TiE=Fr
nd Engineerin

RE LT —E N A
Some application of DFS

Y
Nanjing University
2024 Fall

The slides are main[y ac{aptec{ ﬁom the ofzigina/ ones shared Ay C/Laa(jong :Z/Leng and Kevin Wayne.j hanks][o’z theiy suppo’zts./

PV, SEERMGS IREFMKR
9 School of Intelligent Softwar 1 1

~ Directed Acyclic Graphs (DAG)

* A graph without cycles is called acyclic.

* A directed graph without cycles is a directed acyclic graph (DAG).

—0® O—C0F e—6 e
@x ® © © @x

Cyclic Acyclic Cyclic DAG

=
OD&bkhk T 30 R4 e
| BEERS IREF R
4‘55 School (f Qnt‘e[ﬁ'genf Soﬁ'ware and Engineem’ng

Application of DAG

* DAGs are good for modeling relations such as: tnderehorts
causalities, hierarchies, and temporal v
dependencies.

* For example:

> Consider how you get dressed in the morning.

- Must wear certain garments before others
(e.g., socks before shoes).

- Other items may be put on in any order
(e.g., socks and pants).

> This process can be modeled by a DAG!

What is a valid order to perform all the task?

| e S TI2ANS

Z"x 4‘35 School (yf Qnt‘e[ﬁgent Sofrware and fngineering

Topological Sort

A topological sort of a DAG G is a linear ordering of its vertices such that if G
contains an edge (u, v) then u appears before v in the ordering.

« E(G) defines a partial order over V((G), a topological sort gives a total order
over V(G) satisfying E(G)

Undershorts

| |

. X
oo e]

Socks Undershorts g Pants g Shoes Shirt w} Belt Tie g Jacket

A topological ordering arranges the vertices along a horizontal line so that all
edges go “from left to right”.

Jacket

=

OD&bkhk T 30 R4 e
Y. EEERGFS TiEFbx
?? 4@5 School (f Qnt‘e[ﬁ'gent Soﬁ'ware and Engineem’ng

Topological Sort

 Topological sort is impossible if the graph contains a cycle.
* A given graph may have multiple different valid topological ordering.

How to generate a topological ordering?

Undershorts

Socks Undershorts g ¢ Pants g & Shoes

Undershorts Pants g 4 Shoes Shirt o 4 Belt

Jacket

Topological Sort

o A topological sort of a DAG G is a linear ordering of its vertices such that if
G contains an edge (u, v) then u appears before v in the ordering.

* Question: Does every DAG has a topological ordering?
* Question: How to tell if a directed graph is acyclic?

> And if acyclic, how to do topological sort?

Topological Sort

Lemma 1 Directed graph G is acyclic iff a DFS of G yields no edges

 Proof of [—>] (Directed graph G is acyclic = a DFS of G yields no edges)

> For the sake of contradiction, assume DFS yields back edge (u, v).
> S0 v is ancestor of i in DFS forest, meaning there’s a path from v to u in G.

> But together with edge (u, v) this creates a cycle. Contradiction!

Topological Sort

Lemma 1 Directed graph G is acyclic iff a DFS of G yields no edges

 Proof of [<=] (Directed graph G is acyclic <= a DFS of G yields no edges)

> For the sake of contradiction, assume G contains a cycle C. first discovered

/
/

» Let v be the first node to be discovered in C. :

> By the White-path theorem, u is a descendant of v in DFS forest.

> But then when processing u, (1, v) becomes a back edge!

Topological Sort

Lemma 2 If we do a DFS in DAG G, then u.f > v.f for every edge (u,0) in G

e Proof:

> When exploring (i, v), v cannot be GRAY. (Otherwise we have a back edge.)

> |f vis WHITE, then v becomes a descendant of u,and u.f > v.f

> If vis BLACK, then trivially u.f > v.f

. Forward ~Cross

- -

Tree

Topological Sort

A topological sort of a DAG G is a linear ordering of its vertices such that if G contains

an edge (i, v) then u appears before v in the ordering.

* Q:{Does every DAG has a topological ordering?
* Q:|How to tell if a directed graph is acyclic?

If acyclic, how to do topological sort?

Lemma 1 Directed graph G is acyclic iff a DFS of G yields no back edges

Lemma 2 If we do a DFS in DAG G, then u.f > v.f for every edge (u,v) in G

!

Theorem Decreasing order of finish times of DFS on DAG gives a topological ordering

1

Corollary Every DAG has a topological ordering

Topological Sort

e Topological Sort of G:
(@) Do DFS on G, compute finish times for each node along the way.

(b) When a node finishes, insert it to the head of a list.

(c) If no back edge is found, then the list eventually gives a Topological Ordering.

Time complexity is O(n + m)

Topological Sort

11/16 17/ 18

Undershorts

WEe W ™ 9/ 10

O

Socks Undershorts --ﬂ} Pants --ﬂ} Shoes Shirt m 4 Belt ' Tie Jacket
17/ 11/ 12/ 13/ 9/ 1/ 6/ 2/ 3/

RE Gl 3/ 4

— AL,
ineeri

"Source and Sink in DAG

* A source node is a node with no incoming edges; @ (c @
* A sink node Is a hode with no outgoing edges.
ORNG

> Example: B is source; both £ and F are sink.

e an iEng

WHY?

e Claim: Each DAG has at least one source and one sink.

e Observations: In DFS of a DAG, node with max finish time must be a source
> Node with max finish time appears first in topological sort, it cannot have incoming edges.
e Observations: In DFS of a DAG, node with min finish time must be a sink.

> Node with min finish time appears last in topological sort, it cannot have outgoing edges.

| meem S TR
9 hool o Qnt‘e[ﬁ'gent Soﬁ'ware and Engineering

ernative Algorithm for Topological Sort

(1) Find a source node s in the (remaining) graph, output it.

(2) Delete s and all its outgoing edges from the graph.

(3) Repeat until the graph IS empty- Formal proof of correctness?

How efficient can you implement it?
0.e
ONnG

6
® &

®

00 0P

rs
Dabik T 0 4
PV.| EEERHS ITIEF
7 telligent Sofrware and fngineering

6 (Strongly)
Connected Components

N

ﬁ EAT'-LFS *E%Bﬂ:
ool of Inte

(Strongly) Connected Components

* For an undirected graph G, a Connected Component
(CC) is a maximal set C C V(G), such that for any pair of
nodes 1 and v in C, there is a path from u to v.

> E.g.: {4}, {1, 2, 5}, {3, 6}

e For a directed graph G, a Strongly Connected (A —(B)y—(c)
Component (SCC) is a maximal set C C V(G), such that
for any pair of nodes 1 and v in C, there is a directed path o) E—F

from u to v, and vice versa. o)

- E.g.: {A}, {D}, {B, E}, {C, F}, {G, H. I,], K, L} O— &

TEFr

* Given an undirected graph, how to compute its connected components (CC) ?

» Easy, just do DFS (or BFS) on the entire graph.

- DFS(u) (or BFS(11)), reaches exactly nodes in the CC containing u.

* Given a directed graph, how to compute its strongly connected components (SCC) ?

> Err, can be done efficiently, but not so obvious...

Component Graph

 Given a directed graph G = (V, E), assume it

has k SCC {C;, (>, ..., C}}, then the W—fer—(c;
component graph is G¢ = (V¢ EY). oG
» The vertex set V¢ is V1, Vo, ..., Vi), €ach (6 —(H)
representing one SCC. 0 =6 o
(L

» There is an edge (v, vj) e EC if there
exists (4, v) € E, whereu € C;andv € C.

Claim: A component graph is a DAG!

* Proof: Otherwise, the components in the circle
becomes a bigger SCC, contradiction!

Computing SCC

« A component graph is a DAG. (A)—(B)—"(c,

 Each DAG has at least one source and one sink. (o) (E)—(F,

 |f we do one DFS starting from a node in a sink SCC, (6 —(H)
then we explore exactly nodes in that SCC and stop! o= Q
> Due to the white-path theorem. L

* A good start, but two problems exist:
> (1) How to identify a node that is in a sink SCC?

> (2) What to do when the first SCC is done?

Computing SCC

* (1) How to identify a node that is in a sink SCC?
e (2) What to do when the first SCC is done?

 Don’t do it directly: find a node in a source SCC!

. Reverse the direction of each edge in G gets G*.

« G and G* have the same set of SCCs.

.« G¢ and (G®® have same vertex set, but the
direction of each edge is reversed.

. A source SCC in (G®)¢ is a sink SCC in G°.

Computing SCC

* (1) How to identify a node that is in a sink SCC?

e (2) What to do when the first SCC is done?

. Compute G"in O(n + m) time, then find a
node is a source SCC in GXi

e But how to find such a node?

» Do DFS in G&, the node with maximum finish
time is guaranteed to be in source SCC.

Computing SCC

Lemma For any edge (1, V) € E(G®), if u € C;andv € C;, then max{u.f} > max{v.f}
ueC, vel;

e Proof:

» Consider nodes in C; and C] let w be the first node visited by DFS.

> If w € C, then all nodes in C; will be visited before any node in C; is visited.

> In this case, the lemma clearly is true.

» [fw E Cl-, at the time that DFS visits w, for any node in Cl- and C, there is a white-path

from w to that node.

> |In this case, due to the white-path theorem, the lemma again holds.

T FEZbr
nd Engineeri

Computing SCC

* (1) How to identify a node that is in a sink SCC?
Lemma For any edge (1, V) € E(G®), ifu € C;andv € (;, then max{u.f} > max{v.f}
ueC; vel;

. Compute G"in O(n + m) time, do DFS in G and find the node with max finish time.

» This node is in a source SCC of G~

Computing SCC

* (1) How to identify a node that is in a sink SCC?

e (2) What to do when the first SCC is done?

» For remaining nodes in G, the node with max finish time (in DFS of GR) IS again
in a sink SCC, for whatever remains of G.

Computing SCC

e Algorithm Description:
» Compute GX.
> Run DFS on G* and record finish times f-

> Run DFS on G, but in DFSA11, process nodes in decreasing order of .

» Each DFS tree is a SCC of G.

« Time complexity is O(n + m):

» O(n + m) time for computing G*.

Can we be faster (even if just with smaller constant)?

» Two passes of DFS, each costing O(n + m).

EEEMFS Ti1E= e
&/ School (yf an[ﬁgent Soﬁ'ware and Engineering

‘Tarjan’s SCC Algorithm

* if we start from a node in a sink SCC, then we explore
exactly nodes in that SCC and stop!

» But how to find such a node?

* Previous algorithm’s approach:

» A node in a source SCC in G must be in a sink SCC in G.

* Tarjan comes up with a method to identify a node in some
sink SCC directly!

! % - .
- . ’
\ P 3 ¢
r's .
T g
~
] !
i
A :
‘ 3 !
’ L N v
+ L =8 . : i
.7 ‘!"; : { v \
¥ l-.' S % t
g l» 3 i ¥ A

Robert Tarjan

syﬁ%ﬂ#%“&%h

V) School of ntelligent Software and Engine

Cz — C3
» First node in C, (root of () / \ / / \ /
» Some nodes in G, c, & cy Cs
~ First node in C; (root of ()
—_— — —_ =D
» Some nodes in ;5 cg —> ¢ — g — 6 — ¢
X b
~ First node in (5 (root of Cs) / \ A / N\ "
» All other nodes in Cs (Cs is a sink SCC) - = - =
> All other nodes in (5 (C5 becomes a sink SCC by then)
- —> - —>
> Some nodes in C, €1 . e - G — Sl 20 8
y,)\ J Vo / /1 Vo /
> First node in C, (root of C,) ‘/ \ /‘/“ 7 \ /‘/“
Cy Cs Cy Cs
> All other nodes in C, (C, is a sink SCC)
> All other nodes in G, (C, becomes a sink SCC by then) o — ¢ :_‘: &
), B
> First node in C (root of C) ‘:/v \ /Z/

> All other nodes in C; (C; becomes a sink SCC by then) Cy Cs

Let’s have a closer look at the order that DFS examines nodes

L0110q Yoe1s

» Firstnodein C; (oot of Cy '

> All other nodes in C5 (Cs is a sink SCC)

|
|
|
|
If we can identify root of (s, call it 75, then all nodes
visited during DFS starting from 5 are the nodes in Cs.

If we push a node to a stack when it is discovered,
when DFS returns from r5, all nodes above r; in the

stack are in (5 and can be popped!

doi yoels

=]
O&abthk T FO 4=
| EEEHS IREF
4 9 School of an[ﬁgent Soﬁ'ware and fngineering

Let’s have a closer look at the order that DFS examines nodes

L0110q Yoe1s

doi yoels

> First node in C;5 (root of C5) '

> Some nodes in C;

> All other nodes in C5 (C5 becomes a sink SCC by then)

|

Given that we know nodes in Cs, , if we can identify
root of (5, call it 75, then all nodes not in C; visited
during DFS starting from r; are the nodes in Cs.

If we push a node to a stack when it is discovered,
when DFS returns from r;, all nodes above r; in the

stack are in (5 and can be popped!

=]
O&abthk T FO 4=
| EEEHS IREF
4 9 School of an[ﬁgent Soﬁ'ware and fngineering

Let’s have a closer look at the order that DFS examines nodes

L0110q Yoe1s

If we can identify root of C,, call it r,, then all nodes
visited during DFS starting from r, are the nodes in C,.

If we push a node to a stack when it is discovered,
when DFS returns from r,, all nodes above r, in the

stack are in C, and can be popped!

» First node in C, (root of C)

» All other nodes in C, (C, is a sink SCC)

doi yoels

doi yoels

» Some nodes in C
Given that we know nodes in C5 & C, & G5, if we can

- - =1

| identify root of C,, call it r,, then all nodes not in C5 & |
C, & C; visited during DFS starting from r, are the
nodes in (.

If we push a node to a stack when it is discovered,
when DFS returns from r,, all nodes above r;, in the

stack are in C, and can be popped!

€1 — &) P C3
‘7 ¢ 4= =
:i : },// ¥ x
:: : C4 CS
| |

=]
O&abthk T FO 4=
| EEEHS IREF
4 9 School of an[ﬁgent Soﬁ'ware and fngineering

Let’s have a closer look at the order that DFS examines nodes

L0110q Yoe1s

Given that we know nodes in C,, if we can identify root
of Cy, call it 7|, then all nodes not in C,visited during
DFS starting from r, are the nodes in C;.

If we push a node to a stack when it is discovered,
when DFS returns from ry, all nodes above r, in the

stack are in C; and can be popped!

3
O&abthk T FO 4=
| EEEHS IREF

4 9 School of ﬂnt‘e[ﬁ'gent Soﬁ'ware and fngineering

Let’s have a closer look at the order that DFS examines nodes

L0110q Yoe1s

For each SCC C,, let r; be its root. If we push a node

to a stack when it is discovered, when DFS returns
from r, all nodes above r; in the stack are in C; and can

be popped!

But how to identify each root r,?

ﬁ AT':F '3 *E%Bﬂ:
ool of Inte

Tarjan s method to identify root of SCC

» Fix some DFS process, for each vertex v, let C be the SCC that v is in.

Then, low(V) is the smallest discovery time among all nodes in C, that
are reachable from v via a path of tree edges followed by at most one
non-tree edge.

o By definition, low(v) < v.d as v is reachable from itself.

Lemma Node v is the root of a SCC iff low(v) =v.d

ﬁ AT':F '3 *E%Bﬂ:
ool of Inte

Tarjan s method to identify root of SCC

Lemma Node v is the root of a SCC iff low(v) =v.d

 Proof of [—>] (easy direction)

> If vis the root of C,, then it is the first discovered node in C,.

> Hence v has the smallest discovery time among all nodes in C,.

> By the definition of low(v), clearly low(v) = v .d.

| EEEHS IREF
I,

>
Z 2 / , ,
% <§ SCHOO[O nt@[ﬁgent SO' 'tware ancffngmeermg

Tarjan’s method to identify root of SCC

Lemma Node v is the root of a SCC iff low(v) =v.d

e Proof of [<=] (hard direction)

> For the sake of contradiction assume x # v is the root of C,. (That is, x is the first
discovered node in C,.)

» Let x" # v be v’s parent in the DFS tree. Since C, is a SCC, v can reach all nodes

in C, including the ones on path x — x'. Thus, when executing DFS from v, it
will examine a path containing zero or more tree edges and then a back edge

pointing to some node x" in path x — x/.

» But this means low(v) < v.d since low(v) < x".d < v.d. Contradiction!

— AL =
riv

 Tarjan’s SCC Algorithm

e Now we have:

> For each SCC (,, let r; be its root. If we push a node to a stack when it

is discovered, when DFS returns from r;, all nodes above r; in the stack
are in C..

~ Let low(v) be the smallest discovery time among all nodes in C; that

are reachable from v via a path of tree edges followed by at most one
non-tree edge.

» Lemma: Node v is the root of a SCC iff low(v) =v.d

Tarjan’s SCC Algorithm

TarjanDFS(v):
Tarjan(QG): visited ;= True, time .= time + 1
time := (0 vd = time,v.low :=v.d
Stack S S.push(v)
foreach vin V for each edge(v, w)
v.root ;= NIL iIf lw.visited // tree edge
visited := False larjanDFS(w)
foreachvin V v.low := min(v.low, w.low)
if lv.visited else if w.root = NIL // non tree edge in C,
TarjanDFS(v) v.low := min(v.low, w.d)
if viiow =v.d
repeat

w = S.pop(), w.root .= v

Time complexity is O(m + n)

(One DFS pass, and push/pop once for each node) until w=v

EEEMFS T 2=
School of an[ﬁgent Soﬁ'ware and Engineering

Tarjan’s method to identify root of SCC

There must be a back edge

~§
~§
-

-~
~
L]
~
L
-~ -
L
il .

P
.
.
.
.
P
.
.
P

It may finish first, but it is not in a sink component

Further reading

+ [CLRS] Ch.22

e [Erickson] Ch.6

Algorithms

ALGCORITHMS

EDITION

Jeft Erickson

