good! For example, if all input keys are even, we use at most half space.

The Division Method

» Hash function: A(k) = k mod m

« How to pick m? (Say we want to store n keys)
* In general, we don’t want m to be a composite number.

» Assume key k and m have common divisor d.

k
h(k) is also divisible by d, since (k mod m) + |—| - m = k.
m

1

> |f all input keys are divisible by d, we use at most — space.

d

Rule of thumb: prime not too close to exact power of two

=

0 &btk T £O R4 1S
P9, BERGESIREF xR
7‘5 4@5 School of Qnt@[ﬁgent Sofrware and fngineering

The Multiplication Method

* Another common technigue when designing hash functions

> Assume key length is at most w bits.
> Fix table size m = 2’ for some r < w.
> Fix constant integer 0 < A < 2".

>~ Hash function: (k) = (Ak mod 2") > (w — r)
A (w bits k (w bits)

» (Ak mod 2")> (w—r) (rbits)
M Quois) "

mod 2" (w bits)

Ti#EFkr

The Multiplication Method

* Another common technigue when designing hash functions

» Assume key length is at most w bits.

> Fix table size m = 2" for some r < w.

» Fix constant integer 0 < A < 2",

» Hash function: (k) = (Ak mod 2%) > (w — r)

e Faster than the Division Method.

Works reasonably well with proper choice of A

> Recall in division method, h(k) = k mod m

> Multiplication and bit-shifting faster than division.

e Once hash function 4 is fixed and known, there must exist a set of “bad”
keys that hash to the same value.

 Such adversarial input will result in poor performance!

Solution: Use randomization!

Universal Hashing

e Pick a random hash function & when the hash table is first built
» Once chosen, /4 is fixed throughout entire execution.
» Since A is randomly chosen, no input is always bad.

« A collection of hash functions # is universal if:

H
> For any x # y, at most K4 hash functions in Z lead to h(x) = h(y)
m

1
- Therefore, Pr [h(x) = h(y)] < —forallx #y
hex m

| EEEHS IREF
9 hool of meeri

“Simple Uniform Hashing” vs “Universal Hashing”

e Simple Uniform Hashing:
> Uncertainty due to randomness of input.
* Universal Hashing:

> Uncertainty due to choice of function /1 (and potentially randomness of input).

‘ﬁ“‘é‘fFM’—“F 5T z%lln
ool of Intelligent Software and Engine

~ Performance of hashing with chaining

|
 Universal hashing: Pr [A(x) = h(y)] < — forall x # y, Load factora = — =

» Let Ly, be length of list at index /(k), what’s E[L;,;]?

he#

n num of inserted keys

m m size of the table

How to construct a universal hash family #Z ?

> Claim 1: if key k not in table T, then E[L, ;)] < a.

- For any key [, define indicator random variable X,, = I{h(k) = h(l)} .

— [Lh(k)] =

L2 Xal= 2

[eT,l#k [eT,l#k

> Claim 2: if key k in table T, then

- [Lh(k)] -

[eT,l#k

1

_[Xkl] §n°—=a

m
If the hash table is not overloaded (i.e., @« = O(1)),

Search/Insert/Remove can be done in O(1) expected time.

—[2sz]+1 <n-1)-—+1 < 1+a

| BEERHEFS TEF b
of

[—
7‘5 g? School Qnt@[ﬁgent Sofrware and fngineering

A Typical Universal Hash Family

 Proposed by Carter and Wegman in 1977/

> They introduced the notion of universal classes of hash functions.

- ["Universal Classes of Hash Functions”, STOC 77 and JCSS 79]

* Find a large prime p larger than the max possible key value,

> Lethz{(), 1,2,...,p—1}anle;’<={1, 2, ...,p—1}
* Define h (k) = ((ak+b) mod p) mod m, then

> Ky ={hy, | a € ZF and b € Z,,} is a universal hash family.

EAT'-LF '3 *E—T—Bﬂ:

A Typical Universal Hash Family

. 7,=1{0,1,2,....,p—1}and Z¢ = (1,2, ..., p— 1}

h, (k) = ((ak +) mod p) mod m, wherea € Z7and b € Z,,.

|
» Prove: Pr [h(k) = ()] < —forallk # [, wherek€ Z,andl € Z,
hex m

$)\1’—“F '3 %z%lln

A Typical Universal Hash Family

e Letr =(ak+b) mod p,and s = (al + b) mod p.
e Claim1:7r # s.
* Proof:

» r—s=alk—1) (mod p)

> butaz0 (mod p)andk—[% 0 (mod p)

> pIs primel

That is: i1, does not generate collision at “* mod p level”!

*z%ﬁm

?A Typical Universal Hash Family

e letr=(ak+b) mod p,and s = (al + b) mod p.

» Claim 2: Fix k and [, there is a 1-to-1 mapping between (a, b) and (r, s) pairs.

» Recallr —s=a(k—1[) (mod p)

modular multiplicative inverse of k — [, unique since p is prime

» 4 = ((r—s)((k—l)_1 modp)) mod p l

Given (7, s), we get unique (a, b).
» b= (r—ak) mod p J

> There are (p — 1)p pairs of (a, b), and (p — 1)p pairs of (r, s) if r # s.

*z%lzm

?A Typical Universal Hash Family

e letr =(ak+b) mod p,and s = (al + b) mod p.

e Claim1:r # 5.

» Claim 2: Fix k and [, there is a 1-to-1 mapping between (a, b) and (r, s) pairs.

» Thus, for any given pair of distinct inputs of k and [, if we pick (a, b) uniformly at
random from Z;f X Zp, the resulting pair (7, s) is equally likely to be any pair of

distinct values modulo p.

» Therefore, the probability that distinct keys k and [collide is equal to the
probability that r = s (mod m)

ZSE e S TR
ool of Inte

A Typical Universal Hash Family

e letr =(ak+b) mod p,and s = (al + b) mod p.

e« Claim1:r # 5.

» Claim 2: Fix k and [, there is a 1-to-1 mapping between (a, b) and (r, s) pairs.

e« Lemma: Pr [h(k)=h())]= Pr [r=s (mod m)]
he#x 0<r,s<p

= Pr[r=s (mod m) when (7, s) are distinct values chosen from Z, uniformly at random]

p+m—1

(IZh-1 ——-1 @-bm _1

p—1 p—1 p—1 m

o042tk T O 4=
Beeit5 TiE=Ffx
School (yf an[ﬁgent Soﬁ'ware and angineering

Open addressing

| BERESIREFR

=
égg" School (f Qnt‘e[ﬁ'gent Soﬁ’ware and fngineering
<

Quick Review

e Hash Tables

» Store n keys from a huge universe U into a table of size m & n
» Use a hash function & : U — [m] to decide where to put each key

e (Collisions are inevitable!

» [Collision Resolution] Method 1: Chaining.

> [Collision Resolution] Method 2: Open addressing. h(x) = 0

—
—

o N oo 00~ WO N =+ O

e Basic idea:

Open Addressing

> No linked lists! All items store in the table, one item per bucket!

e Load factor a =

e On collision?

n
m

<1

> Probe a sequence of buckets until an empty one is found!

245

366

111

571
533

o N oo 00 A WO N =+ O

245

366

111

571
533

o N oo 00 A WO N =+ O

But hash function / is a function on key,

how is the probe sequence determined?

245

366
321
111

571
533

o N oo 00 A~ WO N =+ O

ERNES TP
0 an(ﬁ’gent Soﬁ'ware and E g

* |n case we use open addressing for collision resolution,

- h:Ux{0,1,.... m—1}->1{0,1, ..., m—1}

f
key

245

366

111

571
533

T

probe number

o N oo 00 A WO N =+ O

245

366

111

571
533

T

table index

o N oo 00 A WO N =+ O

‘Hash Function Re-defined

245

366
321
111

571
533

o N oo 00 A~ WO N =+ O

=

0 &btk T 2 R4 e
P9, BERGESIREF xR
7‘5 4435 School of Qnt@[ﬁgent Sofrware and fngineering

Hash Function Re-defined

* |n case we use open addressing for collision resolution,

- h:Ux{0,1,.... m—1}->1{0,1, ..., m—1}

1 f f
key probe number table index
HashlInsert(T, k): HashSearch(T. K):
1 :=0 .
1 :=0
repeat
Bk) repeat
it 1] < NULL J = hik,)
| J = it T[j]1=k
11j] =k .
e return j
i =i+
t.le.sez.—z+ until i = m or 7[j] = NULL
Hntite=m return NULL

return “overflow”

The Remove Operation

HashRemove(T, k):

| SRS TRYR
HashlInsert(T, k):
1:=0
repeat
j:=h(k, 1)
if 7[j]= NULL
11j] ==k
return j

elsei =i+ 1

until 7 = m

return “overflow”

245

366
321
111

571
533

0 N oo 00 A WO N =+ O

Remove 245

HashSearch(T, k):
1 =0
repeat
j = h(k, 1)
it T[j]=k
return j
1o=1+ 1
until i = m or 7[j] = NULL
return NULL

366
321
111

Search 321

571
533

0 N oo 00 A WO N =+ O

X

pos .= HashSearch(T, k)
If pos = NULL
I'lpos] := NULL

return pos

wWw\pnp =+ O

366 _—3

321
111

571
533

0 N o O B~

321 is here!

X

| e S TI2ANS

435 School of an(ﬁ'gent Soﬁ'ware and fEngineerin

HashlInsert(T, k):
1:=0
repeat

J = h(k, 1)

if 77j] = NULL or T[j] = DEL

11j] ==k
return j
elsei =i+ 1
until ; = m
return “overflow”

0
245 1

2
366 3
321 "y Remove 245
111 5

6
571 7
533 8

« DEL

366
321
111

571
533

o N oo 00 A~ WO N =+ O

- The Remove Operation

HashSearch(T, k): HashRemove(T, k):
1 :=0 pos = HashSearch(T, k)
repeat if pos !=NULL
J = h(k, 1) Tlpos] := DEL
if T[jl=k return pos
return j
=1+ 1
until i = m or T[j] = NULL
return NULL
N 0 0
V7
O o DEL DEL
~ 366 3 366 3
Search 321 321 4 Search 321 321 “S Search 321
111 5 111 5
6 6
571 7 571 7
533 8 533 8

DEL

366
321
111

571
533

o N oo 00 A WO N =+ O

o h(k,i) = (h'(k) n i) mod m Here, /' is an “auxiliary hash function”.

» The probe sequenceis h'(k), h'(k) + 1, h'(k) + 2, ...

Since the initial probe position determines the entire probe sequence,

only m distinct probe sequences are used with linear probing. . : 0
= 57 1
S g - ST . 533 2

* Another problem with linear probing: Clustering. @\’04 391 3 Cluster
W™ 4
_)
» Empty slot after a “cluster” has higher chance eel <1 366 5
to be chosen. 689 7
8

> “Cluster” grows larger and larger.

> Cluster” leads to higher search time, in theory.

SECENGENE L N CNCS 2021
School of an[ﬁgent Scj"rware and Engineering L . Pr b . R e o t ed
inear Probing Revisited:

Tombstones Mark the Death of Primary Clustering

Michael A. Bender” Bradley C. Kuszmaul William Kuszmaul'
Stony Brook Google Inc. MIT
Abstract

First introduced in 1954, the linear-probing hash table is among the oldest data structures in computer
science, and thanks to its unrivaled data locality, linear probing continues to be one of the fastest hash tables
in practice. It is widely believed and taught, however, that linear probing should never be used at high load :
factors: this is because of an effect known as primary clustering which causes insertions at a load factor of The remove mechanism
1 — 1/ to take expected time ©(z?) (rather than the intuitive running time of ©(z)). The dangers of primary (I .e., the DEL mark”)
clustering, first discovered by Knuth in 1963, have now been taught to generations of computer scientists, and
have influenced the design of some of the most widely used hash tables in production.

causes “anti-clustering” effect,
We show that primary clustering is not the foregone conclusion that it is reputed to be. We demonstrate that Tag prOVi ng the per'fo rmance Of

seemingly small design decisions in how deletions are implemented have dramatic effects on the asymptotic
performance of insertions: if these design decisions are made correctly, then even if a hash table operates
continuously at a load factor of 1 — ©(1/x), the expected amortized cost per insertion/deletion is O(x). This
is because the tombstones left behind by deletions can actually cause an anti-clustering effect that combats
primary clustering. Interestingly, these design decisions, despite their remarkable effects, have historically been
viewed as simply implementation-level engineering choices.

We also present a new variant of linear probing (which we call graveyard hashing) that completely eliminates
primary clustering on any sequence of operations: if, when an operation is performed, the current load factor
is 1 — 1/ for some x, then the expected cost of the operation is O(x). Thus we can achieve the data locality
of traditional linear probing without any of the disadvantages of primary clustering. One corollary is that, in the
external-memory model with a data blocks of size 3, graveyard hashing offers the following remarkably strong
guarantee: at any load factor 1 — 1/ satisfying + = o(B), graveyard hashing achieves 1 + o(1) expected block
transfers per operation. In contrast, past external-memory hash tables have only been able to offera 1 + o(1)
guarantee when the block size B is at least {(z?).

Our results come with actionable lessons for both theoreticians and practitioners, in particular, that well-
designed use of tombstones can completely change the asymptotic landscape of how the linear probing behaves
(and even in workloads without deletions).

linear-probing hash tables.

Quadratic Probing

Here, /i’ is an “auxiliary hash function”.

* h(k,i) = (h'(k) + cii + ¢,i*) mod m.
* Problem with quadratic probing: (Secondary) Clustering.

» Keys having same A’ values result in same probe sequences.

> As In linear probing, the initial probe determines the entire sequence, so
only m distinct probe sequences are used.

Double Hashing

* h(k,i) = (hy(k) +i-hy(k)) mod m.

Here, i; and h, are both “auxiliary hash functions”.

 Why “doubling” hashing?
> Observation 1: If 4, is good, h(k,0) looks “random”.
> Observation 2: If h, is good, probe sequence looks “random”.

> Linear and quadratic probing does not give Observation 2.

Double Hashing

* h(k,1) = (h1(k) +1- hz(k)) mod . - et e e Ll R

 The value h,(k) must be relatively prime to m for the entire hash table to be searched.
Conveniently, just let m be a prime number.

> Otherwise, if m and h,(k) have greatest common divisor d > 1 for some key k, then a search

|
for key k would examine only — of the hash table.

d

« Each possible (hl(k), hz(k)) pair yields a distinct probe sequence

> As we vary the key, the initial probe position /,(k) and the offset /,(k) may vary independently.

> Double hashing can use ®(m?) different probe sequences.

>
Z ~
< 45? School

| BG5S TiEFMr
ofiln

t@[ﬁgent Sofrware and fngineering

Performance of open-address hashing

* Recall the “Simple Uniform Hashing” Assumption:

> Every key Is equally likely to map to every bucket

> Keys are mapped independently.

* The “Uniform Hashing” Assumption;

» The probe sequence of each key is equally likely to be any of the m! permutations of
<0,1,....m—1>.

* None of linear probing, quadratic probing, or double hashing fulfills the “uniform
hashing” assumption!

> But double hashing does better than the other two.

SRS TR
ool of Inte

tellige igen frw and ‘E ngineering

~ Performance of open-address hashing

Theorem Let random variable X be the number of probes made in an

1 n
.Here,a =— < 1.
|l — o m

unsuccessful search, then E| X]| <

. Let event A; be: The i”" probe leads to an occupied bucket.

n——1) Si
m—G—1) m

° PI‘[X Z l] — PI‘[Al ﬂAzﬂ « oo ﬂAi_l]

= Pr[A,] - Pr[A, | A,] - Pr[A; | A, N A,]...Pr{A,_, | A,NnA,N...NA,_,] <()il = ¢!

— — E— o
—

- Always make 1%’ probe

Q) 0 Q) = 1
: - Make 2" probe with probability ~
o I — > < i—1 p— ¢ e —
[X] Z PriX > 1] < Z * [tata+ Make 3 probe with probability ~ a?
=1 =1

TEERRFS T2 F B
oo of

tellige igen frw and ‘Er 1gineem’ng

~ Performance of open-address hashing

Theorem Let random variable X be the number of probes made in an

n
.Here,a = — < 1.
m

|
successful search, then E[X] < —In (

a l —«a

 Let /V, be: the expected number of probes made when searching the i inserted key.

* Due to previous analysis, N; <

| BG5S TiEFMr
filn

>
Z ~
& é? School o

t@m’gent Sofrware and fngineering

Chaining vs Open-addressing

* Good parts of Open-addressing: Bad parts of Open-addressing:

> No memory allocation > Sensitive to choice of hash functions

- Chaining needs to allocate list-nodes - Clustering is a common problem

> Better cache performance » Sensitive to load factor

- Hash table stores in a continuous

> - Poor performance when a =~ 1
region in memory

- Fewer accesses brings table into
cache

=

O&abthk T FO 4=
PV, ZeERHS ITiEF6r
Z"x j School of Qnt‘e[ﬁ'gent Soﬁ'ware and fngineering

Efficient implementation of Ordered Dictionary

C seamch(s,0) | Insert(s,x) Remove(s,w

IRACEIRVARSL SRR ()(]og 1) in expectation O(logn) in expectation ~ O(logn) in expectation

O(logn) in worst case O(logn) in worst case O(logn) in worst case

Hashing

(chaining) O(1 + a) in expectation O(1) in worst case O(1) in worst case
0(1) (unsuccessful))
' —
Hashing , 1 1 O() in expectation Same as searching
(open addressing) O ;ln(l - a) (successful) 1 —

In expectation

Further reading

« [CLRS] Ch.11

INTRODUCTION TO

ALGCORITHMS

