
智能软件与工程学院
School of Intelligent Software and Engineering

贪心策略
Greedy Strategy

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne.Thanks for their supports!

钮鑫涛
Nanjing University

2024 Fall

智能软件与工程学院
School of Intelligent Software and Engineering

The Greedy Strategy

• For many games, you should think ahead, a strategy which focuses on
immediate advantage could easily lead to defeat.

‣ Such as playing chess.

• But for many other games, you can do quite well by simply making
whichever move seems best at the moment, without worrying too much
about future consequences.

‣ Such as building an MST.

智能软件与工程学院
School of Intelligent Software and Engineering

The Greedy Strategy

• The Greedy Algorithmic Strategy: given a problem, build up a solution
piece by piece, always choosing the next piece that offers the most
obvious and immediate benefit.

‣ Sometimes it gives optimal solution.

‣ Sometimes it gives near-optimal solution.

‣ Or, it simply fails…

智能软件与工程学院
School of Intelligent Software and Engineering

An Activity-Selection Problem
• Assume we have one hall and activities = { ,⋯, }.

‣ Each activity has a start time and a finish time .

‣ Two activities cannot happen simultaneously in the hall.

‣ Maximum number of activities we can schedule?

n S a1 an

si fi

time time

🤔

智能软件与工程学院
School of Intelligent Software and Engineering

An Activity-Selection Problem
• Let’s start with “divide-and-conquer”

‣ Define to be the set of activities start after finishes;

‣ Define to be the set of activities finish before starts.

‣

Si ai

Fi ai

OPT(S) = max
1≤i≤n

{OPT(Fi) + 1 + OPT(Si)}

Observation: To make OPT(S) as large as possible, the activity
that finishes first should finish as early as possible!

In any solution, some activity is the first to finish. OPT(S) = max
1≤i≤n

{1 + OPT(Si)}

智能软件与工程学院
School of Intelligent Software and Engineering

An Activity-Selection Problem
• A greedy strategy to solve this problem:

ActivitySelection(S):
Sort S into increasing order of finish time
SOL := { }, =
for i := 2 to n

 If .start_time > .finish_time
 SOL := SOL { }
 :=

return SOL

a1 a′￼ a1

ai a′￼

∪ ai
a′￼ ai

智能软件与工程学院
School of Intelligent Software and Engineering

time time

time time

time

智能软件与工程学院
School of Intelligent Software and Engineering

Correctness of the greedy strategy for this problem

• The Greedy Algorithm for the Activity-Selection Problem:

‣ Add earliest finish activity to solution, remove ones overlapping with .

‣ Repeat until all activities are processed.

a′￼ a′￼

• How to formally prove this algorithm is correct?

‣ The firstly selected activity is in some optimal solution.

‣ The following selection is correct to this optimal solution.

智能软件与工程学院
School of Intelligent Software and Engineering

• Proof:

‣ Let be an optimal solution to the problem, let be the earliest finishing
activity in .

‣ Assume , otherwise we are done.

‣ Then is also a feasible solution, and it has same
size as .

‣ So is also an optimal solution.

OPT(S) a
OPT(S)

a′￼ ∉ OPT(S)

SOL(S) = OPT(S) + a′￼− a
OPT(S)

SOL(S)

Lemma 1 let be the earliest finishing activity in , then is in some
optimal solution of the problem.

a′￼ S a′￼

Correctness of the greedy strategy for this problem

智能软件与工程学院
School of Intelligent Software and Engineering

• Proof:

‣ Let be an optimal solution to the original problem, and . (Lemma 1
ensures such solution exists.)

‣ Thus, .

‣ If is not an optimal solution to the original problem, then it must be the
case that .

‣ But this contradicts that is an optimal solution for problem .

OPT(S) a′￼ ∈ OPT(S)

OPT(S) = SOL(S′￼) ∪ {a′￼}

OPT(S′￼) ∪ {a′￼}
|SOL(S′￼) | > |OPT(S′￼) |

OPT(S′￼) S′￼

Correctness of the greedy strategy for this problem

Lemma 2 let be the earliest finishing activity in , let be the activities
starting after , then is an optimal solution of the problem.

a′￼ S S′￼

a′￼ OPT(S′￼) ∪ {a′￼}

智能软件与工程学院
School of Intelligent Software and Engineering

• Proof:

‣ By induction on size of .

‣ When , the algorithm clearly is correct.

‣ When . Due to Lemma 2,

‣ By induction hypothesis, the algorithm correctly finds . So we are done.

S

|S | = 1

|S | = n OPT(S) = OPT(S′￼) ∪ {a′￼}

OPT(S′￼)

Correctness of the greedy strategy for this problem

Theorem The greedy algorithm for the activity-selection problem is correct.

智能软件与工程学院
School of Intelligent Software and Engineering

Elements of
the Greedy Strategy

智能软件与工程学院
School of Intelligent Software and Engineering

Elements of the Greedy Strategy

• If an (optimization) problem has following two properties, then the greedy
strategy usually works for it:

‣ Optimal substructure.

‣ Greedy property.

智能软件与工程学院
School of Intelligent Software and Engineering

Optimal Substructure
• A problem exhibits optimal substructure if an optimal solution to the problem contains

within it optimal solution(s) to subproblem(s):

‣ Size problem , and optimal solution of is .

‣ Solving needs to solve size subproblem .

‣ Optimal solution of :

‣ contains a solution of :

‣ Optimal Substructure Property: =

- Or these two solutions provide same “utility” under certain metric.

n P(n) P(n) OPTP(n)

P(n) n′￼ < n P(n′￼)

P(n′￼) OPTP(n′￼)

OPTP(n) P(n′￼) SOLP(n′￼)

SOLP(n′￼) OPTP(n′￼)

智能软件与工程学院
School of Intelligent Software and Engineering

Optimal Substructure
• Example:

‣ Lemma 2 in activity selection: let be the earliest finishing activity in , let
 be the activities starting after , then is some .

a′￼ S
S′￼ a′￼ OPT(S′￼) ∪ {a′￼} OPT(S)

• There are problems that do NOT exhibit optimal substructure property!

‣ E.g., find the longest path between two vertices without repeating an edge.

B C

DE

A

1

1

1
1

1

智能软件与工程学院
School of Intelligent Software and Engineering

Greedy-Choice Property
• At each step when building a solution, make the choice that looks best for the

current problem, without considering results from subproblems. That is, make
local greedy choice at each step.

‣ To solve , currently have choices to . If we choose , the problem
is reduced to a smaller size subproblem .

‣ If the problem only admits optimal structure:

- Find that maximize, Utility .

- We have to compute for all first.

P(n) k a1 ak ai
ni P(ni)

i (ai + OPTP(ni))

OPTP(ni) i

智能软件与工程学院
School of Intelligent Software and Engineering

Greedy-Choice Property

‣ With greedy choice:

- We have a way to pick correct , without knowing any .

‣ Example:

- Lemma 1 in activity selection: let be the earliest finishing activity in
, then is in some optimal solution of the problem.

i OPTP(ni)

a′￼

S a′￼

Identifying a greedy-choice property is the challenging part!

智能软件与工程学院
School of Intelligent Software and Engineering

Fractional Knapsack Problem

• A thief robbing a warehouse finds items .

• Item is worth dollars and weighs pounds.

• The thief can carry at most pounds in his knapsack.

• The thief can carry fraction of items.

• What should the thief take to maximize his profit?

n A = {a1, …, an}

ai vi wi

W

智能软件与工程学院
School of Intelligent Software and Engineering

Fractional Knapsack Problem
• A greedy strategy:

‣ keep taking the most cost efficient item (i.e.,) until the

knapsack is full.

• The greedy solution is optimal!

‣ Greedy-choice

‣ Optimal substructure

max{
vi

wi
}

智能软件与工程学院
School of Intelligent Software and Engineering

Correctness of the greedy algorithm
• Lemma 1 [greedy-choice]: let be a most cost efficient item in , then in

some optimal solution, at least pounds of are
taken.

• Proof:

‣ Consider an optimal solution, assume pounds of are taken.

‣ Now, substitute pounds of other items with .

‣ Since is most cost-efficient, the new solution cannot be worse.

am A
wm′￼

= min{wm, W} am

w′￼ < wm′￼
am

wm′￼
− w′￼ am

am

智能软件与工程学院
School of Intelligent Software and Engineering

Correctness of the greedy algorithm
• Lemma 2 [optimal substructure]: let be a most cost efficient item in , then

“ with pounds of ” is an optimal solution
of the problem.

• Proof:

‣ Consider some containing pounds of .

‣ If optimal substructure does not hold, then gives
.

‣ But this contradicts the optimality of .

am A
OPTW−min{wm,W}(A − am) min{wm, W} am

OPTW(A) min{wm, W} am

OPTW(A)
SOLW−min{wm,W}(A − am) > OPTW−min{wm,W}(A − am)

OPTW−min{wm,W}(A − am)

智能软件与工程学院
School of Intelligent Software and Engineering

0-1 Knapsack Problem

• A thief robbing a warehouse finds items .

• Item is worth dollars and weighs pounds.

• The thief can carry at most pounds in his knapsack.

• The thief cannot carry fraction of items!

• What should the thief take to maximize his profit?

n A = {a1, …, an}

ai vi wi

W

智能软件与工程学院
School of Intelligent Software and Engineering

0-1 Knapsack Problem
• A greedy strategy:

‣ keep taking the most cost efficient item (i.e.,) until the knapsack is full.

• The greedy solution is NOT optimal!

• A simple counterexample:

‣ There are only two items.

‣ Item One has value 2 and weighs 1 pound.

‣ Item Two has value and weighs pounds.

max{
vi

wi
}

W W
The greedy solution can be arbitrarily bad!

智能软件与工程学院
School of Intelligent Software and Engineering

Why greedy strategy fail?

• Lemma 1 [greedy-choice]: let be a most cost efficient item that can fit
into the bag, then in some optimal solution, this item is taken.

• Proof:

‣ Consider an optimal solution, assume is NOT taken.

‣ Now, substitute pounds of other items with (all pounds).

‣ Since is the most cost-efficient, the new solution cannot be worse.

am

am

w′￼ = wm am wm

am

w′￼ ≥ wm

can ?w′￼ < wm

However, these pounds of items may have aggregate value larger than , since it may .w′￼ vm w′￼ > wm

Thus, this lemma cannot be proven!

What about the optimal substructure property? That is, is with pounds of is the optimal solution?OPTW−wx
(A − ax) wx ax

智能软件与工程学院
School of Intelligent Software and Engineering

A data compression problem
• Assume we have a data file containing 100k characters.

‣ Further assume the file only uses 6 characters.

‣ How to store this file to save space?

• Simplest way: use 3 bits to encode each char.

‣ a=000,b=001,…,f=101

‣ This costs 300k bits in total.

• Can we do better?

智能软件与工程学院
School of Intelligent Software and Engineering

A data compression problem
• How to store this file to save space?

‣ Instead of using fixed-length codeword for each char, we should let
frequent chars use shorter codewords. That is, use a variable-length
code.

a b c d e f

Frequency 45k 13k 12k 16k 9k 5k

Fixed-length code 000 001 010 011 100 101

varaible-length code 0 00 01 1 10 11

How to decode bit string 000?

智能软件与工程学院
School of Intelligent Software and Engineering

A data compression problem
• How to store this file to save space?

‣ Instead of using fixed-length codeword for each char, we should let frequent
chars use shorter codewords. That is, use a variable-length code.

‣ To avoid ambiguity in decoding, variable-length code should be prefix-free:
no codeword is also a prefix of some other codeword.

a b c d e f

Frequency 45k 13k 12k 16k 9k 5k

Fixed-length code 000 001 010 011 100 101

varaible-length code 0 101 100 111 1101 1100

Fixed-length code vs Variable-length code: 300k vs 224k. This is ≈25% saving. Is it optimal?

智能软件与工程学院
School of Intelligent Software and Engineering

Properties of prefix-free code
• Use a binary tree to visualize a prefix-free code.

‣ Each leaf denotes a char.

‣ Each internal node: left branch is 0, right branch is 1.

‣ Path from root to leaf is the codeword of that char.

‣ Optimal code must be represented by a full binary
tree: a tree each node having zero or two children.WHY?

100K

86K 14K

58K 28K 14K

a:45K b:13K c:12K d:16K e:9K f:5K

0 1

0 1 0

0 1 0 1 0 1

a b c d e f

Frequency 45k 13k 12k 16k 9k 5k

Fixed-length code 000 001 010 011 100 101

varaible-length code 0 101 100 111 1101 1100

100K

55K

25K 30K

a:45K

b:13Kc:12K d:16K

e:9K f:5K

0 1

0 1

0

1

0 11

14K

0

智能软件与工程学院
School of Intelligent Software and Engineering

Length of encoded message
• Consider a file using a size alphabet . For each character,

let be the frequency of char .

• Let be a full binary tree representing a prefix-free code.For each character
, let be the depth of in .

‣ Length of encoded message is

• Alternatively, recursively (bottom-up) define each internal node’s frequency
to be sum of its two children.

‣ Length of encoded message is

n C = {c1, . . . , cn}
fi ci

T
ci dT(i) ci T

n

∑
i=1

fi ⋅ dT(i)

∑
u∈tree\root

fu

智能软件与工程学院
School of Intelligent Software and Engineering

Huffman Codes
• How to construct optimal prefix-free code?

• Huffman Codes: Merge the two least frequent chars and recurse.

Huffman(C):
Build a priority queue Q based on frequency
for i := 1 to n - 1

 Allocate new node z
 x := z.left := Q.ExtractMin()
 y := z.right := Q.ExtractMin()
 z.frequency := x.frequency + y.frequency
 Q.Insert(z)

return Q.ExtractMin()

Time complexity is O(n log n)

智能软件与工程学院
School of Intelligent Software and Engineering

Huffman Codes
a:45Kb:13Kc:12K d:16Ke:9Kf:5K a:45Kb:13Kc:12K d:16K

e:9Kf:5K

14K a:45K

b:13Kc:12K

d:16K

e:9Kf:5K

14K 25K

a:45K

b:13Kc:12K d:16K

e:9Kf:5K

14K

25K 30K

0 1

a:45K

b:13Kc:12K d:16K

e:9Kf:5K

14K

25K 30K

0 1 0 1

0 1

0 1

0 1

0 1 0 10 1

55K
0 1

a:45K

b:13Kc:12K d:16K

e:9Kf:5K

14K

25K 30K

0 1 0 1

0 1

55K
0 1

100K
0 1

智能软件与工程学院
School of Intelligent Software and Engineering

Correctness of Huffman Codes
• Length of encoded message is computed by or

• Huffman Codes: Merge the two least frequent chars and recurse.

• Lemma 1 [greedy choice]: Let and be two least frequent chars, then in some
optimal code tree, and are siblings and have largest depth.

• Lemma 2 [optimal substructure]: Let and be two least frequent chars in .
Let with . Let be an optimal code tree for

. Let be a code tree obtained from by replacing leaf node with an
internal node having and as children. Then, is an optimal code tree for .

n

∑
i=1

fi ⋅ dT(i) ∑
u∈tree\root

fu

x y
x y

x y C
Cz = C − {x, y} + {z} fz = fx + fy Tz

Cz T Tz z
x y T C

智能软件与工程学院
School of Intelligent Software and Engineering

Correctness of Huffman Codes

• Proof sketch:

‣ Let be an optimal code tree with depth .

‣ Let and be siblings with depth . (Recall is a full binary tree.)

‣ Assume and are not and . (Otherwise we are done.)

‣ Let be the code tree obtained by swapping and .

‣ =

‣ Swapping and , obtaining , further reduces the total cost.

‣ So must also be an optimal code tree.

T d

a b d T

a b x y

T′￼ a x

cost(T′￼) = cost(T) + (d − dT(x)) ⋅ fx − (d − dT(x)) ⋅ fa cost(T) + (d − dT(x)) ⋅ (fx − fa) ≤ cost(T)

b y T′￼′￼

T′￼′￼

Lemma 1 [greedy choice]: Let and be two least frequent chars, then in
some optimal code tree, and are siblings and have largest depth.

x y
x y

x

y

a b

a

y

x b

T T′￼

智能软件与工程学院
School of Intelligent Software and Engineering

Correctness of Huffman Codes

• Proof sketch:

• Let be an optimal code tree for , with and being sibling leaves.

•

• So T must be an optimal code tree for C.

T′￼ C x y

Cost(T′￼) = fx + fy + ∑
u∈T′￼\root and u∉{x,y}

fu = fx + fy + cost(T′￼z) ≥ fx + fy + cost(Tz) = cost(T)

Lemma 2 [optimal substructure]: Let and be two least frequent chars in .
Let with . Let be an optimal code tree for

. Let be a code tree obtained from by replacing leaf node with an
internal node having and as children. Then, is an optimal code tree for .

x y C
Cz = C − {x, y} + {z} fz = fx + fy Tz

Cz T Tz z
x y T C

智能软件与工程学院
School of Intelligent Software and Engineering

Set Cover

• Suppose we need to build schools for towns.

• Each school must be in a town, no child should travel
more than 30km to reach a school.

• Minimum number of schools we need to build?

n

c

d

b

a e

f

g
k

h
i

j

town

two towns less than 30km

智能软件与工程学院
School of Intelligent Software and Engineering

Set Cover
• The Set Cover Problem:

• Input: a universe of elements; and where each .

• Output: such that

‣ That is, a subset of that “covers” .

• Goal: minimize

U n 𝒮 = {S1, . . , Sm} Si ⊆ U

𝒞 ⊆ 𝒮 ⋃
Si∈𝒞

Si = U

𝒮 U

|𝒞 |

c

d

b

a e

f

g
k

h
i

j

智能软件与工程学院
School of Intelligent Software and Engineering

Set Cover
• Simple greedy strategy:

• Keep picking the town that covers most
remaining uncovered towns, until we are done.

‣ Pick the set that covers most uncovered
elements, until all elements are covered.

• Greedy solution: a, f, c, j

c

d

b

a e

f

g
k

h
i

j
Can we do better?

智能软件与工程学院
School of Intelligent Software and Engineering

Set Cover

• The optimal solution is

• Nevertheless, the greedy solution is
very close!

b, e, i

a, f, c, j c

d

b

a e

f

g
k

h
i

j

‣ But, how close?

智能软件与工程学院
School of Intelligent Software and Engineering

Greedy solution of Set Cover is close to optimal

• Proof:

• Let be number of uncovered elements after iterations. (Thus .)

• These elements can be covered by some sets. (The optimal solution will do)

• So one of the remaining sets will cover at least of these uncovered elements.

• Thus

•

• With we have , by then we must have done!

nt t n0 = n

nt k

nt

k

nt+1 ≤ nt −
nt

k
= nt(1 −

1
k

)

nt ≤ n0(1 −
1
k

)t < n0(e− 1
k)t = n ⋅ e− t

k

t = k ln n nt < 1

Theorem Suppose the optimal solution uses sets, then the greedy
strategy will use at most sets.

k
k ln n

, for , and when the inequality holdsex = lim
n→∞

(1 +
x
n

)n ≥ 1 + x x ≥ − 1 x ≠ 0,

智能软件与工程学院
School of Intelligent Software and Engineering

Greedy solution of Set Cover is close to optimal

• Simple greedy strategy: Keep picking the set the covers most uncovered elements, until all elements
are covered.

• Theorem Suppose the optimal solution uses sets, then the greedy strategy will use at most
sets.

• So the greedy strategy gives a approximation algorithm, and it has efficient implementation.
(Polynomial runtime.)

• Can we do better?

‣ Most likely, NO! If we only care about efficient algorithms.

- [Dinur & Steuer STOC14] There is no polynomial-runtime approximation
algorithm unless P = NP.

k k ln n

ln n

(1 − o(1)) ⋅ ln n

智能软件与工程学院
School of Intelligent Software and Engineering

Summary
• Basic idea of greedy strategy: At each step when building a solution, make the

choice that looks best at that moment, based on some metric.

• Properties that make greedy strategy work:

‣ Optimal substructure [usually easy to prove]: optimal solution to the problem
contains within it optimal solution(s) to subproblem(s).

‣ Greedy choice [could be hard to identify and prove]: the greedy choice is
contained within some optimal solution.

• Greed gives optimal solutions: MST, Huffman codes, …

• Greed gives near-optimal solutions: Set cover, …

• Greed gives arbitrarily bad solutions: 0-1 knapsack, …

智能软件与工程学院
School of Intelligent Software and Engineering

Further reading
• [CLRS] Ch.16 (16.1-16.3, 35.3)

• [Erickson v1] Ch.4 (4.5)

Refer to [Vazirani] and [Williamson & Shmoys]
for more approximation algorithms

