
智能软件与⼯程学院
School of Intelligent Software and Engineering

并查集
Disjoint Sets (Union-Find)

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne.Thanks for their supports!

钮鑫涛
Nanjing University

2024 Fall

智能软件与⼯程学院
School of Intelligent Software and Engineering

DisjointSet ADT
• A disjoint-set ADT (also known as Union-Find ADT) maintains a collections

‣ of sets that are disjoint and dynamic.

• Each set has a “representative” member (i.e., a “leader”).

• DisjointSet ADT supports following operations:

‣ MakeSet(x): create a set containing only , add the set to .

‣ Union(x,y): find the sets containing and , say and ; remove and from ,
add to .

‣ Find(x): return a pointer to the leader of the set containing .

𝒮 = {S1, S2, . . . , Sk}

Si

x S

x y Sx Sy Sx Sy 𝒮
Sx ∪ Sy 𝒮

x

Note:Does not support “remove” elements, or “split” sets.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Sample application of DisjointSet ADT
• Computing connected components

a b

c d

e f

g

h j

i

Edge processed Collection of disjoint sets

MakeSet {a} {b} {c} {d} {e} {f} {g} {h} {i} {j}

Union(b, d) {a} {b,d} {c} {e} {f} {g} {h} {i} {j}

Union(e, g) {a} {b,d} {c} {e,g} {f} {h} {i} {j}

Union(a, c) {a,c} {b,d} {e,g} {f} {h} {i} {j}

Union(h, i) {a,c} {b,d} {e,g} {f} {h,i} {j}

Union(a, b) {a,c,b,d} {e,g} {f} {h,i} {j}

Union(e, f) {a,c,b,d} {e,f,g} {h,i} {j}

Union(b, c) {a,c,b,d} {e,f,g} {h,i} {j}

(b, d)
(b, c)

(a, b)

(a, c) (e, g)

(e, f)

(h, i)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Linked-list implementation of DisjointSet
• Basic Idea: Use a linked list to store and represent a set.

• Some more details:

‣ A set object has pointers pointing to head and tail of the linked-list.

‣ The linked-list contains the elements in the set.

‣ Each element has a pointer pointing back to the set object.

‣ The leader of a set is the first element in the linked-list.

f g d

∅head

tail
S1

c h e

head

tail
S2

b

∅

智能软件与⼯程学院
School of Intelligent Software and Engineering

Linked-list implementation of DisjointSet
• Basic Idea: Use a linked list to store and represent a set.

• MakeSet(x): Create a linked list containing only .

• Find(x): Follow pointer from back to the set object, then return pointer to
the first element in the linked-list.

x

x

f g d

∅head

tail
S1

c h e

head

tail
S2

b

∅

→ Θ(1)

→ Θ(1)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Linked-list implementation of DisjointSet
• Basic Idea: Use a linked list to store and represent a set.

• Union(x,y): Append list in to list in ; destroy set object ;
update set object pointers for elements originally in .

Sy Sx Sy
Sy

f
head

tailS1

g d
∅

c
head

tailS2

h e b
∅

f
head

tailS1

g d c h e b
∅

Union(g, e)

Θ(1)
Time depends on size of .Sy

Union can be slow, even in amortized sense!

智能软件与⼯程学院
School of Intelligent Software and Engineering

Linked-list implementation of DisjointSet

MakeSet(x0)
for i := 1 to n

 MakeSet(xi)
 Union(xi, x0)

• Complexity of this sequence of operations?

‣ in total.

• Each MakeSet takes time, but the average cost of Union reaches .

Θ(n2)

Θ(1) Θ(n)

Union operation is too expensive!

• Basic Idea: Use a linked list to store and represent a set.

• Union(x,y): Append list in to list in ; destroy set object ;
update set object pointers for elements originally in .

Sy Sx Sy
Sy

智能软件与⼯程学院
School of Intelligent Software and Engineering

Linked-list implementation of DisjointSet
• Improvement: Weighted-union heuristic (or, union-by-size).

• Basic Idea: In Union, append the shorter list to the longer one!

• Complication: Need to maintain size for each set (but this is easy).

MakeSet(x0)
for i := 1 to n

 MakeSet(xi)
 Union(xi, x0)

• Complexity of this sequence of operations?

• in total

• on average.

Θ(n)

Θ(1)

Worst complexity of any sequence of MakeSet and then Union?n + 1 n

智能软件与⼯程学院
School of Intelligent Software and Engineering

Linked-list implementation of DisjointSet
• Worst complexity of any sequence of MakeSet and then Union?

‣

• Proof:

‣ The MakeSet op. take time in total.

‣ For Union op., cost dominated by set obj. pointer changes.

‣ For each element, whenever its set obj. pointer changes, its set size at least doubles!

‣ Each element’s set obj. pointer changes times

‣ Therefore, the Union op. take time in total (there are elements).

n + 1 n

O(n lg n)

n + 1 O(n)

O(lg n)

O(n lg n) n + 1

“Average” cost of Union operation is reduced to .O(lg n)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Rooted-tree implementation of DisjointSet
• Basic Idea: Use a rooted-tree to represent a set; the root of a tree is the “leader” of that set.

• Some details: Each node has a pointer pointing to its parent; parent of a “leader” is the
leader itself.

• MakeSet(x): Create a tree containing only (root) ; parent of is .

• Find(x): Follow parent pointer from back to the root, and return root.

• Union(x,y): Change the parent pointer of the root of to the root of .

x x x

x

x y

Θ(1)

Time complexity depends on depth of and x y

c

h e

b

Set

with leader

{c, h, e, b}
c

Set

with leader

{f, d, g}
f

f

d

g

Union(e, g)
c

h e

b

f

d

g

智能软件与⼯程学院
School of Intelligent Software and Engineering

Linked-list vs Rooted-tree Implementation

• MakeSet is fast in both cases.

• Linked-list: Find is fast, but Union is slow.

• Rooted-tree: Find is slow, but Union is fast.

If Union always unions roots of trees.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Rooted-tree implementation of DisjointSet

• Worst case: A sequence of Union can cost on average; Many
following Find will also cost .

n Θ(n)
Θ(n)

c

b

a

d

c

b

a

MakeSet(d)

Union(a, d)b

a

MakeSet(c)

Union(a, c)

MakeSet(b)

Union(a, b)

a

智能软件与⼯程学院
School of Intelligent Software and Engineering

Rooted-tree implementation of DisjointSet
• Again, use union-by-size heuristic; reduce worst-case cost of Union and Find to .

‣ Each time a node’s depth increases, the tree size at least doubles. So size tree has height .

O(lg n)

n O(lg n)

b

a

MakeSet(c)

Union(a, c)

MakeSet(c)

Union(a, c)

a
b

a c

b

a c

MakeSet(d)

Union(a, d)

d

can we do better?

• Alternatively, use union-by-height heuristic: In Union, let tree of smaller height be subtree of larger
height.

- Easy proof via induction: height tree has nodes.h ≥ 2h

‣ Union-by-height reduces worst-case cost of Union and Find to . O(lg n)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Path-compression in Find
• MakeSet(x): Create a tree containing only (root) ; parent of is .

Height of the tree is set to .

• Find(x): Follow parent pointer from back to the root, and return
root.

• Union(x,y)[union-by-height]: Change the parent of the root of the
shallow tree to the root of the deep tree. Increase height if necessary.

• Do some work in Find to speed-up future Find, without increasing
asymptotic cost of Find.

‣ Path-Compression: In Find(x), when traveling from to root ,
make all nodes on this path directly points to root .

- Path-compression will not increase cost of Find asymptotically.

x x x
0

x

x rx
rx

a

b

c

d

e

f

f

a b c d e

Find(a)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Path-compression in Find
• MakeSet(x): Create a tree containing only (root) ; parent of is .

Height of the tree is set to .

• Find(x)[path-compression]: Follow parent pointer from back to the
root; let nodes along the path directly point to root; at last, return root.

• Union(x,y)[union-by-height]: Change the parent of the root of the
shallow tree to the root of the deep

• Find can now change heights! Maintaining heights becomes expensive!

x x x
0

x

a

b

c

d

e

f

f

a b c d e

Find(a)

• Simple Solution: just ignore the impact on “height” when doing
path compression.

‣ In such case, the “height” is referred to “rank”.

‣ Rank is always an upper bound of height.

tree. Increase height if necessary.
rank

Rank

lower-rank higher-rank rank

智能软件与⼯程学院
School of Intelligent Software and Engineering

Union-by-rank and Path-compression

• MakeSet(x): Create a tree containing only (root) ; parent of is . Rank
of the node is set to .

• Find(x)[path-compression]: Follow parent pointer from back to the
root; let nodes along the path directly point to root; at last, return root.

• Union(x,y): [union-by-rank]: Change the parent of the root with lower
rank to the root with higher rank. Increase rank of new root if necessary.

x x x
0

x

How efficient is the implementation of DisjointSet?
 MakeSet is , Find and Union?O(1)

Almost O(1)

智能软件与⼯程学院
School of Intelligent Software and Engineering

*Performance analysis for
rooted-tree implementation

with union-by-rank and path-compression

智能软件与⼯程学院
School of Intelligent Software and Engineering

Slowly Growing Functions
• Consider the recurrence

‣

‣ In this equation, represents the number of times, starting at , that we must iteratively apply
until we reach 1 (or less).

‣ We assume that is a nicely defined function that reduces . Call the solution to the equation .

- When ,

- When ,

- When , , this function grows extremely slow (e.g., .)

C(N) = {0 N ≤ 1
C(⌊ f(N)⌋) + 1 N > 1

C(N) N f(N)

f(N) N f*(N)

f(N) = N − 2 f*(N) = N/2

f(N) = N/2 f*(N) = log N

f(N) = log N f*(N) = log* N log* 265536 = 5

智能软件与⼯程学院
School of Intelligent Software and Engineering

*Performance Analysis
• Goal: Any sequence of MakeSet, Find, Union operations has low

average cost.

• Observation:

‣ (a) MakeSet can be moved to the beginning of operation sequence,
without affecting the cost.

‣ (b) MakeSet itself has low cost.

• New Goal: Starting from a forest containing nodes, any sequence of
Find and Union operations has low average cost.

n

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance Analysis

• Goal: Starting from a forest containing nodes, any sequence of Find
and Union operations has low average cost.

• Observation: Cost[Union(x, y)] = Cost[Find(x)] + Cost[Find(y)] + .

• New Goal: Starting from a forest containing nodes, any sequence of
Find and Union operations has low average cost, in which input
parameters to Union operation are always set leaders.

n

O(1)

n

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance Analysis
• Find(x)[path-compression]: Follow parent pointer from back to the

root; let nodes along the path directly point to root; at last, return root.

• PartialFind(x, y)[y is ancestor of x]: Follow parent pointer from back
to ; let nodes along the path point to ’s parent; at last, return parent of .

x

x
y y y

y

x

yx

Every Find operation can be replaced by a PartialFind operation.

y

x

…

…

PartialFind(x,y) yx …

…

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance Analysis

• Goal: Starting from a forest containing nodes, any sequence of Find
and Union operations has low average cost, in which input parameters to
Union operation are always set leaders.

• Observation: Every Find operation can be replaced by a PartialFind
operation.

• New Goal: Starting from a forest containing nodes, any sequence of
PartialFind and Union operations has low average cost, in which input
parameters to Union operation are always set leaders.

n

n

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance Analysis

y

x

PartialFind

yx

yx

Union

yx

y

x

PartialFind

y

x

Union

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance Analysis
• Goal: Starting from a forest containing nodes, any sequence of

PartialFind and Union operations has low average cost, in which input
parameters to Union operation are always set leaders.

• Observation: We can push all Union operation to the beginning.

‣ Relative order among all Union operation is preserved.

• New Goal: Starting from a forest containing nodes, any sequence of
PartialFind and Union operations has low average cost, in which every
Union occurs before any PartialFind, and input parameters to Union
operation are always set leaders.

n

n

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance Analysis
• Goal: Starting from a forest containing nodes, any sequence of PartialFind and

Union operations has low average cost, in which every Union occurs before any
PartialFind, and input parameters to Union operation are always set leaders.

• Observation: Each Union operation only costs .

• New goal: Starting from a forest containing nodes, any sequence of PartialFind
operations has low average cost.

• Observation: Cost of PartialFind is dominated by pointer assignments (that is, the
number of parent changes).

• New goal: Starting from a forest containing nodes, any sequence of PartialFind
operations has low total pointer assignments.

n

O(1)

n m

n m

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance Analysis
• Goal: Starting from a forest containing nodes, any sequence of

PartialFind operations has low total pointer assignments.

• : worst number of pointer assignments in any sequence of
PartialFind, starting from a size forest where each node has rank at most .

• Goal: is small.

• Claim:

• Proof : Each node can change parent at most times, since each new parent
has higher rank than the old one.

n m

T(m, n, r) m
n r

T(m, n, r)

T(m, n, r) ≤ nr

r

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance Analysis
• Fix forest of nodes with max rank , and a sequence of

PartialFind on .

• : total number of ptr. assignments occurred in .

• Let be an arbitrary positive rank, partition into and .

‣ [High Forest] : containing nodes with rank ;

‣ [Low Forest] : containing nodes with rank .

• Let , and

• : number of operations in that involve any node in .

• :

F n r C m
F

T′ (F, C) C

s F F− F+

F+ > s

F− ≤ s

|F+ | = n+ |F− | = n−

m+ C F+

m− m − m+

F
rank > s

rank ≤ s

F+ rank > s

rank ≤ s

F−

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance Analysis
• Consider a PartialFind(x, y)in :

• If rank(x) : the operation is a
PartialFind operation in .

• If rank(y) : the operation is a
PartialFind operation in .

C

> s
F+

≤ s
F−

x

y

x

y

rank = s

y

x

rank = s

…

x

y

…

智能软件与⼯程学院
School of Intelligent Software and Engineering

shatter

Performance Analysis
• Consider a PartialFind(x, y)in :

• If rank(x) and rank(y) :

‣ Split the operation into

- (a) a PartialFind operation in ;

- (b) some shatter operations in ;

- (c) a pointer assignment for the
“topmost” node in .

C

≤ s > s

F+

F−

F−

y y

x

x

y
y

t

x

x

split

Topmost

rank = s

rank = s

They become

Topmost later

t a pointer assignment do it again each time when the topmost
node is involved in such a SPLIT partial find.

智能软件与⼯程学院
School of Intelligent Software and Engineering

#operations in that involve any node in .C F+

Performance Analysis
• We have converted into:

‣ (a) : ops involving nodes only in ;

‣ (b) : ops involving nodes only in ;

‣ (c) shatter operations; and

‣ (d) pointer assignments for “topmost” nodes in .

C

C+ F+

C− F−

F−
• Observations:

‣ Each node get shattered at most once (then be
“topmost” node in).

‣ There are at most pointer assignments for
“topmost” nodes in .

F−

m+
F−

T′ (F, C) ≤ T′ (F+, C+) + T′ (F−, C−) + n + m+

x

y

…

shatter

y

x

t a pointer assignment for topmost

x

y

…

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance Analysis
•

‣ Nodes in has rank at least and at most ;

‣ Nodes in has rank at most .

• Strategy: obtain a bound of to get recurrence of .

‣ Previous Claim: .

‣ Recall that is the worst number of pointer assignment in
any sequence of PartialFind, starting from a size forest where
each node has rank at most .

T′ (F, C) ≤ T′ (F+, C+) + T′ (F−, C−) + n + m+

F+ s + 1 r

F− s

T′ (F+, C+) T′ (F, C)

T(m, n, r) ≤ nr

T(m, n, r)
n

r

F
rank > s

rank ≤ s

F+ rank > s

rank ≤ s

F−

智能软件与⼯程学院
School of Intelligent Software and Engineering

Performance Analysis
• Claim: .

• Claim: There are at most nodes of rank in any size forest.

‣

‣ Fix , then , or equivalently

‣ , where

‣ . That is:

T(m, n, r) ≤ nr

n/2i i n

T′ (F+, C+) ≤ n+ ⋅ r ≤ (∑
i>s

n
2i) ⋅ r =

nr
2s

s = lg r T′ (F, C) ≤ T′ (F−, C−) + 2n + m+
T′ (F, C) − m ≤ (T′ (F−, C−) − m−) + 2n

T′ ′ (m, n, r) ≤ T′ ′ (m, n, lg r) + 2n T′ ′ (m, n, r) = T(m, n, r) − m

T′ ′ (m, n, r) ≤ 2n lg* r T(m, n, r) ≤ m + 2n lg* r

Any sequence of Union and Find on a size forest takes <me, even in worst-case.m n O(m + 2n lg* r)

Actual performance is even beBer!

Note: one rank tree has nodes
(by induction)

i ≥ 2i

智能软件与⼯程学院
School of Intelligent Software and Engineering

Summary
• DisjointSet ADT: MakeSet(x), Union(x,y), and Find(x).

• Linked-list based implementation:

‣ Use a linked-list to denote a set, first element in list is leader.

‣ Union is slower, Find is fast.

‣ With union-by-size, Union has average cost .

• Rooted-tree based implementation:

‣ Use a rooted-tree to denote a set, root of the tree is leader.

‣ Union is fast (if input parameters are leaders), Find is slower.

‣ With union-by-size or union-by-height, Union and Find has worst-case cost .

‣ With union-by-rank and path-compression, Union and Find has average cost .

O(lg n)

O(lg n)

O(lg* n)

In amortized sense!

智能软件与⼯程学院
School of Intelligent Software and Engineering

Further reading
• [CLRS] Ch.21(excluding 21.4)

• [Weiss] Ch.8 (8.6)

• Lecture notes by Jeff Erickson

‣ http://jeffe.cs.illinois.edu/teaching/algorithms/notes/11-unionfind.pdf

