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The Greedy Strategy

• For many games, you should think ahead, a strategy which focuses on 
immediate advantage could easily lead to defeat.


‣ Such as playing chess.


• But for many other games, you can do quite well by simply making 
whichever move seems best at the moment, without worrying too much 
about future consequences.


‣ Such as building an MST.
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The Greedy Strategy

• The Greedy Algorithmic Strategy: given a problem, build up a solution 
piece by piece, always choosing the next piece that offers the most 
obvious and immediate benefit.


‣ Sometimes it gives optimal solution.


‣ Sometimes it gives near-optimal solution.


‣ Or, it simply fails…
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An Activity-Selection Problem
• Assume we have one hall and  activities  = { ,⋯, }.

‣ Each activity has a start time  and a finish time .


‣ Two activities cannot happen simultaneously in the hall.


‣ Maximum number of activities we can schedule?

n S a1 an

si fi

time time

🤔
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An Activity-Selection Problem
• Let’s start with “divide-and-conquer”


‣ Define  to be the set of activities start after  finishes;


‣ Define  to be the set of activities finish before  starts.


‣

Si ai

Fi ai

OPT(S) = max
1≤i≤n

{OPT(Fi) + 1 + OPT(Si)}

Observation: To make OPT(S) as large as possible, the activity 
that finishes first should finish as early as possible!

In any solution, some activity is the first to finish. OPT(S) = max
1≤i≤n

{1 + OPT(Si)}
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An Activity-Selection Problem
• A greedy strategy to solve this problem:

ActivitySelection(S):
Sort S into increasing order of finish time
SOL  := { },   = 
for  i := 2 to n

  If .start_time > .finish_time
  SOL := SOL  { }
   := 

return SOL

a1 a′￼ a1

ai a′￼

∪ ai
a′￼ ai
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time time

time time

time
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Correctness of the greedy strategy for this problem 

• The Greedy Algorithm for the Activity-Selection Problem:

‣ Add earliest finish activity   to solution, remove ones overlapping with .


‣ Repeat until all activities are processed.

a′￼ a′￼

• How to formally prove this algorithm is correct?


‣ The firstly selected activity is in some optimal solution.


‣ The following selection is correct to this optimal solution.
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• Proof:


‣ Let  be an optimal solution to the problem, let  be the earliest finishing 
activity in .

‣ Assume , otherwise we are done.


‣ Then  is also a feasible solution, and it has same 
size as .

‣ So  is also an optimal solution.

OPT(S) a
OPT(S)

a′￼ ∉ OPT(S)

SOL(S) = OPT(S) + a′￼− a
OPT(S)

SOL(S)

Lemma 1 let  be the earliest finishing activity in , then  is in some 
optimal solution of the problem.

a′￼ S a′￼

Correctness of the greedy strategy for this problem 



智能软件与工程学院 
School of Intelligent Software and Engineering 

• Proof:


‣ Let  be an optimal solution to the original problem, and . (Lemma 1 
ensures such solution exists.)

‣ Thus, . 

‣ If  is not an optimal solution to the original problem, then it must be the 
case that .


‣ But this contradicts that  is an optimal solution for problem . 

OPT(S) a′￼ ∈ OPT(S)

OPT(S) = SOL(S′￼) ∪ {a′￼}

OPT(S′￼) ∪ {a′￼}
|SOL(S′￼) | > |OPT(S′￼) |

OPT(S′￼) S′￼

Correctness of the greedy strategy for this problem 

Lemma 2 let  be the earliest finishing activity in , let  be the activities 
starting after , then  is an optimal solution of the problem.

a′￼ S S′￼

a′￼ OPT(S′￼) ∪ {a′￼}
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• Proof:

‣ By induction on size of .

‣ When , the algorithm clearly is correct.


‣ When . Due to Lemma 2,  

‣ By induction hypothesis, the algorithm correctly finds . So we are done.

S

|S | = 1

|S | = n OPT(S) = OPT(S′￼) ∪ {a′￼}

OPT(S′￼)

Correctness of the greedy strategy for this problem 

Theorem The greedy algorithm for the activity-selection problem is correct.
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Elements of  
the Greedy Strategy
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Elements of the Greedy Strategy

• If an (optimization) problem has following two properties, then the greedy 
strategy usually works for it:


‣ Optimal substructure.


‣ Greedy property.
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Optimal Substructure
• A problem exhibits optimal substructure if an optimal solution to the problem contains 

within it optimal solution(s) to subproblem(s): 


‣ Size  problem , and optimal solution of  is .


‣ Solving  needs to solve size  subproblem .

‣ Optimal solution of : 

‣  contains a solution of : 

‣ Optimal Substructure Property:   = 

- Or these two solutions provide same “utility” under certain metric.

n P(n) P(n) OPTP(n)

P(n) n′￼ < n P(n′￼)

P(n′￼) OPTP(n′￼)

OPTP(n) P(n′￼) SOLP(n′￼)

SOLP(n′￼) OPTP(n′￼)
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Optimal Substructure
• Example: 


‣ Lemma 2 in activity selection: let  be the earliest finishing activity in , let 
 be the activities starting after , then  is some .

a′￼ S
S′￼ a′￼ OPT(S′￼) ∪ {a′￼} OPT(S)

• There are problems that do NOT exhibit optimal substructure property!


‣ E.g., find the longest path between two vertices without repeating an edge.

B C

DE

A

1

1

1
1

1
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Greedy-Choice Property
• At each step when building a solution, make the choice that looks best for the 

current problem, without considering results from subproblems. That is, make 
local greedy choice at each step.


‣ To solve , currently have  choices  to . If we choose , the problem 
is reduced to a smaller size  subproblem .


‣ If the problem only admits optimal structure: 


- Find  that maximize, Utility .  

- We have to compute  for all  first.

P(n) k a1 ak ai
ni P(ni)

i (ai + OPTP(ni))

OPTP(ni) i
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Greedy-Choice Property

‣ With greedy choice:


- We have a way to pick correct , without knowing any .


‣ Example: 


- Lemma 1 in activity selection: let  be the earliest finishing activity in 
, then  is in some optimal solution of the problem.

i OPTP(ni)

a′￼

S a′￼

Identifying a greedy-choice property is the challenging part!
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Fractional Knapsack Problem

• A thief robbing a warehouse finds  items .


• Item  is worth  dollars and weighs  pounds.


• The thief can carry at most  pounds in his knapsack.


• The thief can carry fraction of items.


• What should the thief take to maximize his profit?

n A = {a1, …, an}

ai vi wi

W
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Fractional Knapsack Problem
• A greedy strategy: 


‣ keep taking the most cost efficient item (i.e.,  ) until the 

knapsack is full.

• The greedy solution is optimal!


‣ Greedy-choice


‣ Optimal substructure

max{
vi

wi
}
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Correctness of the greedy algorithm
• Lemma 1 [greedy-choice]: let  be a most cost efficient item in , then in 

some optimal solution, at least  pounds of  are 
taken.

• Proof:


‣ Consider an optimal solution, assume  pounds of  are taken.


‣ Now, substitute  pounds of other items with .


‣ Since  is most cost-efficient, the new solution cannot be worse.

am A
wm′￼

= min{wm, W} am

w′￼ < wm′￼
am

wm′￼
− w′￼ am

am
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Correctness of the greedy algorithm
• Lemma 2 [optimal substructure]: let  be a most cost efficient item in , then 

“  with  pounds of ” is an optimal solution 
of the problem.

• Proof:

‣ Consider some  containing  pounds of .


‣ If optimal substructure does not hold, then  gives 
.


‣ But this contradicts the optimality of .

am A
OPTW−min{wm,W}(A − am) min{wm, W} am

OPTW(A) min{wm, W} am

OPTW(A)
SOLW−min{wm,W}(A − am) > OPTW−min{wm,W}(A − am)

OPTW−min{wm,W}(A − am)
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0-1 Knapsack Problem

• A thief robbing a warehouse finds  items .


• Item  is worth  dollars and weighs  pounds.


• The thief can carry at most  pounds in his knapsack.


• The thief cannot carry fraction of items!


• What should the thief take to maximize his profit?

n A = {a1, …, an}

ai vi wi

W
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0-1 Knapsack Problem
• A greedy strategy: 


‣ keep taking the most cost efficient item (i.e.,  ) until the knapsack is full.

• The greedy solution is NOT optimal!


• A simple counterexample:


‣ There are only two items.


‣ Item One has value 2 and weighs 1 pound.


‣ Item Two has value  and weighs  pounds.

max{
vi

wi
}

W W
The greedy solution can be arbitrarily bad!
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Why greedy strategy fail?

• Lemma 1 [greedy-choice]: let  be a most cost efficient item that can fit 
into the bag, then in some optimal solution, this item is taken.

• Proof: 

‣ Consider an optimal solution, assume  is NOT taken.

‣ Now, substitute  pounds of other items with  (all  pounds).

‣ Since  is the most cost-efficient, the new solution cannot be worse.

am

am

w′￼ = wm am wm

am

w′￼ ≥ wm

can  ?w′￼ < wm

However, these  pounds of items may have aggregate value larger than , since it may .w′￼ vm w′￼ > wm

Thus, this lemma cannot be proven!

What about the optimal substructure property? That is, is  with  pounds of  is the optimal solution?OPTW−wx
(A − ax) wx ax
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A data compression problem
• Assume we have a data file containing 100k characters.


‣ Further assume the file only uses 6 characters.


‣ How to store this file to save space?


• Simplest way: use 3 bits to encode each char.


‣ a=000,b=001,…,f=101 

‣ This costs 300k bits in total.


• Can we do better?
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A data compression problem
• How to store this file to save space?


‣ Instead of using fixed-length codeword for each char, we should let 
frequent chars use shorter codewords. That is, use a variable-length 
code.

a b c d e f

Frequency 45k 13k 12k 16k 9k 5k

Fixed-length code 000 001 010 011 100 101

varaible-length code 0 00 01 1 10 11

How to decode bit string 000?



智能软件与工程学院 
School of Intelligent Software and Engineering 

A data compression problem
• How to store this file to save space?


‣ Instead of using fixed-length codeword for each char, we should let frequent 
chars use shorter codewords. That is, use a variable-length code. 

‣ To avoid ambiguity in decoding, variable-length code should be prefix-free: 
no codeword is also a prefix of some other codeword.

a b c d e f

Frequency 45k 13k 12k 16k 9k 5k

Fixed-length code 000 001 010 011 100 101

varaible-length code 0 101 100 111 1101 1100

Fixed-length code vs Variable-length code: 300k vs 224k. This is ≈25% saving. Is it optimal?
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Properties of prefix-free code
• Use a binary tree to visualize a prefix-free code.


‣ Each leaf denotes a char.


‣ Each internal node: left branch is 0, right branch is 1.


‣ Path from root to leaf is the codeword of that char.


‣ Optimal code must be represented by a full binary 
tree: a tree each node having zero or two children.WHY?

100K

86K 14K

58K 28K 14K

a:45K b:13K c:12K d:16K e:9K f:5K

0 1

0 1 0

0 1 0 1 0 1

a b c d e f

Frequency 45k 13k 12k 16k 9k 5k

Fixed-length code 000 001 010 011 100 101

varaible-length code 0 101 100 111 1101 1100

100K

55K

25K 30K

a:45K

b:13Kc:12K d:16K

e:9K f:5K

0 1

0 1

0

1

0 11

14K

0
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Length of encoded message
• Consider a file using a size  alphabet . For each character, 

let  be the frequency of char .


• Let  be a full binary tree representing a prefix-free code.For each character 
, let  be the depth of  in .


‣ Length of encoded message is 


• Alternatively, recursively (bottom-up) define each internal node’s frequency 
to be sum of its two children.


‣ Length of encoded message is 

n C = {c1, . . . , cn}
fi ci

T
ci dT(i) ci T

n

∑
i=1

fi ⋅ dT(i)

∑
u∈tree\root

fu
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Huffman Codes
• How to construct optimal prefix-free code?


• Huffman Codes: Merge the two least frequent chars and recurse.

Huffman(C):
Build a priority queue Q based on frequency
for  i := 1 to n - 1

  Allocate new node z
  x := z.left := Q.ExtractMin()
  y := z.right := Q.ExtractMin()
  z.frequency := x.frequency + y.frequency
  Q.Insert(z)

return Q.ExtractMin()

Time complexity is O(n log n)
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Huffman Codes
a:45Kb:13Kc:12K d:16Ke:9Kf:5K a:45Kb:13Kc:12K d:16K

e:9Kf:5K

14K a:45K

b:13Kc:12K

d:16K

e:9Kf:5K

14K 25K

a:45K

b:13Kc:12K d:16K

e:9Kf:5K

14K

25K 30K

0 1

a:45K

b:13Kc:12K d:16K

e:9Kf:5K

14K

25K 30K

0 1 0 1

0 1

0 1

0 1

0 1 0 10 1

55K
0 1

a:45K

b:13Kc:12K d:16K

e:9Kf:5K

14K

25K 30K

0 1 0 1

0 1

55K
0 1

100K
0 1
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Correctness of Huffman Codes
• Length of encoded message is computed by    or 


• Huffman Codes: Merge the two least frequent chars and recurse.


• Lemma 1 [greedy choice]: Let  and  be two least frequent chars, then in some 
optimal code tree,  and  are siblings and have largest depth.


• Lemma 2 [optimal substructure]: Let  and  be two least frequent chars in . 
Let  with  . Let  be an optimal code tree for 

. Let  be a code tree obtained from  by replacing leaf node  with an 
internal node having  and  as children. Then,  is an optimal code tree for .

n

∑
i=1

fi ⋅ dT(i) ∑
u∈tree\root

fu

x y
x y

x y C
Cz = C − {x, y} + {z} fz = fx + fy Tz

Cz T Tz z
x y T C
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Correctness of Huffman Codes

• Proof sketch:


‣ Let  be an optimal code tree with depth .


‣ Let  and  be siblings with depth . (Recall  is a full binary tree.)


‣ Assume  and  are not  and . (Otherwise we are done.)


‣ Let  be the code tree obtained by swapping  and .


‣  =  


‣ Swapping  and , obtaining , further reduces the total cost.


‣ So  must also be an optimal code tree.

T d

a b d T

a b x y

T′￼ a x

cost(T′￼) = cost(T) + (d − dT(x)) ⋅ fx − (d − dT(x)) ⋅ fa cost(T) + (d − dT(x)) ⋅ ( fx − fa) ≤ cost(T)

b y T′￼′￼

T′￼′￼

Lemma 1 [greedy choice]: Let  and  be two least frequent chars, then in 
some optimal code tree,  and  are siblings and have largest depth.

x y
x y

x

y

a b

a

y

x b

T T′￼
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Correctness of Huffman Codes

• Proof sketch:


• Let  be an optimal code tree for , with  and  being sibling leaves.


•    


• So T must be an optimal code tree for C.

T′￼ C x y

Cost(T′￼) = fx + fy + ∑
u∈T′￼\root and u∉{x,y}

fu = fx + fy + cost(T′￼z) ≥ fx + fy + cost(Tz) = cost(T)

Lemma 2 [optimal substructure]: Let  and  be two least frequent chars in . 
Let  with  . Let  be an optimal code tree for 

. Let  be a code tree obtained from  by replacing leaf node  with an 
internal node having  and  as children. Then,  is an optimal code tree for .

x y C
Cz = C − {x, y} + {z} fz = fx + fy Tz

Cz T Tz z
x y T C
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Set Cover

• Suppose we need to build schools for  towns.


• Each school must be in a town, no child should travel 
more than 30km to reach a school. 


• Minimum number of schools we need to build?

n

c

d

b

a e

f

g
k

h
i

j

town

two towns less than 30km
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Set Cover
• The Set Cover Problem:


• Input: a universe  of  elements; and  where each .


• Output:  such that 


‣ That is, a subset of  that “covers” .


• Goal: minimize 

U n 𝒮 = {S1, . . , Sm} Si ⊆ U

𝒞 ⊆ 𝒮 ⋃
Si∈𝒞

Si = U

𝒮 U

|𝒞 |

c

d

b

a e

f

g
k

h
i

j
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Set Cover
• Simple greedy strategy:


• Keep picking the town that covers most 
remaining uncovered towns, until we are done.


‣ Pick the set that covers most uncovered 
elements, until all elements are covered.


• Greedy solution: a, f, c, j

c

d

b

a e

f

g
k

h
i

j
Can we do better?
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Set Cover

• The optimal solution is 


• Nevertheless, the greedy solution  is 
very close!

b, e, i

a, f, c, j c

d

b

a e

f

g
k

h
i

j

‣ But, how close?
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Greedy solution of Set Cover is close to optimal 

• Proof: 


• Let  be number of uncovered elements after  iterations. (Thus .)


• These  elements can be covered by some  sets. (The optimal solution will do)


• So one of the remaining sets will cover at least  of these uncovered elements.


• Thus 


• 


• With  we have , by then we must have done!

nt t n0 = n

nt k

nt

k

nt+1 ≤ nt −
nt

k
= nt(1 −

1
k

)

nt ≤ n0(1 −
1
k

)t < n0(e− 1
k )t = n ⋅ e− t

k

t = k ln n nt < 1

Theorem Suppose the optimal solution uses  sets, then the greedy 
strategy will use at most  sets.

k
k ln n

, for , and  when  the inequality holdsex = lim
n→∞

(1 +
x
n

)n ≥ 1 + x x ≥ − 1 x ≠ 0,
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Greedy solution of Set Cover is close to optimal 

• Simple greedy strategy: Keep picking the set the covers most uncovered elements, until all elements 
are covered.

• Theorem Suppose the optimal solution uses  sets, then the greedy strategy will use at most  
sets.


• So the greedy strategy gives a  approximation algorithm, and it has efficient implementation. 
(Polynomial runtime.)


• Can we do better?


‣ Most likely, NO! If we only care about efficient algorithms. 


- [Dinur & Steuer  STOC14] There is no polynomial-runtime  approximation 
algorithm unless P = NP.

k k ln n

ln n

(1 − o(1)) ⋅ ln n
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Summary
• Basic idea of greedy strategy: At each step when building a solution, make the 

choice that looks best at that moment, based on some metric.


• Properties that make greedy strategy work:


‣ Optimal substructure [usually easy to prove]: optimal solution to the problem 
contains within it optimal solution(s) to subproblem(s).


‣ Greedy choice [could be hard to identify and prove]: the greedy choice is 
contained within some optimal solution.


• Greed gives optimal solutions: MST, Huffman codes, …


• Greed gives near-optimal solutions: Set cover, …


• Greed gives arbitrarily bad solutions: 0-1 knapsack, …
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Further reading
• [CLRS] Ch.16 (16.1-16.3, 35.3)


• [Erickson v1] Ch.4 (4.5)

Refer to [Vazirani ] and [Williamson & Shmoys] 
for more approximation algorithms 


