
智能软件与工程学院
School of Intelligent Software and Engineering

深度优先的一些应用
Some application of DFS

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne.Thanks for their supports!

钮鑫涛
Nanjing University

2024 Fall

智能软件与工程学院
School of Intelligent Software and Engineering

Directed Acyclic Graphs (DAG)

• A graph without cycles is called acyclic.

• A directed graph without cycles is a directed acyclic graph (DAG).

A B

D C
Cyclic

A B

D C
Acyclic

A B

D C
Cyclic

A B

D C
DAG

智能软件与工程学院
School of Intelligent Software and Engineering

Application of DAG
• DAGs are good for modeling relations such as:

causalities, hierarchies, and temporal
dependencies.

• For example:

‣ Consider how you get dressed in the morning.

- Must wear certain garments before others
(e.g., socks before shoes).

- Other items may be put on in any order
(e.g., socks and pants).

‣ This process can be modeled by a DAG!

Undershorts

Pants

Belt

Jacket

Shirt

Tie

Shoes

Socks

Watch

What is a valid order to perform all the task?

智能软件与工程学院
School of Intelligent Software and Engineering

Topological Sort
• A topological sort of a DAG is a linear ordering of its vertices such that if

contains an edge then appears before in the ordering.
G G

(u, v) u v

Undershorts

Pants

Belt

Jacket

Shirt

Tie

Shoes

Socks

Watch

Socks Undershorts Pants Shoes Watch Shirt Belt Tie Jacket

A topological ordering arranges the vertices along a horizontal line so that all
edges go “from left to right”.

• defines a partial order over , a topological sort gives a total order
over satisfying
E(G) V(G)

V(G) E(G)

智能软件与工程学院
School of Intelligent Software and Engineering

Topological Sort
• Topological sort is impossible if the graph contains a cycle.

• A given graph may have multiple different valid topological ordering.

Undershorts

Pants

Belt

Jacket

Shirt

Tie

Shoes

Socks

Watch
Socks Undershorts Pants Shoes Watch Shirt Belt Tie Jacket

SocksUndershorts Pants ShoesWatch Shirt Belt Tie Jacket

How to generate a topological ordering?

智能软件与工程学院
School of Intelligent Software and Engineering

Topological Sort

• A topological sort of a DAG is a linear ordering of its vertices such that if
 contains an edge then appears before in the ordering.

• Question: Does every DAG has a topological ordering?

• Question: How to tell if a directed graph is acyclic?

‣ And if acyclic, how to do topological sort?

G
G (u, v) u v

智能软件与工程学院
School of Intelligent Software and Engineering

Topological Sort

• Proof of [] (Directed graph 𝐺 is acyclic a DFS of 𝐺 yields no back edges)

‣ For the sake of contradiction, assume DFS yields back edge .

‣ So is ancestor of in DFS forest, meaning there’s a path from to in .

‣ But together with edge this creates a cycle. Contradiction!

⟹ ⟹

(u, v)

v u v u G

(u, v)

Lemma 1 Directed graph 𝐺 is acyclic iff a DFS of 𝐺 yields no back edges

v v1 v2 u……

智能软件与工程学院
School of Intelligent Software and Engineering

Topological Sort

• Proof of [] (Directed graph 𝐺 is acyclic a DFS of 𝐺 yields no back edges)

‣ For the sake of contradiction, assume contains a cycle .

‣ Let be the first node to be discovered in .

‣ By the White-path theorem, is a descendant of in DFS forest.

‣ But then when processing , becomes a back edge!

⟸ ⟸

G C

v C

u v

u (u, v)

Lemma 1 Directed graph 𝐺 is acyclic iff a DFS of 𝐺 yields no back edges

v

v1u

……

first discovered

C

智能软件与工程学院
School of Intelligent Software and Engineering

Topological Sort

• Proof:

‣ When exploring , cannot be GRAY. (Otherwise we have a back edge.)

‣ If is WHITE, then becomes a descendant of , and 𝑢.𝑓 > 𝑣.𝑓

‣ If is BLACK, then trivially 𝑢.𝑓 > 𝑣.𝑓

(u, v) v

v v u

v

Lemma 2 If we do a DFS in DAG 𝐺, then 𝑢.𝑓 > 𝑣.𝑓 for every edge (𝑢,𝑣) in 𝐺

Tree Back Forward Cross

智能软件与工程学院
School of Intelligent Software and Engineering

Topological Sort
• A topological sort of a DAG is a linear ordering of its vertices such that if contains

an edge then appears before in the ordering.

• Q: Does every DAG has a topological ordering?

• Q: How to tell if a directed graph is acyclic? If acyclic, how to do topological sort?

G G
(u, v) u v

Lemma 1 Directed graph 𝐺 is acyclic iff a DFS of 𝐺 yields no back edges

Corollary Every DAG has a topological ordering

Lemma 2 If we do a DFS in DAG 𝐺, then 𝑢.𝑓 > 𝑣.𝑓 for every edge (𝑢,𝑣) in 𝐺

Theorem Decreasing order of finish times of DFS on DAG gives a topological ordering

智能软件与工程学院
School of Intelligent Software and Engineering

Topological Sort

• Topological Sort of :

(a) Do DFS on , compute finish times for each node along the way.

(b) When a node finishes, insert it to the head of a list.

(c) If no back edge is found, then the list eventually gives a Topological Ordering.

G

G

Time complexity is O(n + m)

智能软件与工程学院
School of Intelligent Software and Engineering

Topological Sort

Socks Undershorts Pants Shoes Watch Shirt Belt Tie Jacket

Undershorts

Pants

Belt

Jacket

Shirt

Tie

Shoes

Socks

Watch

1/ 8

2/ 5

3/ 4

6/ 7

9/ 10

11/ 16

12/ 15
13/ 14

17/ 18

17/ 18 11/ 16 12/ 15 13/ 14 9/ 10 1/ 8 6/ 7 2/ 5 3/ 4

智能软件与工程学院
School of Intelligent Software and Engineering

Source and Sink in DAG
• A source node is a node with no incoming edges;

• A sink node is a node with no outgoing edges.

‣ Example: is source; both and are sink.B E F

A C

B D

E

F

WHY?

• Observations: In DFS of a DAG, node with max finish time must be a source

‣ Node with max finish time appears first in topological sort, it cannot have incoming edges.

• Observations: In DFS of a DAG, node with min finish time must be a sink.

‣ Node with min finish time appears last in topological sort, it cannot have outgoing edges.

• Claim: Each DAG has at least one source and one sink.

智能软件与工程学院
School of Intelligent Software and Engineering

Alternative Algorithm for Topological Sort
(1) Find a source node in the (remaining) graph, output it.

(2) Delete and all its outgoing edges from the graph.

(3) Repeat until the graph is empty.

s

s

A C

B D

E

F

B

A C

D

E

F

C

D

E

F

C E

F

E

F F

B A B A D C E B A D C E FB A D CB A D

Formal proof of correctness?
How efficient can you implement it?

智能软件与工程学院
School of Intelligent Software and Engineering

(Strongly)
Connected Components

智能软件与工程学院
School of Intelligent Software and Engineering

(Strongly) Connected Components
• For an undirected graph , a Connected Component

(CC) is a maximal set , such that for any pair of
nodes and in , there is a path from to .

‣ E.g.: {4}, {1, 2, 5}, {3, 6}

• For a directed graph G, a Strongly Connected
Component (SCC) is a maximal set , such that
for any pair of nodes and in , there is a directed path
from to , and vice versa.

‣ E.g.: {A}, {D}, {B, E}, {C, F}, {G, H, I, J, K, L}

G
C ⊆ V(G)

u v C u v

C ⊆ V(G)
u v C

u v

A B

D

C

E F

G H

KJI

L

1 2

4 5

3

6

智能软件与工程学院
School of Intelligent Software and Engineering

Computing CC and SCC

• Given an undirected graph, how to compute its connected components (CC) ?

‣ Easy, just do DFS (or BFS) on the entire graph.

- DFS() (or BFS()), reaches exactly nodes in the CC containing .

• Given a directed graph, how to compute its strongly connected components (SCC) ?

‣ Err, can be done efficiently, but not so obvious…

u u u

智能软件与工程学院
School of Intelligent Software and Engineering

Component Graph
• Given a directed graph , assume it

has SCC { }, then the
component graph is .

‣ The vertex set is { }, each
representing one SCC.

‣ There is an edge if there
exists , where and .

G = (V, E)
k C1, C2, . . . , Ck

GC = (VC, EC)

VC v1, v2, . . . , vk

(vi, vj) ∈ EC

(u, v) ∈ E u ∈ Ci v ∈ Cj

Claim: A component graph is a DAG！

• Proof: Otherwise, the components in the circle
becomes a bigger SCC, contradiction!

A B

D

C

E F

G H

KJI

L

A B,E C,F

D G,H,I,J,K,L

智能软件与工程学院
School of Intelligent Software and Engineering

Computing SCC
• A component graph is a DAG.

• Each DAG has at least one source and one sink.

• If we do one DFS starting from a node in a sink SCC,
then we explore exactly nodes in that SCC and stop!

‣ Due to the white-path theorem.

• A good start, but two problems exist:

‣ (1) How to identify a node that is in a sink SCC?

‣ (2) What to do when the first SCC is done?

A B

D

C

E F

G H

KJI

L

A B,E C,F

D G,H,I,J,K,L

智能软件与工程学院
School of Intelligent Software and Engineering

(GR)C

GC

Computing SCC
• (1) How to identify a node that is in a sink SCC?

• (2) What to do when the first SCC is done?

• Don’t do it directly: find a node in a source SCC!

• Reverse the direction of each edge in gets .

• and have the same set of SCCs.

• and have same vertex set, but the
direction of each edge is reversed.

• A source SCC in is a sink SCC in .

G GR

G GR

GC (GR)C

(GR)C GC

A B,E C,F

D G,H,I,J,K,L

A B,E C,F

D G,H,I,J,K,L

智能软件与工程学院
School of Intelligent Software and Engineering

Computing SCC
• (1) How to identify a node that is in a sink SCC?

• (2) What to do when the first SCC is done?

• Compute in time, then find a
node is a source SCC in !

• But how to find such a node?

‣ Do DFS in , the node with maximum finish
time is guaranteed to be in source SCC.

GR O(n + m)
GR

GR

(GR)C

GC

A B,E C,F

D G,H,I,J,K,L

A B,E C,F

D G,H,I,J,K,L

智能软件与工程学院
School of Intelligent Software and Engineering

Computing SCC

• Proof:

‣ Consider nodes in and , let be the first node visited by DFS.

‣ If , then all nodes in will be visited before any node in is visited.

‣ In this case, the lemma clearly is true.

‣ If , at the time that DFS visits , for any node in and , there is a white-path
from to that node.

‣ In this case, due to the white-path theorem, the lemma again holds.

Ci Cj w

w ∈ Cj Cj Ci

w ∈ Ci w Ci Cj
w

Lemma For any edge , if and , then (u, v) ∈ E(GR) u ∈ Ci v ∈ Cj max
u∈Ci

{u . f} > max
v∈Cj

{v . f}

Ci Cj
w

Ci Cj
w

智能软件与工程学院
School of Intelligent Software and Engineering

Computing SCC
• (1) How to identify a node that is in a sink SCC?

• (2) What to do when the first SCC is done?

Lemma For any edge , if and , then (u, v) ∈ E(GR) u ∈ Ci v ∈ Cj max
u∈Ci

{u . f} > max
v∈Cj

{v . f}

• Compute in time, do DFS in and find the node with max finish time.

‣ This node is in a source SCC of

GR O(n + m) GR

GR

智能软件与工程学院
School of Intelligent Software and Engineering

Computing SCC
• (1) How to identify a node that is in a sink SCC?

• (2) What to do when the first SCC is done?

• For remaining nodes in , the node with max finish time (in DFS of) is again
in a sink SCC, for whatever remains of .

G GR

G

GC

A B,E C,F

D G,H,I,J,K,L

(GR)C

A B,E C,F

D G,H,I,J,K,L

智能软件与工程学院
School of Intelligent Software and Engineering

Computing SCC
• Algorithm Description:

‣ Compute .

‣ Run DFS on and record finish times .

‣ Run DFS on , but in DFSAll, process nodes in decreasing order of .

‣ Each DFS tree is a SCC of .

GR

GR f

G f

G

• Time complexity is :

‣ time for computing .

‣ Two passes of DFS, each costing .

O(n + m)

O(n + m) GR

O(n + m)
Can we be faster (even if just with smaller constant)?

智能软件与工程学院
School of Intelligent Software and Engineering

*Tarjan’s SCC Algorithm

智能软件与工程学院
School of Intelligent Software and Engineering

*Tarjan’s SCC Algorithm
• if we start from a node in a sink SCC, then we explore

exactly nodes in that SCC and stop!

‣ But how to find such a node?

• Previous algorithm’s approach:

‣ A node in a source SCC in must be in a sink SCC in .

• Tarjan comes up with a method to identify a node in some
sink SCC directly!

GR G
Robert Tarjan

智能软件与工程学院
School of Intelligent Software and Engineering

Tarjan’s SCC Algorithm
‣ First node in (root of)

‣ Some nodes in

‣ First node in (root of)

‣ Some nodes in

‣ First node in (root of)

‣ All other nodes in (is a sink SCC)

‣ All other nodes in (becomes a sink SCC by then)

‣ Some nodes in

‣ First node in (root of)

‣ All other nodes in (is a sink SCC)

‣ All other nodes in (becomes a sink SCC by then)

‣ First node in (root of)

‣ All other nodes in (becomes a sink SCC by then)

C2 C2

C2

C3 C3

C3

C5 C5

C5 C5

C3 C3

C2

C4 C4

C4 C4

C2 C2

C1 C1

C1 C1

c1 c2 c3

c4 c5

Let’s have a closer look at the order that DFS examines nodes
c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

智能软件与工程学院
School of Intelligent Software and Engineering

Tarjan’s SCC Algorithm
‣ First node in (root of)

‣ Some nodes in

‣ First node in (root of)

‣ Some nodes in

‣ First node in (root of)

‣ All other nodes in (is a sink SCC)

‣ All other nodes in (becomes a sink SCC by then)

‣ Some nodes in

‣ First node in (root of)

‣ All other nodes in (is a sink SCC)

‣ All other nodes in (becomes a sink SCC by then)

‣ First node in (root of)

‣ All other nodes in (becomes a sink SCC by then)

C2 C2

C2

C3 C3

C3

C5 C5

C5 C5

C3 C3

C2

C4 C4

C4 C4

C2 C2

C1 C1

C1 C1

c1 c2 c3

c4 c5

Let’s have a closer look at the order that DFS examines nodes
c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

stack bottom
stack top

If we can identify root of , call it , then all nodes
visited during DFS starting from are the nodes in .

C5 r5
r5 C5

If we push a node to a stack when it is discovered,
when DFS returns from , all nodes above in the

stack are in and can be popped!

r5 r5
C5

c1 c2 c3

c4 c5

智能软件与工程学院
School of Intelligent Software and Engineering

Tarjan’s SCC Algorithm
‣ First node in (root of)

‣ Some nodes in

‣ First node in (root of)

‣ Some nodes in

‣ First node in (root of)

‣ All other nodes in (is a sink SCC)

‣ All other nodes in (becomes a sink SCC by then)

‣ Some nodes in

‣ First node in (root of)

‣ All other nodes in (is a sink SCC)

‣ All other nodes in (becomes a sink SCC by then)

‣ First node in (root of)

‣ All other nodes in (becomes a sink SCC by then)

C2 C2

C2

C3 C3

C3

C5 C5

C5 C5

C3 C3

C2

C4 C4

C4 C4

C2 C2

C1 C1

C1 C1

c1 c2 c3

c4 c5

Let’s have a closer look at the order that DFS examines nodes
c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

stack bottom
stack top

Given that we know nodes in , , if we can identify
root of , call it , then all nodes not in visited

during DFS starting from are the nodes in .

C5
C3 r3 C5

r3 C3

If we push a node to a stack when it is discovered,
when DFS returns from , all nodes above in the

stack are in and can be popped!
r3 r3

C3

c1 c2 c3

c4 c5

智能软件与工程学院
School of Intelligent Software and Engineering

Tarjan’s SCC Algorithm
‣ First node in (root of)

‣ Some nodes in

‣ First node in (root of)

‣ Some nodes in

‣ First node in (root of)

‣ All other nodes in (is a sink SCC)

‣ All other nodes in (becomes a sink SCC by then)

‣ Some nodes in

‣ First node in (root of)

‣ All other nodes in (is a sink SCC)

‣ All other nodes in (becomes a sink SCC by then)

‣ First node in (root of)

‣ All other nodes in (becomes a sink SCC by then)

C2 C2

C2

C3 C3

C3

C5 C5

C5 C5

C3 C3

C2

C4 C4

C4 C4

C2 C2

C1 C1

C1 C1

c1 c2 c3

c4 c5

Let’s have a closer look at the order that DFS examines nodes
c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

stack bottom
stack top

If we can identify root of , call it , then all nodes
visited during DFS starting from are the nodes in .

C4 r4
r4 C4

If we push a node to a stack when it is discovered,
when DFS returns from , all nodes above in the

stack are in and can be popped!

r4 r4
C4

c1 c2 c3

c4 c5

智能软件与工程学院
School of Intelligent Software and Engineering

Tarjan’s SCC Algorithm
‣ First node in (root of)

‣ Some nodes in

‣ First node in (root of)

‣ Some nodes in

‣ First node in (root of)

‣ All other nodes in (is a sink SCC)

‣ All other nodes in (becomes a sink SCC by then)

‣ Some nodes in

‣ First node in (root of)

‣ All other nodes in (is a sink SCC)

‣ All other nodes in (becomes a sink SCC by then)

‣ First node in (root of)

‣ All other nodes in (becomes a sink SCC by then)

C2 C2

C2

C3 C3

C3

C5 C5

C5 C5

C3 C3

C2

C4 C4

C4 C4

C2 C2

C1 C1

C1 C1

c1 c2 c3

c4 c5

Let’s have a closer look at the order that DFS examines nodes
c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

stack bottom
stack top

Given that we know nodes in & & , if we can
identify root of , call it , then all nodes not in &

 & visited during DFS starting from are the
nodes in .

C5 C4 C3
C2 r2 C5

C4 C3 r2
C2

If we push a node to a stack when it is discovered,
when DFS returns from , all nodes above in the

stack are in and can be popped!

r2 r2
C2

c1 c2 c3

c4 c5

智能软件与工程学院
School of Intelligent Software and Engineering

Tarjan’s SCC Algorithm
‣ First node in (root of)

‣ Some nodes in

‣ First node in (root of)

‣ Some nodes in

‣ First node in (root of)

‣ All other nodes in (is a sink SCC)

‣ All other nodes in (becomes a sink SCC by then)

‣ Some nodes in

‣ First nodes in (root of)

‣ All other nodes in (is a sink SCC)

‣ All other nodes in (becomes a sink SCC by then)

‣ First node in (root of)

‣ All other nodes in (becomes a sink SCC by then)

C2 C2

C2

C3 C3

C3

C5 C5

C5 C5

C3 C3

C2

C4 C4

C4 C4

C2 C2

C1 C1

C1 C1

c1 c2 c3

c4 c5

Let’s have a closer look at the order that DFS examines nodes
c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

stack bottom
stack top

Given that we know nodes in , if we can identify root
of , call it , then all nodes not in visited during

DFS starting from are the nodes in .

C2
C1 r1 C1

r1 C1

If we push a node to a stack when it is discovered,
when DFS returns from , all nodes above in the

stack are in and can be popped!

r1 r1
C1

c1 c2 c3

c4 c5

智能软件与工程学院
School of Intelligent Software and Engineering

Tarjan’s SCC Algorithm
‣ First node in (root of)

‣ Some nodes in

‣ First node in (root of)

‣ Some nodes in

‣ First nodes in (root of)

‣ All other nodes in (is a sink SCC)

‣ All other nodes in (becomes a sink SCC by then)

‣ Some nodes in

‣ First node in (root of)

‣ All other nodes in (is a sink SCC)

‣ All other nodes in (becomes a sink SCC by then)

‣ First node in (root of)

‣ All other nodes in (becomes a sink SCC by then)

C2 C2

C2

C3 C3

C3

C5 C5

C5 C5

C3 C3

C2

C4 C4

C4 C4

C2 C2

C1 C1

C1 C1

c1 c2 c3

c4 c5

Let’s have a closer look at the order that DFS examines nodes
c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

c1 c2 c3

c4 c5

stack bottom
stack top

 For each SCC , let be its root. If we push a node
to a stack when it is discovered, when DFS returns

from , all nodes above in the stack are in and can
be popped!

Ci ri

ri ri Ci

But how to identify each root ?r1

智能软件与工程学院
School of Intelligent Software and Engineering

Tarjan’s method to identify root of SCC

• Fix some DFS process, for each vertex , let be the SCC that is in.
Then, is the smallest discovery time among all nodes in that
are reachable from via a path of tree edges followed by at most one
non-tree edge.

• By definition, as is reachable from itself.

v Cv v
low(v) Cv

v

low(v) ≤ v . d v

Lemma Node is the root of a SCC iff v low(v) = v . d

智能软件与工程学院
School of Intelligent Software and Engineering

Tarjan’s method to identify root of SCC

• Proof of [] (easy direction)

‣ If is the root of , then it is the first discovered node in .

‣ Hence has the smallest discovery time among all nodes in .

‣ By the definition of , clearly .

⟹

v Cv Cv

v Cv

low(v) low(v) = v . d

Lemma Node is the root of a SCC iff v low(v) = v . d

智能软件与工程学院
School of Intelligent Software and Engineering

Tarjan’s method to identify root of SCC

• Proof of [] (hard direction)

‣ For the sake of contradiction assume is the root of . (That is, is the first
discovered node in .)

‣ Let be ’s parent in the DFS tree. Since is a SCC, can reach all nodes
in , including the ones on path . Thus, when executing DFS from , it
will examine a path containing zero or more tree edges and then a back edge
pointing to some node in path .

‣ But this means since . Contradiction!

⟸

x ≠ v Cv x
Cv

x′￼ ≠ v v Cv v
Cv x → x′￼ v

x′￼′￼ x → x′￼

low(v) < v . d low(v) ≤ x′￼′￼. d < v . d

Lemma Node is the root of a SCC iff v low(v) = v . d

智能软件与工程学院
School of Intelligent Software and Engineering

Tarjan’s SCC Algorithm
• Now we have:

‣ For each SCC , let be its root. If we push a node to a stack when it
is discovered, when DFS returns from , all nodes above in the stack
are in .

‣ Let be the smallest discovery time among all nodes in that
are reachable from via a path of tree edges followed by at most one
non-tree edge.

‣ Lemma: Node is the root of a SCC iff

Ci ri
ri ri

Ci

low(v) Ci
v

v low(v) = v . d

智能软件与工程学院
School of Intelligent Software and Engineering

Tarjan’s SCC Algorithm
Tarjan(G):
time := 0
Stack S
for each v in V

 v.root := NIL
 v.visited := False

for each v in V
 if !v.visited
 TarjanDFS(v)

TarjanDFS(v):
v.visited := True, time := time + 1
v.d := time, v.low := v.d
S.push(v)
for each edge(v, w)

 if !w.visited // tree edge
 TarjanDFS(w)
 v.low := min(v.low, w.low)

 else if w.root = NIL // non tree edge in
 v.low := min(v.low, w.d)

if v.low = v.d
 repeat

 w := S.pop(), w.root := v
 until w = v

Cv

Time complexity is
(One DFS pass, and push/pop once for each node)

O(m + n)

智能软件与工程学院
School of Intelligent Software and Engineering

If is discovered first, it must has been set root

Then, ’s cannot be !

m
n low(n) low(m)

Tarjan’s method to identify root of SCC
x

x′￼

v

x′￼′￼

m

n

There must be a back edge

It may finish first, but it is not in a sink component

It has no “smaller discovered” child, and no back edge

智能软件与工程学院
School of Intelligent Software and Engineering

Further reading
• [CLRS] Ch.22

• [Erickson] Ch.6

