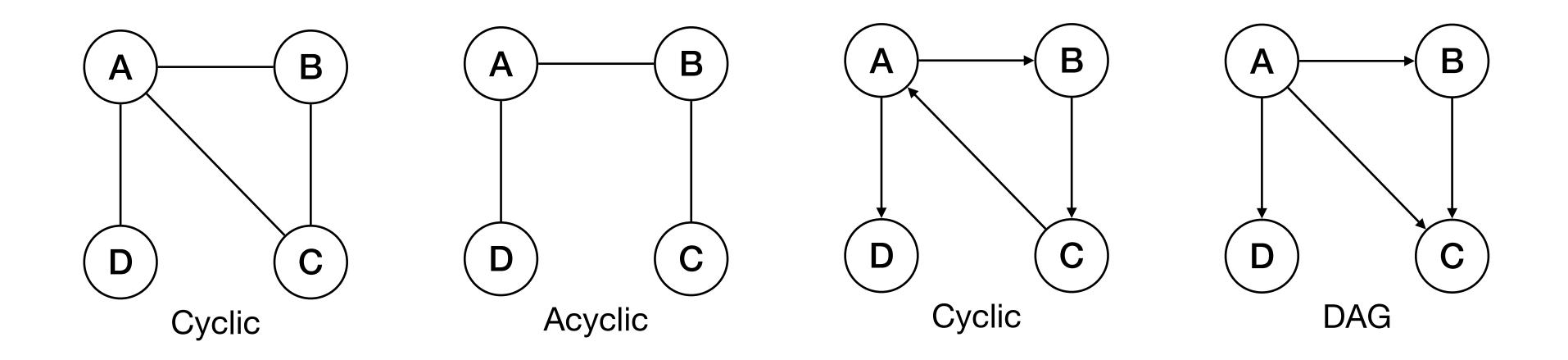


深度优先的一些应用 Some application of DFS

钮鑫涛 Nanjing University 2024 Fall

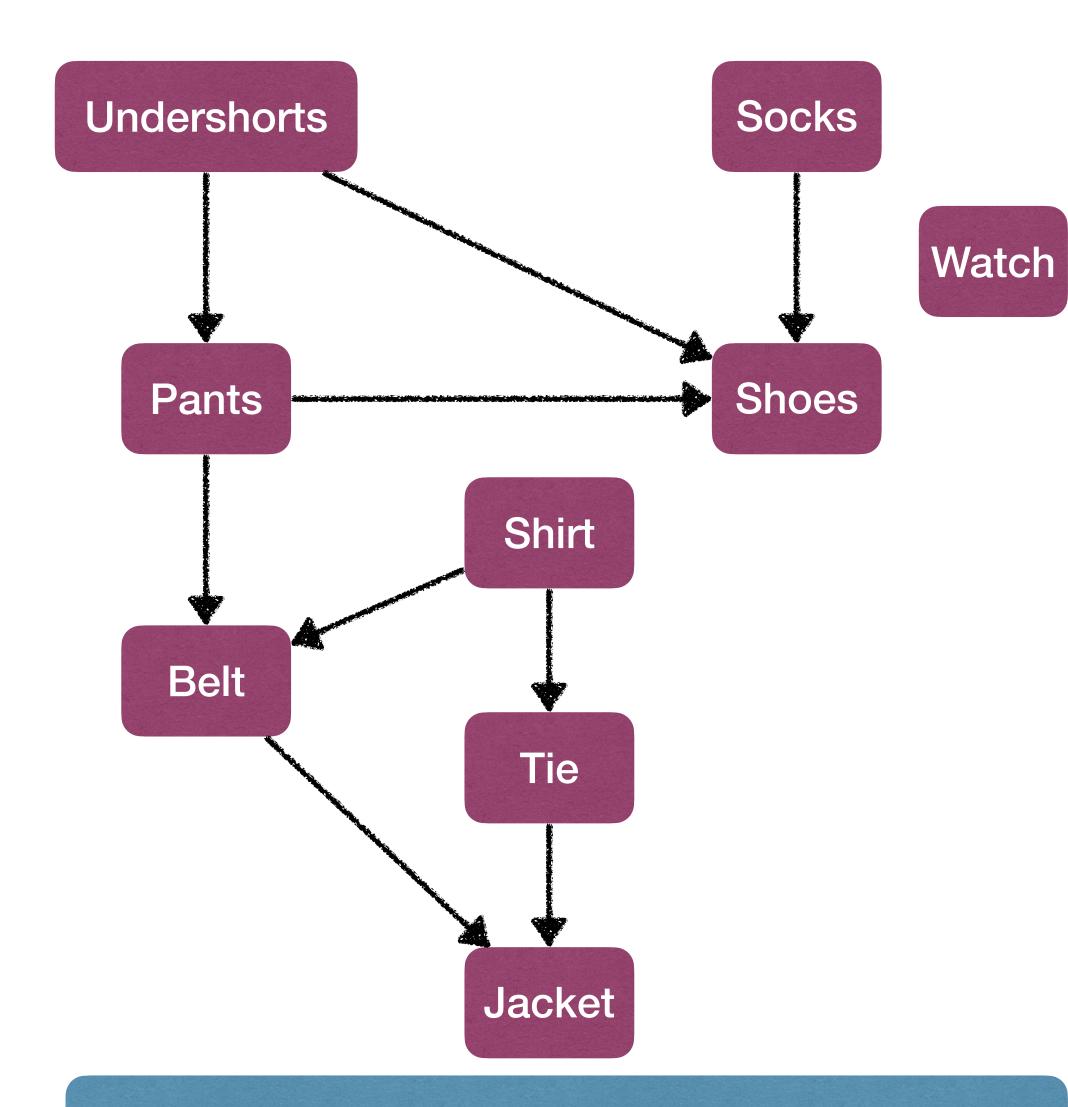
Directed Acyclic Graphs (DAG)

- A graph without cycles is called acyclic.
- A directed graph without cycles is a directed acyclic graph (DAG).



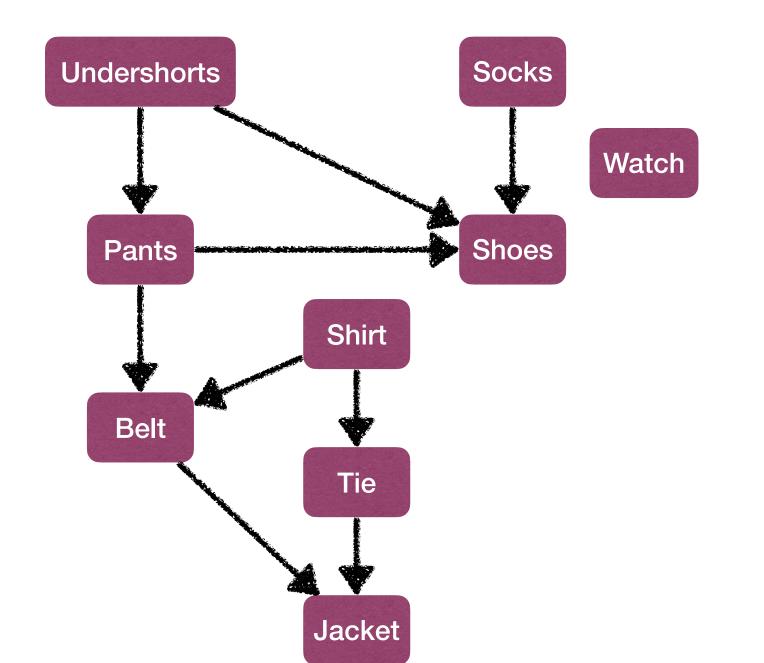
Application of DAG

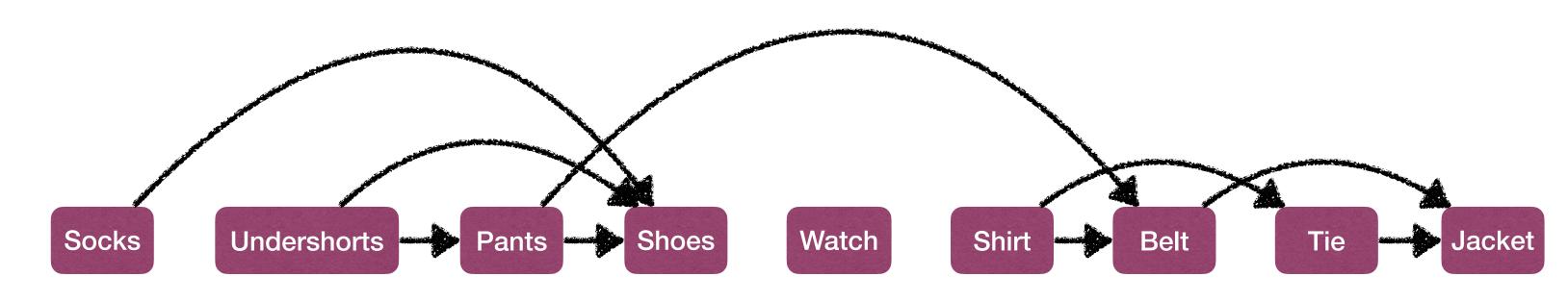
- DAGs are good for modeling relations such as: causalities, hierarchies, and temporal dependencies.
- For example:
 - Consider how you get dressed in the morning.
 - Must wear certain garments before others (e.g., socks before shoes).
 - Other items may be put on in any order (e.g., socks and pants).
 - This process can be modeled by a DAG!



What is a valid order to perform all the task?

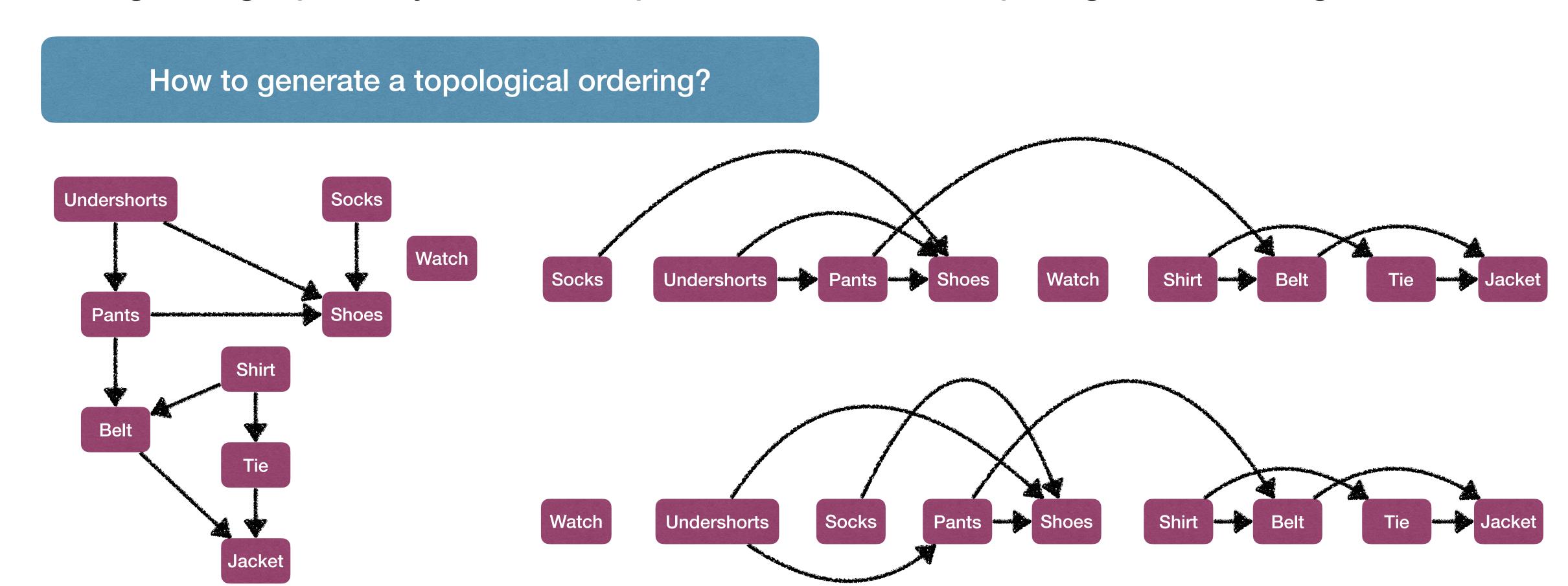
- A topological sort of a DAG G is a linear ordering of its vertices such that if G contains an edge (u, v) then u appears before v in the ordering.
- E(G) defines a partial order over V(G), a topological sort gives a total order over V(G) satisfying E(G)





A topological ordering arranges the vertices along a horizontal line so that all edges go "from left to right".

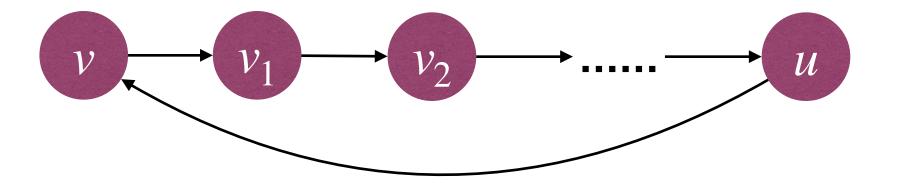
- Topological sort is impossible if the graph contains a cycle.
- A given graph may have multiple different valid topological ordering.



- A topological sort of a DAG G is a linear ordering of its vertices such that if G contains an edge (u, v) then u appears before v in the ordering.
- Question: Does every DAG has a topological ordering?
- Question: How to tell if a directed graph is acyclic?
 - And if acyclic, how to do topological sort?

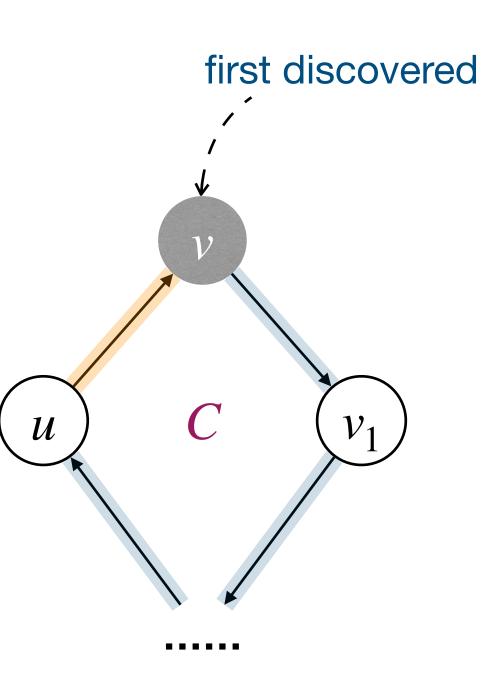
Lemma 1 Directed graph G is acyclic iff a DFS of G yields no back edges

- Proof of $[\Longrightarrow]$ (Directed graph G is acyclic \Longrightarrow a DFS of G yields no back edges)
 - For the sake of contradiction, assume DFS yields back edge (u, v).
 - So v is ancestor of u in DFS forest, meaning there's a path from v to u in G.
 - But together with edge (u, v) this creates a cycle. Contradiction!



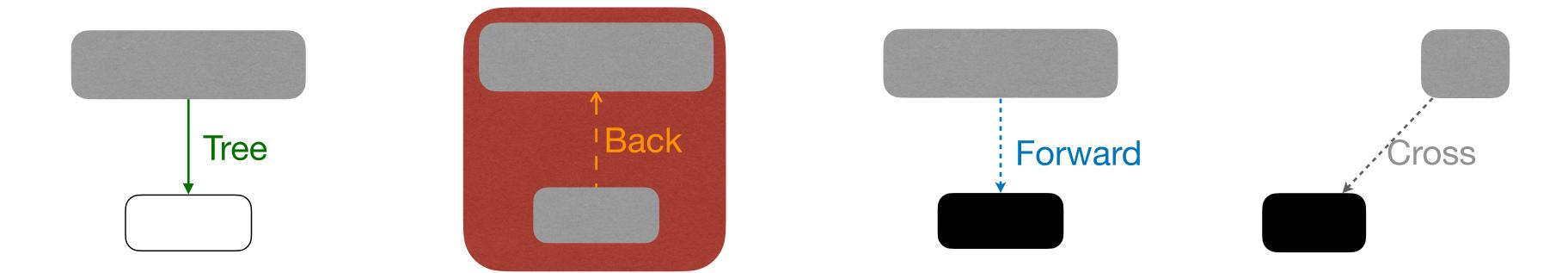
Lemma 1 Directed graph G is acyclic iff a DFS of G yields no back edges

- Proof of $[\longleftarrow]$ (Directed graph G is acyclic \longleftarrow a DFS of G yields no back edges)
 - For the sake of contradiction, assume G contains a cycle C.
 - ► Let *v* be the first node to be discovered in *C*.
 - By the White-path theorem, u is a descendant of v in DFS forest.
 - But then when processing u, (u, v) becomes a back edge!



Lemma 2 If we do a DFS in DAG G, then u.f > v.f for every edge (u,v) in G

- Proof:
 - When exploring (u, v), v cannot be GRAY. (Otherwise we have a back edge.)
 - If v is WHITE, then v becomes a descendant of u, and u.f > v.f
 - If v is BLACK, then trivially u.f > v.f



- A topological sort of a DAG *G* is a linear ordering of its vertices such that if *G* contains an edge (u, v) then u appears before v in the ordering.
- Q:(Does every DAG has a topological ordering?
- Q: How to tell if a directed graph is acyclic? If acyclic, how to do topological sort?

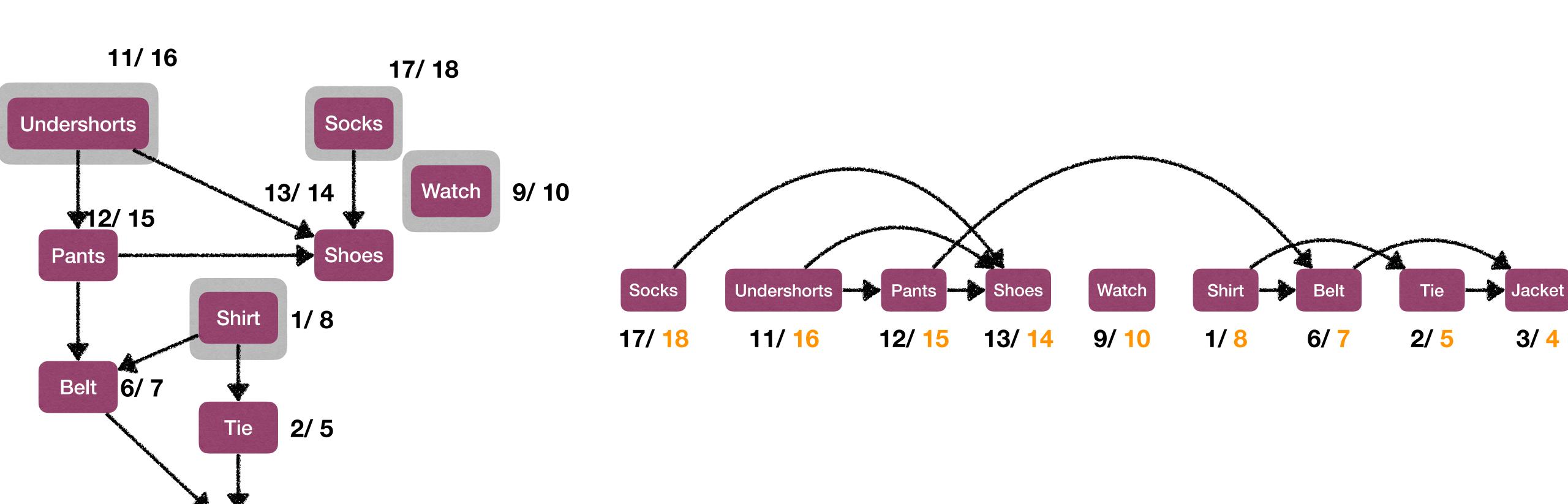
Lemma 1 Directed graph G is acyclic iff a DFS of G yields no back edges

Lemma 2 If we do a DFS in DAG G, then u.f > v.f for every edge (u,v) in G

Theorem Decreasing order of finish times of DFS on DAG gives a topological ordering

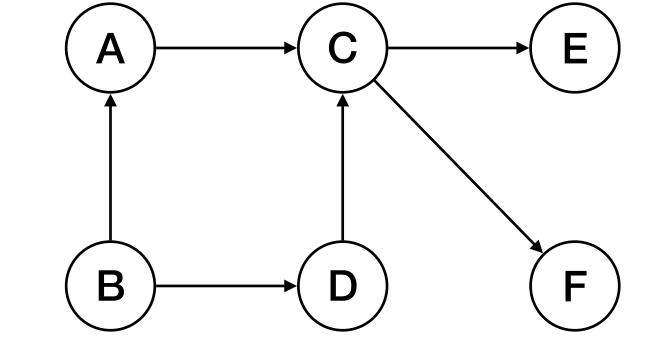
Corollary Every DAG has a topological ordering

- Topological Sort of G:
 - (a) Do DFS on G, compute finish times for each node along the way.
 - (b) When a node finishes, insert it to the head of a list.
 - (c) If no back edge is found, then the list eventually gives a Topological Ordering.



Source and Sink in DAG

- A source node is a node with no incoming edges;
- A sink node is a node with no outgoing edges.
 - ► Example: *B* is source; both *E* and *F* are sink.
- Claim: Each DAG has at least one source and one sink.

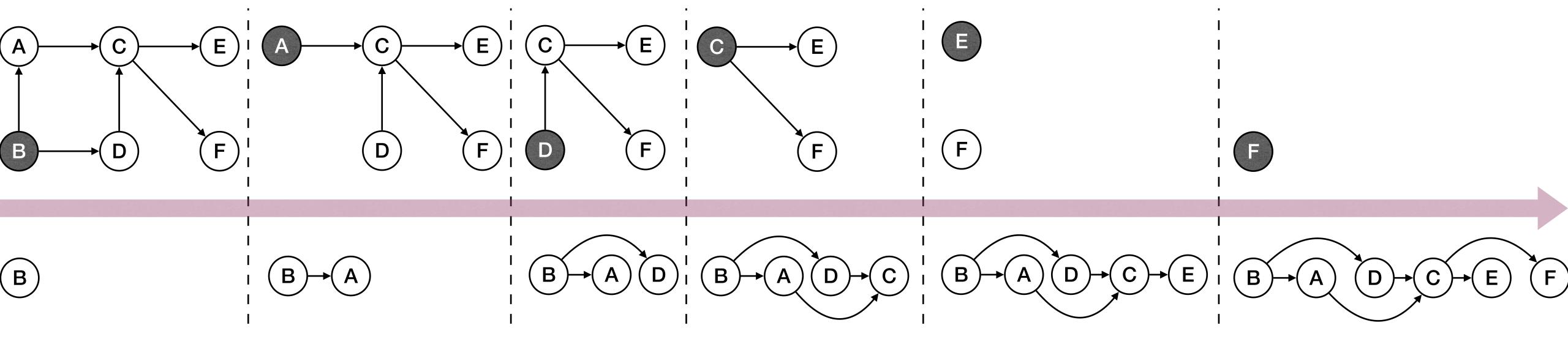


- Observations: In DFS of a DAG, node with max finish time must be a source
 - Node with max finish time appears first in topological sort, it cannot have incoming edges.
- Observations: In DFS of a DAG, node with min finish time must be a sink.
 - Node with min finish time appears last in topological sort, it cannot have outgoing edges.

Alternative Algorithm for Topological Sort

- (1) Find a source node s in the (remaining) graph, output it.
- (2) Delete s and all its outgoing edges from the graph.
- (3) Repeat until the graph is empty.

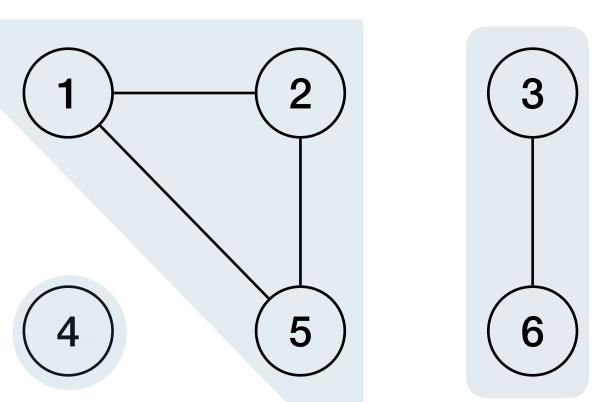
Formal proof of correctness?
How efficient can you implement it?



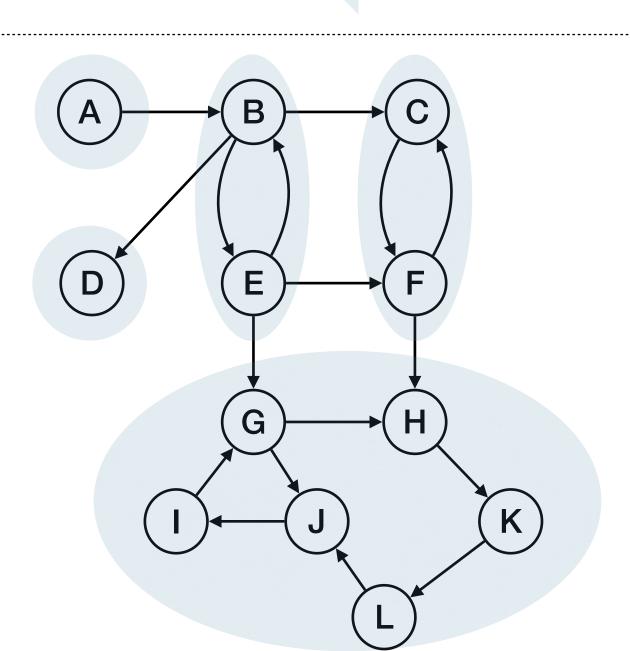
(Strongly) Connected Components

(Strongly) Connected Components

• For an undirected graph G, a Connected Component (CC) is a maximal set $C \subseteq V(G)$, such that for any pair of nodes u and v in C, there is a path from u to v.



- E.g.: {4}, {1, 2, 5}, {3, 6}
- For a directed graph G, a Strongly Connected Component (SCC) is a maximal set $C \subseteq V(G)$, such that for any pair of nodes u and v in C, there is a directed path from u to v, and vice versa.
 - E.g.: $\{A\}$, $\{D\}$, $\{B, E\}$, $\{C, F\}$, $\{G, H, I, J, K, L\}$



Computing CC and SCC

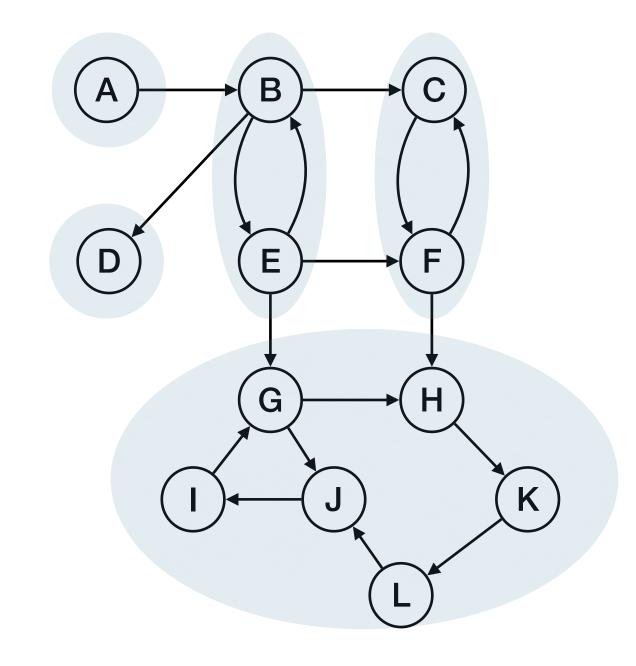
- Given an undirected graph, how to compute its connected components (CC)?
 - Easy, just do DFS (or BFS) on the entire graph.
 - DFS(u) (or BFS(u)), reaches exactly nodes in the CC containing u.
- Given a directed graph, how to compute its strongly connected components (SCC)?
 - Err, can be done efficiently, but not so obvious...

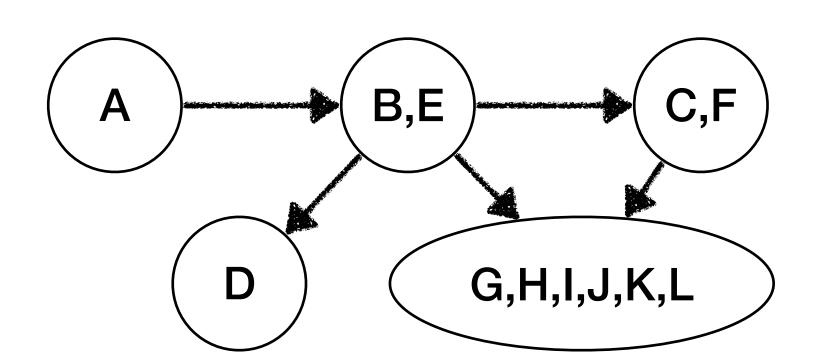
Component Graph

- Given a directed graph G=(V,E), assume it has k SCC $\{C_1,C_2,\ldots,C_k\}$, then the component graph is $G^C=(V^C,E^C)$.
 - The vertex set V^C is $\{v_1, v_2, \dots, v_k\}$, each representing one SCC.
 - There is an edge $(v_i, v_j) \in E^C$ if there exists $(u, v) \in E$, where $u \in C_i$ and $v \in C_j$.

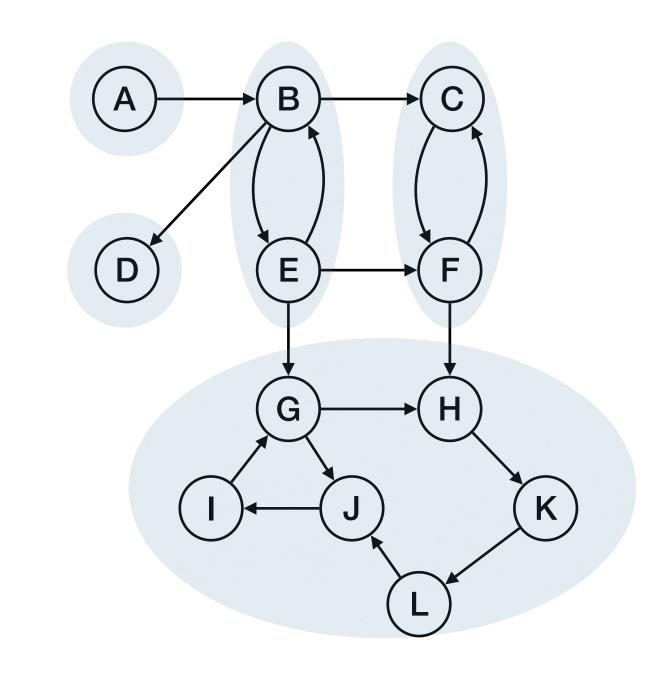
Claim: A component graph is a DAG!

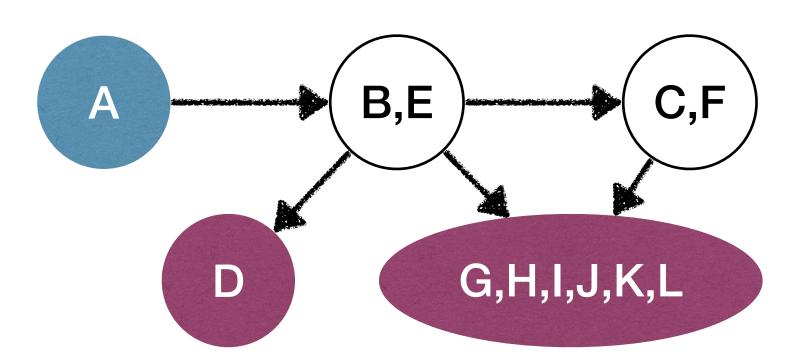
• **Proof:** Otherwise, the components in the circle becomes a bigger SCC, contradiction!



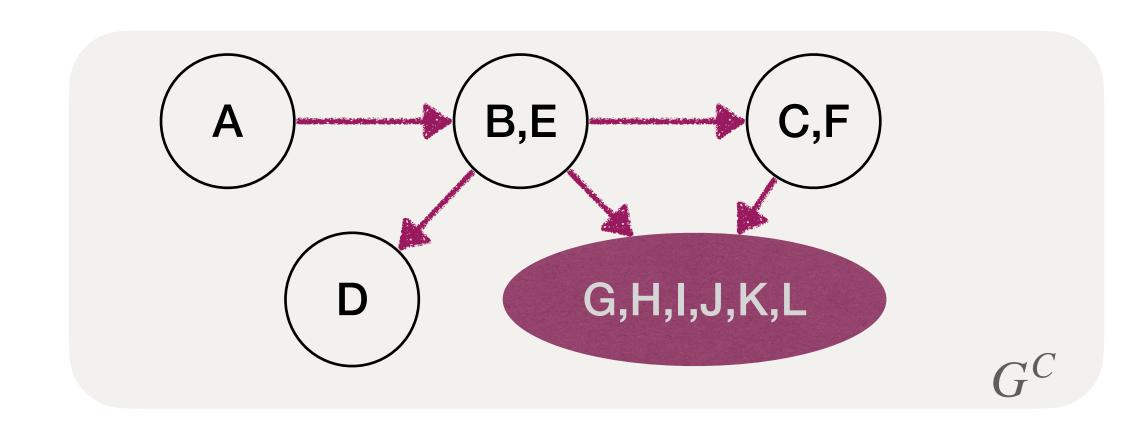


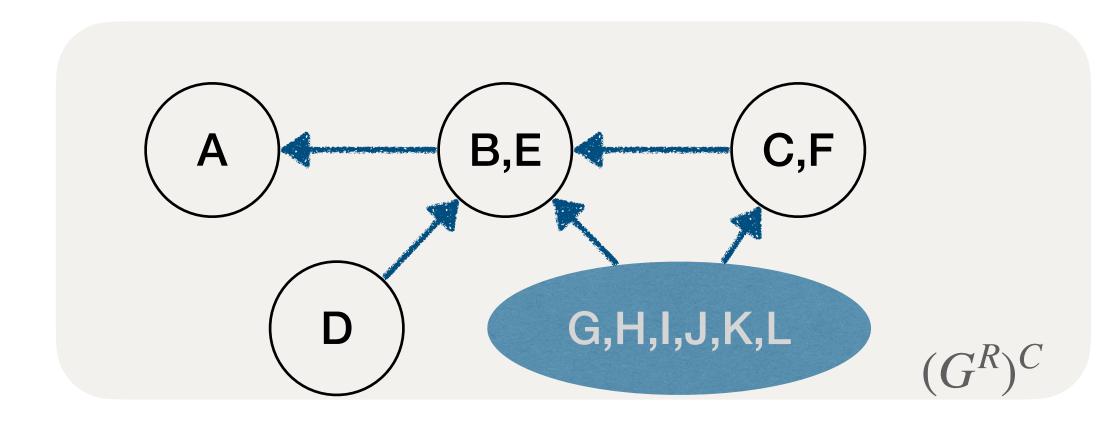
- A component graph is a DAG.
- Each DAG has at least one source and one sink.
- If we do one DFS starting from a node in a sink SCC, then we explore exactly nodes in that SCC and stop!
 - Due to the white-path theorem.
- A good start, but two problems exist:
 - (1) How to identify a node that is in a sink SCC?
 - (2) What to do when the first SCC is done?



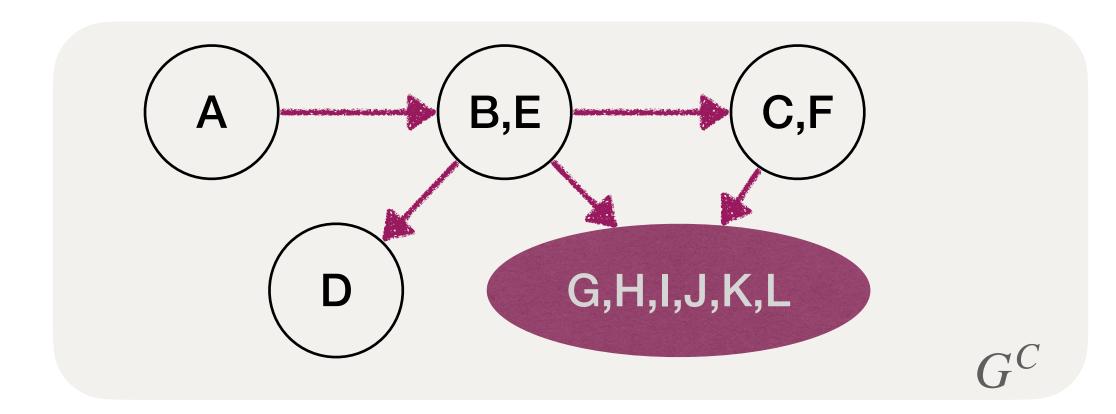


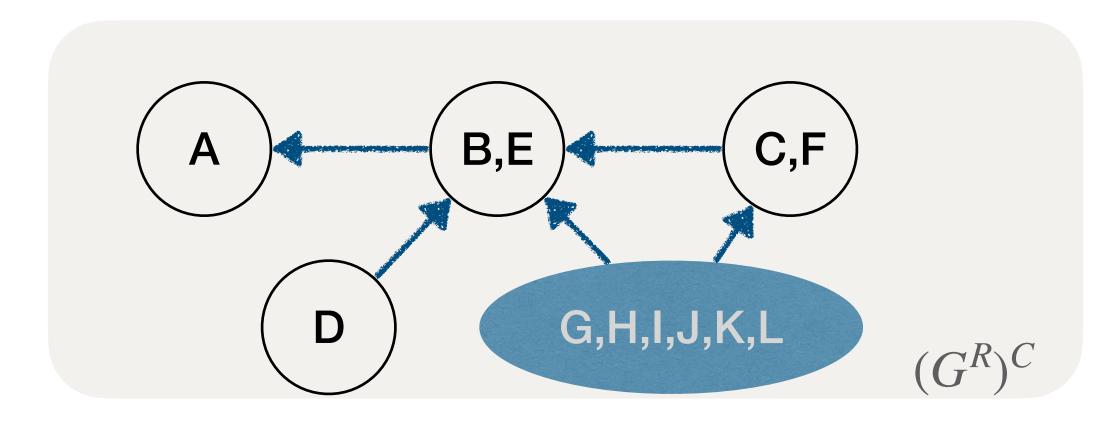
- (1) How to identify a node that is in a sink SCC?
- (2) What to do when the first SCC is done?
- Don't do it directly: find a node in a source SCC!
- Reverse the direction of each edge in G gets G^R .
- G and G^R have the same set of SCCs.
- G^C and $(G^R)^C$ have same vertex set, but the direction of each edge is reversed.
- A source SCC in $(G^R)^C$ is a sink SCC in G^C .





- (1) How to identify a node that is in a sink SCC?
- (2) What to do when the first SCC is done?
- Compute G^R in O(n+m) time, then find a node is a source SCC in G^R !
- But how to find such a node?
 - Do DFS in G^R , the node with maximum finish time is guaranteed to be in source SCC.





Lemma For any edge $(u, v) \in E(G^R)$, if $u \in C_i$ and $v \in C_j$, then $\max_{u \in C_i} \{u.f\} > \max_{v \in C_j} \{v.f\}$

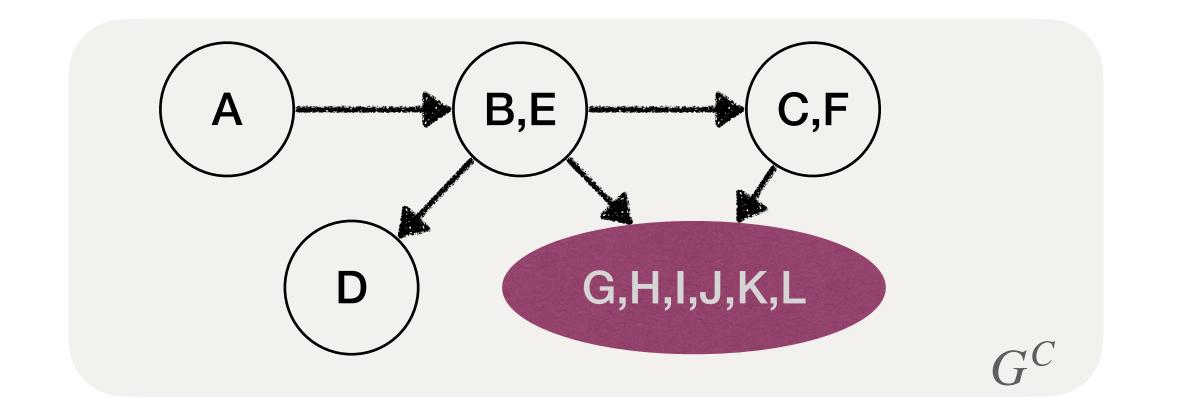
- Proof:
 - Consider nodes in C_i and C_j , let w be the first node visited by DFS.
 - If $w \in C_j$, then all nodes in C_j will be visited before any node in C_i is visited.
 - In this case, the lemma clearly is true.
 - If $w \in C_i$, at the time that DFS visits w, for any node in C_i and C_j , there is a white-path from w to that node.
 - In this case, due to the white-path theorem, the lemma again holds.

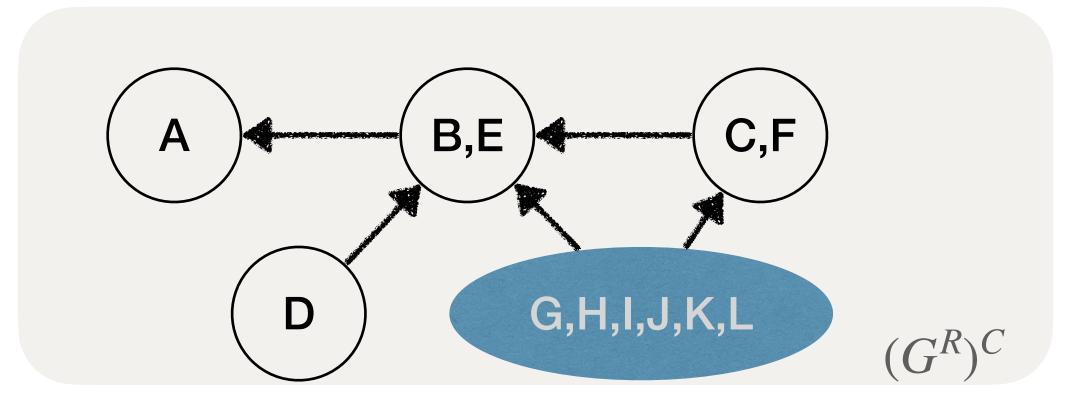
- (1) How to identify a node that is in a sink SCC?
- (2) What to do when the first SCC is done?

Lemma For any edge $(u, v) \in E(G^R)$, if $u \in C_i$ and $v \in C_j$, then $\max_{u \in C_i} \{u.f\} > \max_{v \in C_j} \{v.f\}$

- Compute G^R in O(n+m) time, do DFS in G^R and find the node with max finish time.
 - This node is in a source SCC of G^R

- (1) How to identify a node that is in a sink SCC?
- (2) What to do when the first SCC is done?
- For remaining nodes in G, the node with max finish time (in DFS of G^R) is again in a sink SCC, for whatever remains of G.

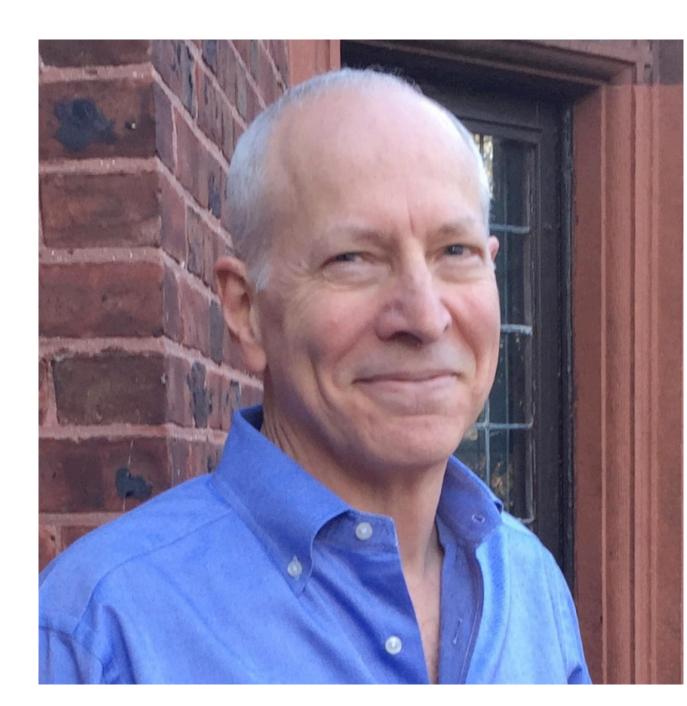




- Algorithm Description:
 - Compute G^R .
 - Run DFS on G^R and record finish times f.
 - Run DFS on G, but in DFSAll, process nodes in decreasing order of f.
 - ► Each DFS tree is a SCC of *G*.
- Time complexity is O(n + m):
 - O(n+m) time for computing G^R .
 - ► Two passes of DFS, each costing O(n + m).

Can we be faster (even if just with smaller constant)?

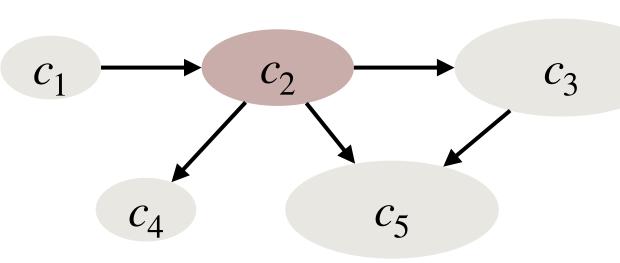
- if we start from a node in a sink SCC, then we explore exactly nodes in that SCC and stop!
 - But how to find such a node?
- Previous algorithm's approach:
 - A node in a source SCC in G^R must be in a sink SCC in G.
- Tarjan comes up with a method to identify a node in some sink SCC directly!

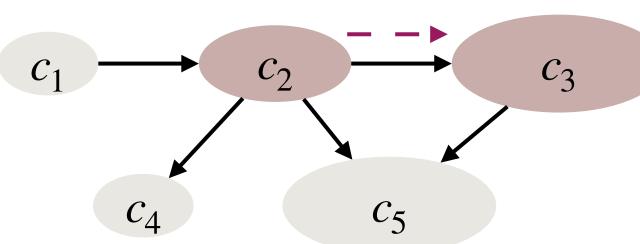


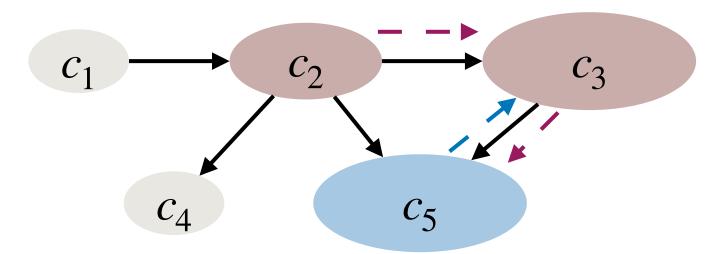
Robert Tarjan

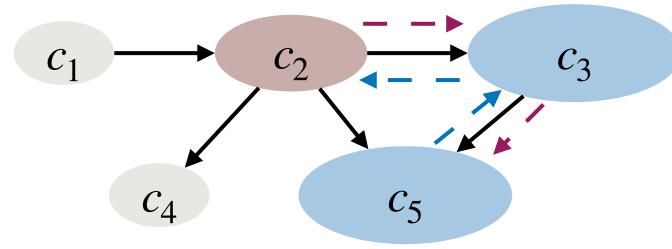
Let's have a closer look at the order that DFS examines nodes

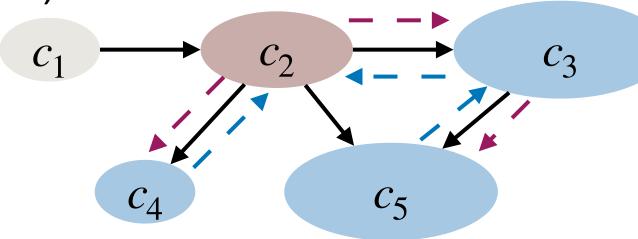
- First node in C_2 (root of C_2)
- Some nodes in C_2
- First node in C_3 (root of C_3)
- Some nodes in C_3
- First node in C_5 (root of C_5)
- All other nodes in C_5 (C_5 is a sink SCC)
- All other nodes in C_3 (C_3 becomes a sink SCC by then)
- Some nodes in C_2
- First node in C_4 (root of C_4)
- All other nodes in C_4 (C_4 is a sink SCC)
- All other nodes in C_2 (C_2 becomes a sink SCC by then)
- First node in C_1 (root of C_1)
- All other nodes in C_1 (C_1 becomes a sink SCC by then)

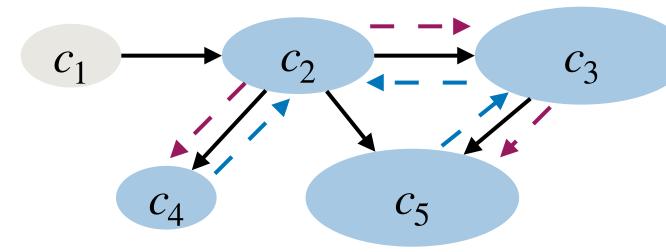


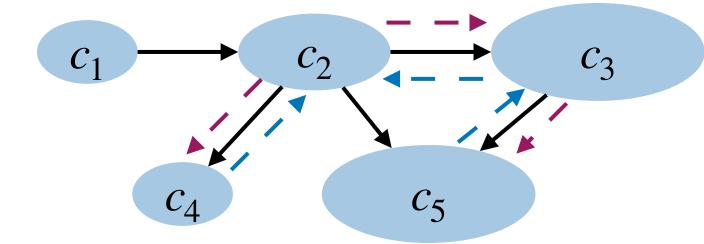










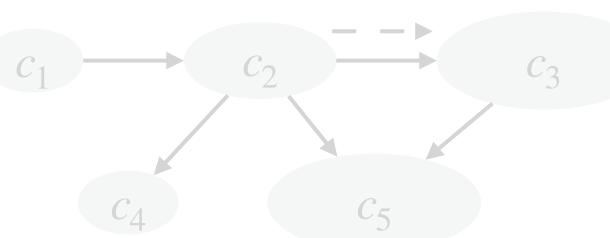


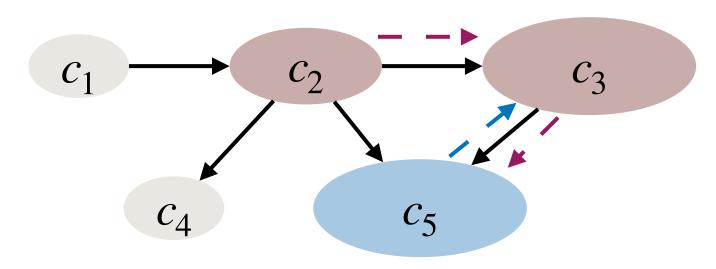
ien)

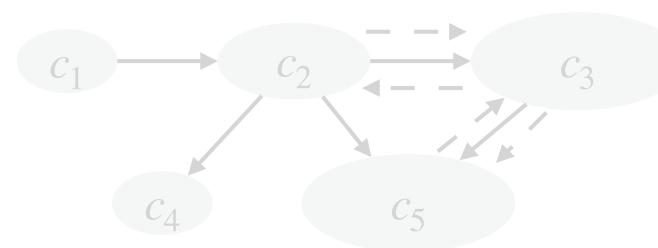
Let's have a closer look at the order that DFS examines nodes

- First node in C_2 (root of C_2)
- ▶ Some nodes in C_2
- First node in C_3 (root of C_3)
- ► Some nodes in C_3
- First node in C_5 (root of C_5)
- All other nodes in C_5 (C_5 is a sink SCC)

 c_1 c_2 c_3 c_4 c_5







If we can identify root of C_5 , call it r_5 , then all nodes visited during DFS starting from r_5 are the nodes in C_5 .

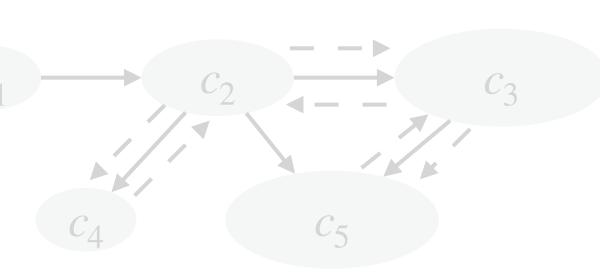
THIST HOUSE HT CA (TOUT OF CA)

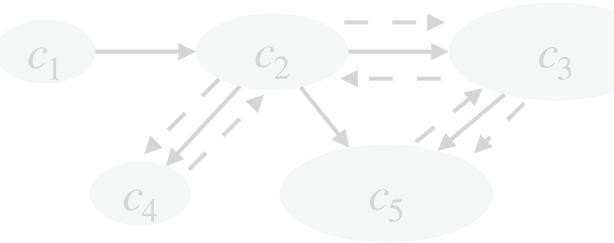
If we push a node to a stack when it is discovered, when DFS returns from r_5 , all nodes above r_5 in the stack are in C_5 and can be popped!

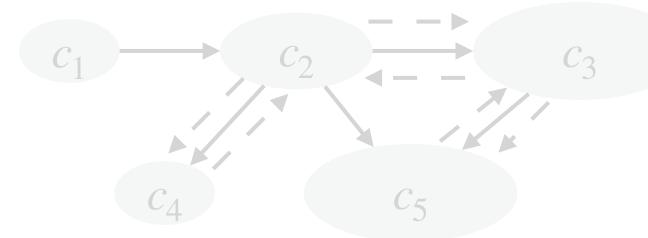
First node in C_1 (root of C_1)

stack top

► All other nodes in C_1 (C_1 becomes a sink SCC by then)







nen)

Let's have a closer look at the order that DFS examines nodes

- First node in C_2 (root of C_2)
- \rightarrow Some nodes in C_2
- First node in C_3 (root of C_3)
- Some nodes in C_3

stack top

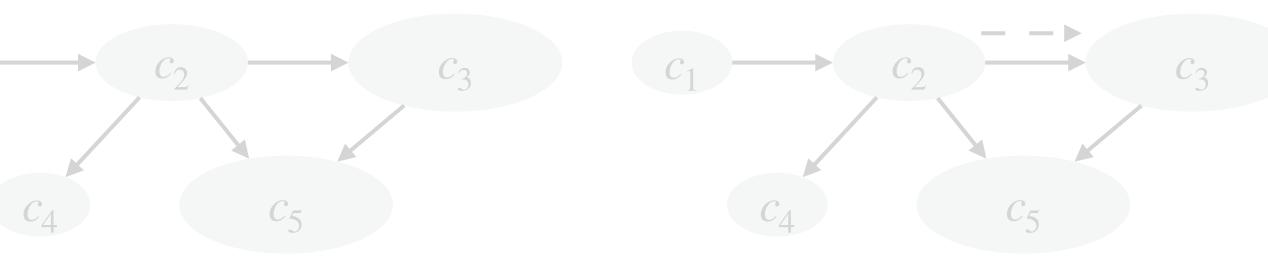
- First node in C_5 (root of C_5)
- ► All other nodes in C_5 (C_5 is a sink SCC)
- All other nodes in C_3 (C_3 becomes a sink SCC by then)

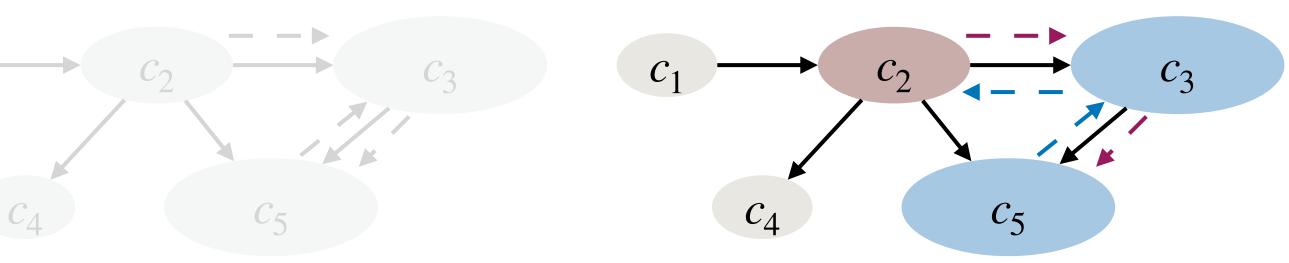
Given that we know nodes in C_5 , , if we can identify root of C_3 , call it r_3 , then all nodes not in C_5 visited during DFS starting from r_3 are the nodes in C_3 .

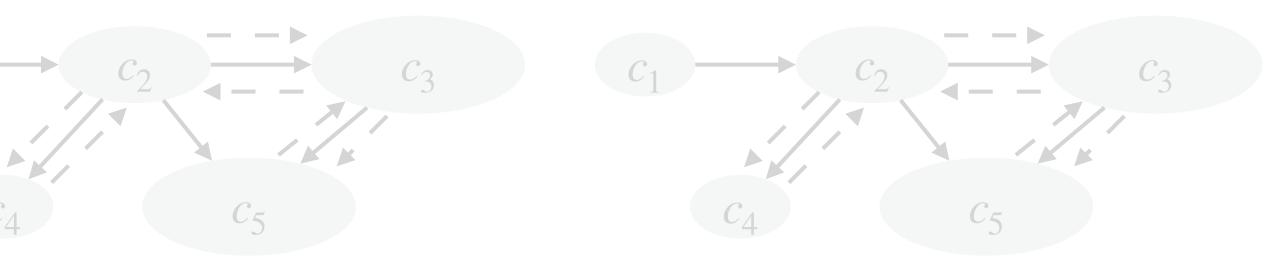
All other nodes in CallCalls a sink SUCI

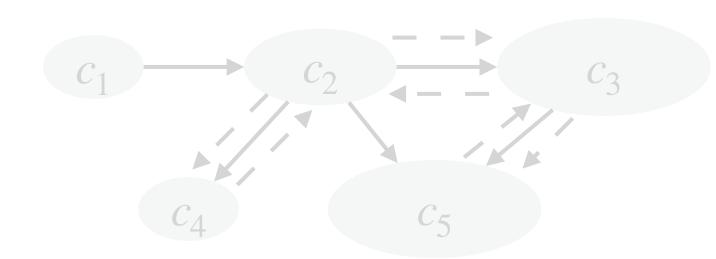
If we push a node to a stack when it is discovered, when DFS returns from r_3 , all nodes above r_3 in the stack are in C_3 and can be popped!

► All other nodes in C_1 (C_1 becomes a sink SCC by then)









Let's have a closer look at the order that DFS examines nodes

First node in C_2 (root of C_2)

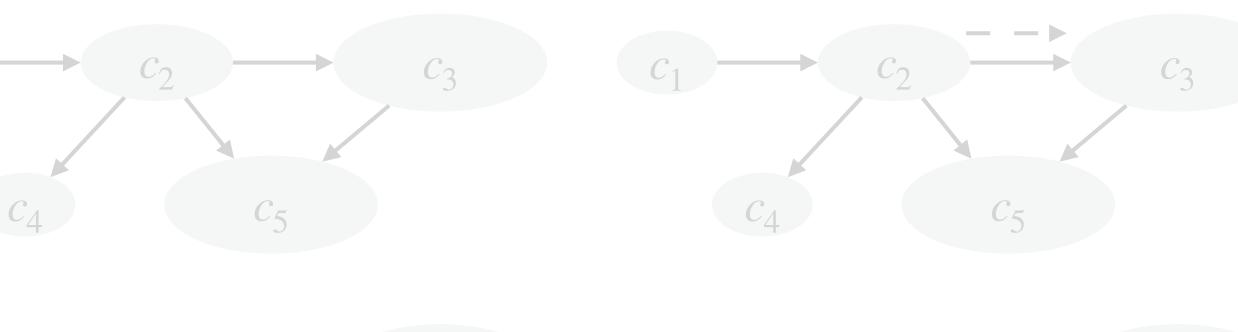
 \triangleright Some nodes in C_2

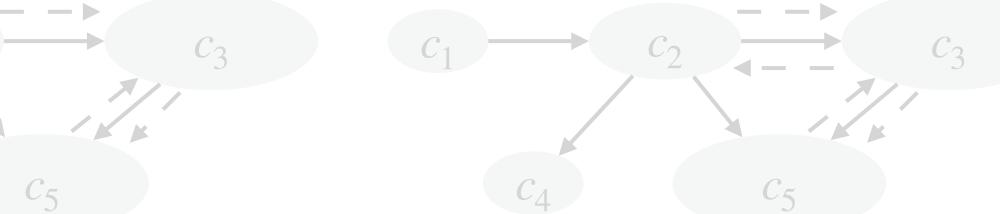
If we can identify root of C_4 , call it r_4 , then all nodes visited during DFS starting from r_4 are the nodes in C_4 .

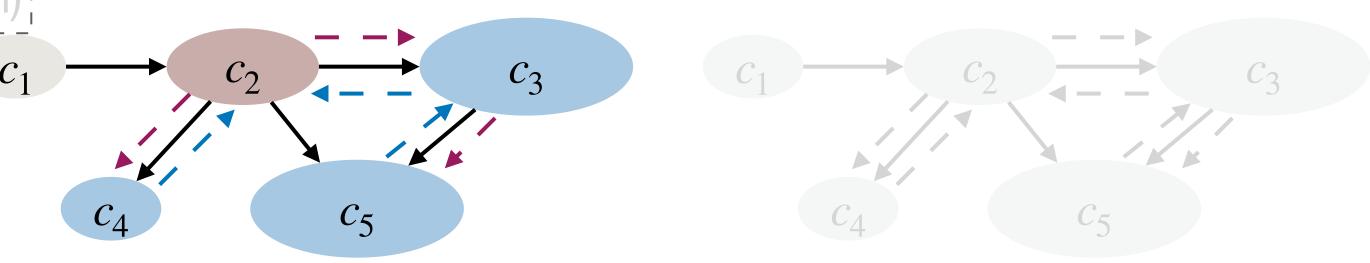
If we push a node to a stack when it is discovered, when DFS returns from r_4 , all nodes above r_4 in the stack are in C_4 and can be popped!

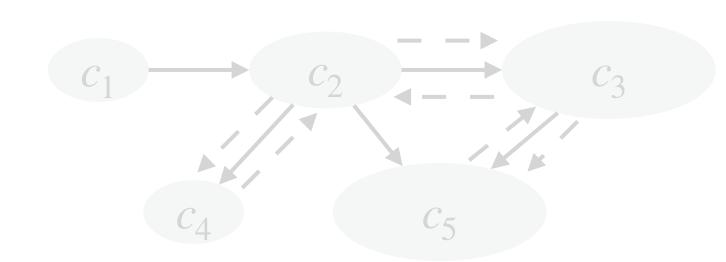
• Some nodes in C_2

- First node in C_4 (root of C_4)
- All other nodes in C_4 (C_4 is a sink SCC)
- ightharpoonup All other nodes in C_2 (C_2 becomes a sink SCC by then)
- First node in C_1 (root of C_1)
- ► All other nodes in C_1 (C_1 becomes a sink SCC by then)









Let's have a closer look at the order that DFS examines nodes

- First node in C_2 (root of C_2)
- Some nodes in C_2

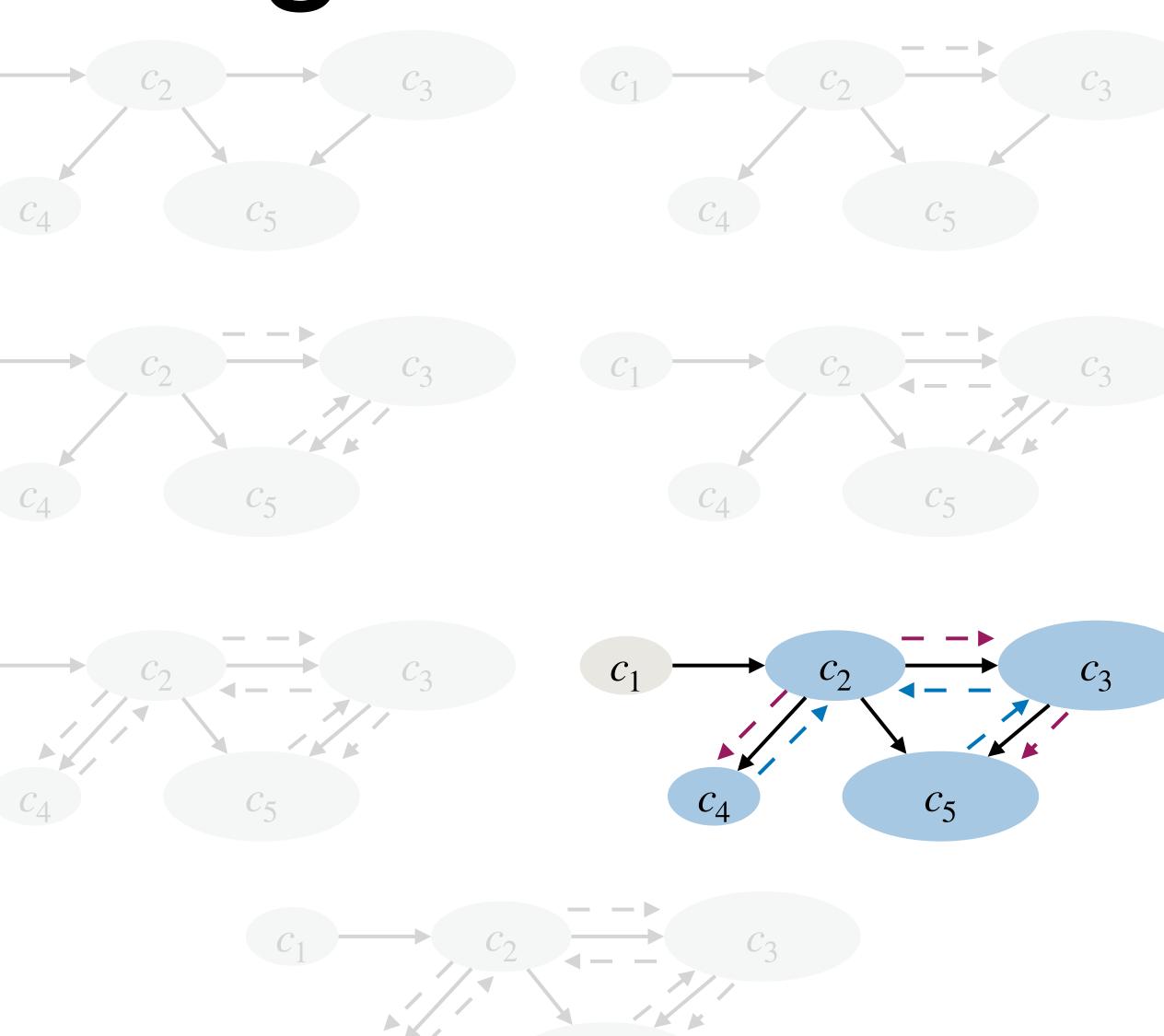
Given that we know nodes in C_5 & C_4 & C_3 , if we can identify root of C_2 , call it r_2 , then all nodes not in C_5 & C_4 & C_3 visited during DFS starting from r_2 are the nodes in C_2 .

If we push a node to a stack when it is discovered, when DFS returns from r_2 , all nodes above r_2 in the stack are in C_2 and can be popped!

 $\,\,\,\,\,\,\,\,\,$ Some nodes in C_2

First node in C_4 (root of C_4)

- All other nodes in C_4 (C_4 is a sink SCC)
- All other nodes in C_2 (C_2 becomes a sink SCC by then)
- First node in C_1 (root of C_1)
- ► All other nodes in C_1 (C_1 becomes a sink SCC by then)



Let's have a closer look at the order that DFS examines nodes

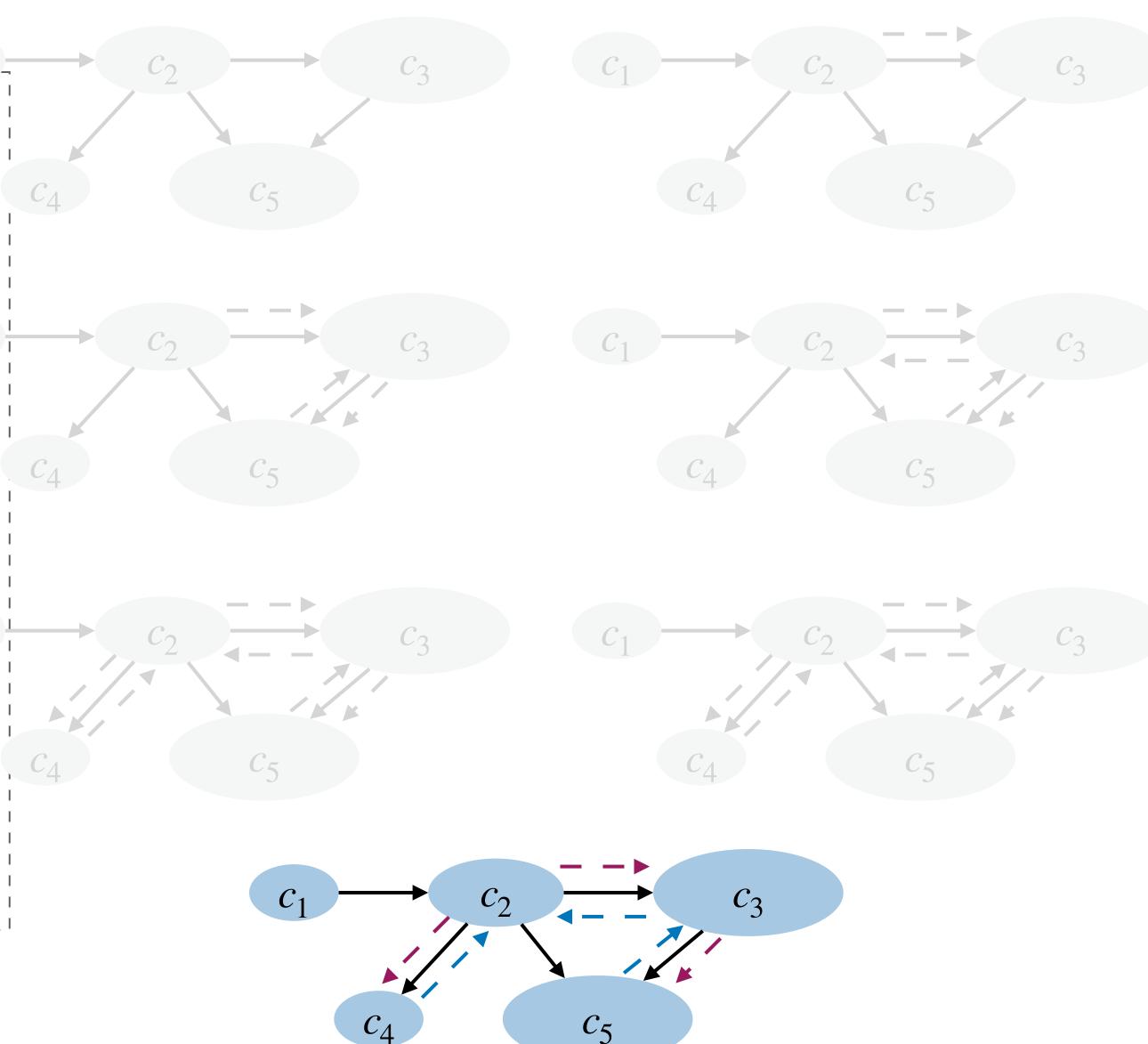
- First node in C_2 (root of C_2)
- \triangleright Some nodes in C_2
- First node in C_3 (root of C_3)
- Some nodes in C_3

First node in C_5 (root of C_5)

Given that we know nodes in C_2 , if we can identify root of C_1 , call it r_1 , then all nodes not in C_1 visited during DFS starting from r_1 are the nodes in C_1 .

If we push a node to a stack when it is discovered, when DFS returns from r_1 , all nodes above r_1 in the stack are in C_1 and can be popped!

- All other nodes in C_2 (C_2 becomes a sink SCC by then)
- lacksquare First node in C_1 (root of C_1)
- All other nodes in C_1 (C_1 becomes a sink SCC by then)



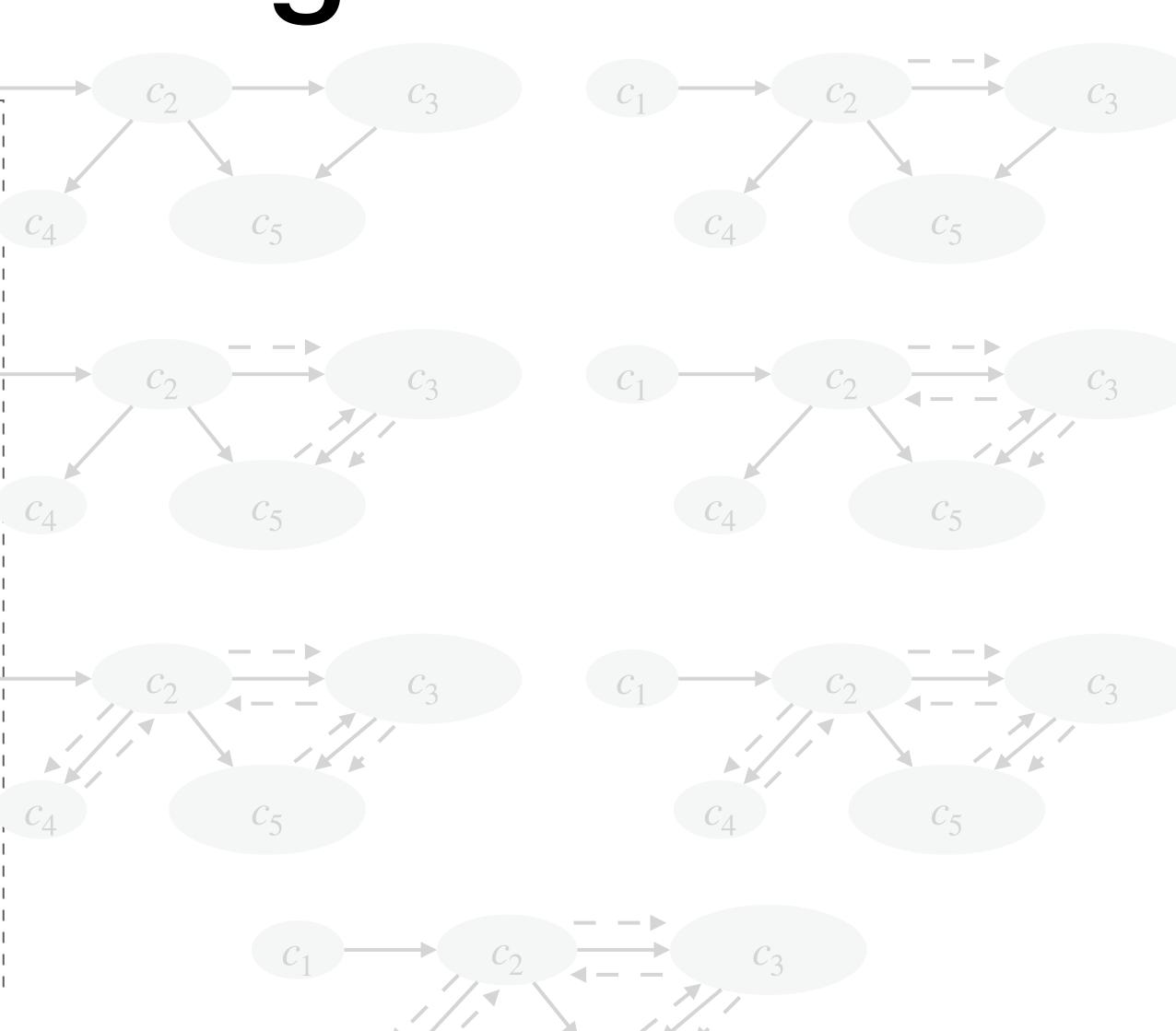
Let's have a closer look at the order that DFS examines nodes

- First node in C_2 (root of C_2)
- \triangleright Some nodes in C_2
- First node in C_3 (root of C_3)

For each SCC C_i , let r_i be its root. If we push a node to a stack when it is discovered, when DFS returns from r_i , all nodes above r_i in the stack are in C_i and can be popped!

But how to identify each root r_1 ?

- ▶ Some nodes in C_2
- First node in C_4 (root of C_4)
- All other nodes in C_4 (C_4 is a sink SCC)
- ► All other nodes in C_2 (C_2 becomes a sink SCC by then)
 - First node in C_1 (root of C_1)
- All other nodes in C_1 (C_1 becomes a sink SCC by then);



- Fix some DFS process, for each vertex v, let C_v be the SCC that v is in. Then, low(v) is the smallest discovery time among all nodes in C_v that are reachable from v via a path of tree edges followed by at most one non-tree edge.
- By definition, $low(v) \le v \cdot d$ as v is reachable from itself.

Lemma Node v is the root of a SCC iff $low(v) = v \cdot d$

Lemma Node v is the root of a SCC iff $low(v) = v \cdot d$

- Proof of [⇒] (easy direction)
 - If v is the root of C_v , then it is the first discovered node in C_v .
 - Hence v has the smallest discovery time among all nodes in C_v .
 - By the definition of low(v), clearly $low(v) = v \cdot d$.

Lemma Node v is the root of a SCC iff $low(v) = v \cdot d$

- Proof of [←] (hard direction)
 - For the sake of contradiction assume $x \neq v$ is the root of C_v . (That is, x is the first discovered node in C_v .)
 - Let $x' \neq v$ be v's parent in the DFS tree. Since C_v is a SCC, v can reach all nodes in C_v , including the ones on path $x \to x'$. Thus, when executing DFS from v, it will examine a path containing zero or more tree edges and then a back edge pointing to some node x'' in path $x \to x'$.
 - ▶ But this means $low(v) < v \cdot d$ since $low(v) \leq x'' \cdot d < v \cdot d$. Contradiction!

- Now we have:
 - For each SCC C_i , let r_i be its root. If we push a node to a stack when it is discovered, when DFS returns from r_i , all nodes above r_i in the stack are in C_i .
 - Let low(v) be the smallest discovery time among all nodes in C_i that are reachable from v via a path of tree edges followed by at most one non-tree edge.
 - Lemma: Node v is the root of a SCC iff $low(v) = v \cdot d$


```
Tarjan(G):

time := 0

Stack S

for each v in V

v.root := NIL

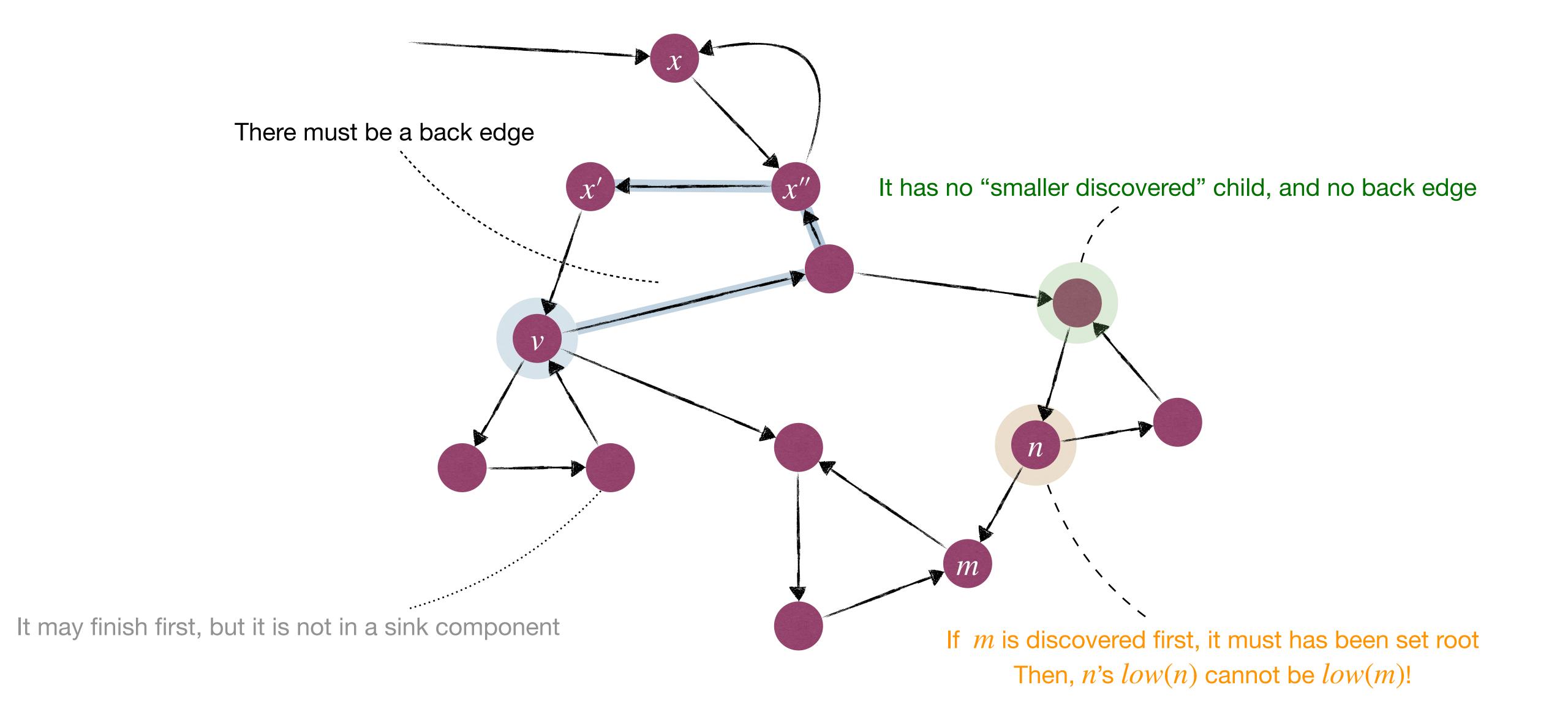
v.visited := False

for each v in V

if !v.visited

TarjanDFS(v)
```

```
TarjanDFS(v):
v.visited := True, time := time + 1
v.d := time, v.low := v.d
S.\mathbf{push}(v)
for each edge(v, w)
     if !w.visited // tree edge
           TarjanDFS(w)
           v.low := \min(v.low, w.low)
     else if w.root = NIL // non tree edge in C_v
           v.low := \min(v.low, w.d)
if v.low = v.d
      repeat
           w := S.pop(), w.root := v
      until w = v
```

Further reading

- [CLRS] Ch.22
- [Erickson] Ch.6

