

并查集 **Disjoint Sets (Union-Find)**

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne. Thanks for their supports!

钮鑫涛 Nanjing University 2024 Fall

DisjointSet ADT

- A disjoint-set ADT (also known as Union-Find ADT) maintains a collections
 - $\mathcal{S} = \{S_1, S_2, \ldots, S_k\}$ of **sets** that are **disjoint** and **dynamic**.
- Each set S_i has a "representative" member (i.e., a "leader").
- \bullet
 - MakeSet(x): create a set containing only x, add the set to S.
 - Union (x,y): find the sets containing x and y, say S_x and S_y ; remove S_x and S_y from S_y . add $S_x \cup S_y$ to \mathcal{S} .
 - Find (x): return a pointer to the leader of the set containing x.

DisjointSet ADT supports following operations: < Note:Does not support "remove" elements, or "split" sets.

Sample application of DisjointSet ADT

Computing connected components

Edge processed	Collection of disjoint sets
MakeSet	$\{a\} \ \{b\} \ \{c\} \ \{d\} \ \{e\} \ \{f\} \ \{g\} \ \{h\} \ \{i\} \ \{j\}$
Union(b, d)	$\{a\} \ \{b,d\} \ \{c\} \ \ \{e\} \ \ \{f\} \ \ \{g\} \ \ \{i\} \ \ \{j\}$
Union(e, g)	$\{a\} \ \{b,d\} \ \{c\} \ \{e,g\} \ \{f\} \ \{h\} \ \{i\} \ \{j\}$
Union(a, c)	$\{a,c\} \ \{b,d\}$ $\{e,g\} \ \{f\}$ $\{h\} \ \{i\} \ \{j\}$
Union(h, i)	$\{a,c\} \ \{b,d\}$ $\{e,g\} \ \{f\}$ $\{h,i\}$ $\{j\}$
Union(a, b)	$\{a,c,b,d\} \qquad \{e,g\} \{f\} \qquad \{h,i\} \qquad \{j\}$
Union(e, f)	$\{a,c,b,d\} \qquad \{e,f,g\} \qquad \{h,i\} \qquad \{j\}$
Union(b, c)	$\{a,c,b,d\} \qquad \qquad \{e,f,g\} \qquad \qquad \{h,i\} \qquad \qquad \{j\}$

- Basic Idea: Use a linked list to store and represent a set.
- Some more details:
 - A set object has pointers pointing to head and tail of the linked-list.
 - The linked-list contains the elements in the set.
 - Each element has a pointer pointing back to the set object.

The leader of a set is the first element in the linked-list.

- Basic Idea: Use a linked list to store and represent a set.
- MakeSet(x): Create a linked list containing only $x \rightarrow \Theta(1)$
- Find (x): Follow pointer from x back to the set object, then return pointer to the first element in the linked-list. $\rightarrow \Theta(1)$

- Basic Idea: Use a linked list to store and represent a set.

• Union (x,y): Append list in S_v to list in S_x ; destroy set object S_v ; $--\Theta(1)$ update set object pointers for elements originally in S_v - - - - Time depends on size of S_v .

- Basic Idea: Use a linked list to store and represent a set.
- Union (x,y): Append list in S_v to list in S_x ; destroy set object S_v ; update set object pointers for elements originally in S_v .

```
MakeSet(x_0)
for i := 1 to n
    MakeSet(x_i)
    Union(x_i, x_0)
```

- Complexity of this sequence of operations?
 - $\Theta(n^2)$ in total.
- Each MakeSet takes $\Theta(1)$ time, but the average cost of Union reaches $\Theta(n)$.

Union operation is too expensive!

- Improvement: Weighted-union heuristic (or, union-by-size). \bullet
- **Basic Idea:** In **Union**, append the shorter list to the longer one! \bullet
- **Complication**: Need to maintain size for each set (but this is easy).

 $MakeSet(x_0)$ for i := 1 to n $MakeSet(x_i)$ $Union(x_i, x_0)$

- Complexity of this sequence of operations?
 - $\Theta(n)$ in total
 - $\Theta(1)$ on average.

Worst complexity of any sequence of n + 1 MakeSet and then n Union?

- Worst complexity of **any** sequence of n + 1 **MakeSet** and then *n* **Union**?
 - $O(n \lg n)$
- **Proof**:
 - The n + 1 **MakeSet** op. take O(n) time in total.
 - For Union op., cost dominated by set obj. pointer changes.
 - For each element, whenever its set obj. pointer changes, its set size at least doubles!
 - Each element's set obj. pointer changes $O(\lg n)$ times
 - Therefore, the Union op. take $O(n \lg n)$ time in total (there are n + 1 elements).

"Average" cost of Union operation is reduced to $O(\lg n)$.

Rooted-tree implementation of DisjointSet

- **Basic Idea**: Use a rooted-tree to represent a set; the root of a tree is the "leader" of that set. \bullet
- **Some details**: Each node has a pointer pointing to its parent; parent of a "leader" is the \bullet leader itself.
- MakeSet(x): Create a tree containing only (root) x; parent of x is x. $------\Theta(1)$
- Find (x): Follow parent pointer from x back to the root, and return root.
- **Union** (x, y): Change the parent pointer of the root of x to the root of y. \bullet

Linked-list vs Rooted-tree Implementation

- MakeSet is fast in both cases.
- Linked-list: Find is fast, but Union is slow.
- **Rooted-tree: Find** is slow, but **Union** is fast.

If Union always unions roots of trees.

Rooted-tree implementation of DisjointSet

following **Find** will also cost $\Theta(n)$.

• Worst case: A sequence of *n* Union can cost $\Theta(n)$ on average; Many

Rooted-tree implementation of DisjointSet

- Again, use union-by-size heuristic; reduce worst-case cost of Union and Find to $O(\lg n)$.
 - Each time a node's depth increases, the tree size at least doubles. So size n tree has height $O(\lg n)$.
- Alternatively, use union-by-height heuristic: In Union, let tree of smaller height be subtree of larger height.
 - Union-by-height reduces worst-case cost of Union and Find to $O(\lg n)$.
 - Easy proof via induction: height h tree has $\geq 2^h$ nodes.

Path-compression in Find • Union (x, y) [*union-by-height*]: Change the parent of the root of the shallow tree to the root of the deep tree. Increase height if necessary. *Find*(*a*) **Path-Compression**: In Find(x), when traveling from x to root r_{y} , - Path-compression will not increase cost of Find asymptotically.

- MakeSet(x): Create a tree containing only (root) x; parent of x is x. Height of the tree is set to 0.
- Find (x): Follow parent pointer from x back to the root, and return root.
- Do some work in **Find** to speed-up future **Find**, without increasing asymptotic cost of **Find**.
 - make all nodes on this path directly points to root r_{γ} .

Path-compression in Find • Find (x) [path-compression]: Follow parent pointer from x back to the root; let nodes along the path directly point to root; at last, return root. • Union (x, y) [union-by- rank]: Change the parent of the root of the lower-rank tree to the root of the higher-rank tree. Increase rank if necessary. • Find can now change **heights**! Maintaining heights becomes expensive! *Find*(*a*)

- MakeSet(x): Create a tree containing only (root) x; parent of x is x. Rank of the tree is set to 0.

- **Simple Solution**: just ignore the impact on "height" when doing path compression.
 - In such case, the "height" is referred to "rank".
 - Rank is always an upper bound of height.

Union-by-rank and Path-compression

- of the node is set to 0.

How efficient is the implementation of DisjointSet? *MakeSet* is O(1), *Find* and *Union*? Almost O(1)

• MakeSet(x): Create a tree containing only (root) x; parent of x is x. Rank

• Find (x) [path-compression]: Follow parent pointer from x back to the root; let nodes along the path directly point to root; at last, return root.

• Union (x,y): [union-by-rank]: Change the parent of the root with lower rank to the root with higher rank. Increase rank of new root if necessary.

*Performance analysis for rooted-tree implementation with union-by-rank and path-compression

Slowly Growing Functions

Consider the recurrence \bullet

$$C(N) = \begin{cases} 0 & N \le 1 \\ C(\lfloor f(N) \rfloor) + 1 & N > 1 \end{cases}$$

- until we reach 1 (or less).

- When
$$f(N) = N - 2, f^*(N) = N/2$$

- When f(N) = N/2, $f^*(N) = \log N$

• In this equation, C(N) represents the number of times, starting at N, that we must iteratively apply f(N)

• We assume that f(N) is a nicely defined function that reduces N. Call the solution to the equation $f^*(N)$.

- When $f(N) = \log N$, $f^*(N) = \log^* N$, this function grows extremely slow (e.g., $\log^* 2^{65536} = 5$.)

- Goal: Any sequence of *MakeSet*, *Find*, *Union* operations has low average cost.
- Observation:
 - (a) *MakeSet* can be moved to the beginning of operation sequence, without affecting the cost.
 - (b) MakeSet itself has low cost.
- New Goal: Starting from a forest containing n nodes, any sequence of Find and Union operations has low average cost.

- Goal: Starting from a forest containing n nodes, any sequence of *Find* and *Union* operations has low average cost.
- **Observation**: Cost[Union(x, y)] = Cost[Find(x)] + Cost[Find(y)] + O(1).
- New Goal: Starting from a forest containing *n* nodes, any sequence of *Find* and *Union* operations has low average cost, in which input parameters to *Union* operation are always set leaders.

- Find (x) [path-compression]: Follow parent pointer from x back to the root; let nodes along the path directly point to root; at last, return root.
- PartialFind(x, y) [y is ancestor of x]: Follow parent pointer from x back to y; let nodes along the path point to y's parent; at last, return parent of y.

- Goal: Starting from a forest containing *n* nodes, any sequence of *Find* and *Union* operations has low average cost, in which input parameters to *Union* operation are always set leaders.
- Observation: Every *Find* operation can be replaced by a *PartialFind* operation.
- New Goal: Starting from a forest containing *n* nodes, any sequence of *PartialFind* and *Union* operations has low average cost, in which input parameters to *Union* operation are always set leaders.

- Goal: Starting from a forest containing *n* nodes, any sequence of *PartialFind* and *Union* operations has low average cost, in which input parameters to *Union* operation are always set leaders.
- Observation: We can push all Union operation to the beginning.
 - Relative order among all Union operation is preserved.
- New Goal: Starting from a forest containing n nodes, any sequence of PartialFind and Union operations has low average cost, in which every Union occurs before any PartialFind, and input parameters to Union operation are always set leaders.

- **PartialFind**, and input parameters to **Union** operation are always set leaders.
- **Observation**: Each **Union** operation only costs O(1).
- operations has low average cost.
- number of parent changes).
- operations has low total pointer assignments.

• Goal: Starting from a forest containing n nodes, any sequence of *PartialFind* and **Union** operations has low average cost, in which every **Union** occurs before any

New goal: Starting from a forest containing n nodes, any sequence of m PartialFind

• **Observation**: Cost of *PartialFind* is **dominated** by pointer assignments (that is, the

New goal: Starting from a forest containing n nodes, any sequence of m PartialFind

- Goal: Starting from a forest containing *n* nodes, any sequence of *m PartialFind* operations has low total pointer assignments.
- *T*(*m*, *n*, *r*): worst number of pointer assignments in any sequence of *m PartialFind*, starting from a size *n* forest where each node has rank at most *r*.
- Goal: T(m, n, r) is small.
- Claim: $T(m, n, r) \leq nr$
- **Proof** : Each node can change parent at most *r* times, since each new parent has higher rank than the old one.

- Fix forest F of n nodes with max rank r, and a sequence C of m **PartialFind** on *F*.
- T'(F, C): total number of ptr. assignments occurred in C.
- Let s be an arbitrary positive rank, partition F into F_{\perp} and F_{\perp} .
 - [High Forest] F_+ : containing nodes with rank > s;
 - [Low Forest] F_{-} : containing nodes with rank $\leq s_{-}$.
- Let $|F_+| = n_+$, and $|F_-| = n_-$
- m_{\perp} : number of operations in C that involve any node in F_{\perp} .
- m_{-} : $m m_{+}$

- Consider a PartialFind(x, y) in C:
- If rank(x) > s: the operation is a **PartialFind** operation in F_+ .
- If $rank(y) \leq s$: the operation is a **PartialFind** operation in F_{-} .

- Consider a PartialFind(x, y) in C:
- If $rank(x) \leq s$ and rank(y) > s:
 - Split the operation into
 - (a) a **PartialFind** operation in F_+ ;
 - (b) some shatter operations in $F_{,}$; (c) a pointer assignment for the "topmost" node in F_{-} .

- We have converted C into:
 - (a) C_+ : ops involving nodes only in F_+ ;
 - (b) C_{-} : ops involving nodes only in F_{-} ;
 - (c) shatter operations; and
 - (d) pointer assignments for "topmost" nodes in F_{-} .
- **Observations**:
 - Each node get shattered at most once (then be "topmost" node in F_{-}).
 - There are at most m_{+} pointer assignments for "topmost" nodes in F_{-} .

$T'(F, C) \le T'(F_+, C_+) + T'(F_-, C_-) + n + m_+$

- $T'(F, C) \le T'(F_+, C_+) + T'(F_-, C_-) + n + m_+$
 - Nodes in F_+ has rank at least s + 1 and at most r;
 - Nodes in F_{-} has rank at most s.
- Strategy: obtain a bound of $T'(F_+, C_+)$ to get recurrence of T'(F, C).
 - Previous Claim: $T(m, n, r) \leq nr$.
 - Recall that T(m, n, r) is the worst number of pointer assignment in any sequence of *PartialFind*, starting from a size *n* forest where each node has rank at most r.

- Claim: $T(m, n, r) \leq nr$.
- Claim: There are at most $n/2^i$ nodes of rank *i* in any size *n* forest.

$$T'(F_+, C_+) \leq n_+ \cdot r \leq \left(\sum_{i>s} \frac{n}{2^i}\right) \cdot r = \frac{n}{2}$$

- Fix $s = \lg r$, then $T'(F, C) \leq T'(F_-, C_-) + 2n + m_+$, or equivalently $T'(F, C) - m \leq (T'(F_{-}, C_{-}) - m_{-}) + 2n$
- $T''(m, n, r) \le T''(m, n, \lg r) + 2n$, where T''(m, n, r) = T(m, n, r) m
- $T''(m, n, r) \le 2n \lg^* r$. That is: $T(m, n, r) \le m + 2n \lg^* r$

Any sequence of *m* Union and Find on a size *n* forest takes $O(m + 2n \lg^* r)$ time, even in worst-case.

Note: one rank *i* tree has $\geq 2^i$ nodes (by induction)

Actual performance is even better!

Summary

- DisjointSet ADT: MakeSet(x), Union(x,y), and Find(x).
- Linked-list based implementation: \bullet
 - Use a linked-list to denote a set, first element in list is leader.
 - Union is slower, Find is fast.
 - With *union-by-size*, Union has average cost $O(\lg n)$.
- Rooted-tree based implementation:
 - Use a rooted-tree to denote a set, root of the tree is leader.
 - Union is fast (if input parameters are leaders), Find is slower.

Further reading

- [CLRS] Ch.21(excluding 21.4)
- [Weiss] Ch.8 (8.6)
- Lecture notes by Jeff Erickson
 - http://jeffe.cs.illinois.edu/teaching/algorithms/notes/11-unionfind.pdf

