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The Shortest Path Problem
• Given a map, what’s the shortest path from s to t?


• Consider a graph  and a weight function that associates a 
real-valued weight  to each edge . Given  and  in , what’s 
the min weight path from  to ?

G = (V, E) w
w(u, v) (u, v) s t V

s t
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The Shortest Path Problem
• Weights are not always lengths.


‣ E.g., time, cost, … to walk the edge.


• The graph can be directed.


‣ Thus  possible.


• Negative edge weight allowed.


• Negative cycle not allowed.


‣ Problem not well-defined then.

w(u, v) ≠ w(v, u)
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Single-Source Shortest Path (SSSP)

• The SSSP Problem: Given a graph  and a weight function , 
given a source node , find a shortest path from  to every node .

G = (V, E) w
s s u ∈ V
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1-5• Consider directed graphs without negative cycle.


‣ Case 1: Unit weight.


‣ Case 2: Arbitrary positive weight.


‣ Case 3: Arbitrary weight without cycle.


‣ Case 4: Arbitrary weight.
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SSSP in unit weight graphs
• How to solve SSSP in an unit weight graph?


‣ That is, a graph in which each edge is of weight 1.


• “Traverse by layer” in an unweighted graph!


‣ Visit all distance  nods before visiting any distance  node.


‣ Simple, just use BFS!

d d + 1

E S A

D C B

1 1

11 1 1
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SSSP in positive weight graphs
• Solve SSSP in a graph with arbitrary positive weights?


• Extension of unit graph SSSP algorithm:


‣ Add dummy nodes on edges so graph becomes unit weight graph.


‣ Run BFS on the resulting graph.

BS

A
50

80

1

BS

A
1

u1

u49

1 u21
1

v1 v79v21 1 1

The problem is that it is too slow when edge weights are large!
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49
2

1

Extension of the BFS algorithm
• To save time, bypass the events that process dummy nodes!


‣ Imagine we have an alarm clock  for each node .

‣ Alarm for source node  goes off at time 0.

‣ If  goes off, for each edge , update 

Tu u

s

Tu (u, v) Tv = min{Tv, Tu + w(u, v)}

BS

A
1

u1

u49

1 u2
1

1

v1 v79v21 1 1

50

80

• At any time, value of  is an estimate of .


• At any time, , with equality holds when  goes off.

Tu dist(s, u)

Tu ≥ dist(s, u) Tu

We just need to set the alarm clock of 
each node, and update it when some  
alarm clock goes off (snooze through 

these boring nodes )!00

50

51

Not interesting!

Not interesting!

Interesting!

Interesting!
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Dijkstra's algorithm
• How to implement the “alarm clock”?


‣ Use priority queue (such as binary heap).

DijkstraSSSP(G, s):
for each u in V

  u.dist := INF, u.parent := NIL
s.dist := 0
Build priority queue Q based on dist
while  !Q.empty()

  u := Q.ExtractMin()
  for each edge (u,v) in E

    if  v.dist > u.dist + w(u, v) 
      v.dist := u.dist + w(u, v)
      v.parent := u
      Q.UpdateKey(v)

Edsger W. Dijkstra

Shortest-path Tree

 (Similar to BFS tree.)
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Dijkstra's algorithm
• Correctness of Dijkstra’s algorithm?


‣ Similar to the correctness proof of BFS.


• Efficiency of Dijkstra’s algorithm?


‣ when using a binary heap.O((n + m) ⋅ log n)

DijkstraSSSP(G, s):
for each u in V

  u.dist := INF, u.parent := NIL
s.dist := 0
Build priority queue Q based on dist
while  !Q.empty()

  u := Q.ExtractMin()
  for each edge (u,v) in E

    if  v.dist > u.dist + w(u, v) 
      v.dist := u.dist + w(u, v)
      v.parent := u
      Q.UpdateKey(v)

O(n)

O(n)

O(n log n)

O(m log n)
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Alternative derivation of Dijkstra’s algorithm

• What’s BFS doing: expand outward from , growing the region to which distances 
and shortest paths are known.


‣ Growth should be orderly: closest nodes first.


• Given “known region ”, 


‣  how to identify the node to expand to?

s

R

Known region R

s
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Alternative derivation of Dijkstra’s algorithm

• Given “known region ”,  assume  is such node to expand to (that is, the next 
closet node to ), let the shortest path from  to  is .


‣ It must be , for any . (Otherwise it is already )


‣ Let the last node of the path  before  be , then it must be . 
(Otherwise  is not the next closet node to )

R v
s s v s ⇝ v

dist(s, v) ≥ dist(s, v′￼) v′￼ ∈ R v ∈ R

s ⇝ v v u u ∈ R
v s

Known region R

s
vu
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Alternative derivation of Dijkstra’s algorithm

• Given “known region ”, 


‣ Find , 


‣ Any  satisfied node  is the next node to expand to (the next closet node to )

R

min
u′￼∈R,v′￼∈V−R

{dist(s, u′￼) + w(u′￼, v′￼)}

v s

Known region R

s
vu

optimal substructure property
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Alternative derivation of Dijkstra’s algorithm
• BFS expands outward from , growing the region to which distances and shortest paths are known.


‣ Given “known region R”, expend to the node with 

s
min

u′￼∈R,v′￼∈V−R
{dist(s, u′￼) + w(u′￼, v′￼)} .

DijkstraSSSPAbs(G, s):
for each u in V

  u.dist := INF
s.dist := 0
R := ∅
while  R != V

  Find node v in  V - R  with min v.dist
  Add v to R
  for each edge (v, z) in E

    if  z.dist > v.dist + w(v, z)
     z.dist := v.dist + w(v, z)

DijkstraSSSP(G, s):
for each u in V

  u.dist := INF, u.parent := NIL
s.dist := 0
Build priority queue Q based on dist
while  !Q.empty()

  u := Q.ExtractMin()
  for each edge (u,v) in E

    if  v.dist > u.dist + w(u, v) 
      v.dist := u.dist + w(u, v)
      v.parent := u
      Q.UpdateKey(v)

Priority queue 
implementation
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Alternative derivation of Dijkstra’s algorithm
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DFS, BFS, Prim, Dijkstra, and others…
DFSIterSkeleton(G, s):
Stack Q
Q.push(s)
while !Q.empty()

u := Q.pop()
if  !u.visited

u.visited := True
for each edge (u, v) in E

Q.push(v)

BFSSkeletonAlt(G, s):
FIFOQueue Q
Q.enque(s)
while !Q.empty()

u := Q.dequeue()
if  !u.visited

u.visited := True
for each edge (u, v) in E

Q.enque(v)

GraphExploreSkeleton(G, s):
GenericQueue Q
Q.add(s)
while !Q.empty()

u := Q.remove()
if  !u.visited

u.visited := True
for each edge (u, v) in E

Q.add(v)

PrimMSTSkeleton(G, x):
PriorityQueue Q
Q.add(x)
while !Q.empty()

u := Q.remove()
if  !u.visited

u.visited := True
for each edge (u, v) in E

if !v.visited and …
Q.update(v, …)

DijkstraSSSPSkeleton(G, x):
PriorityQueue Q
Q.add(x)
while !Q.empty()

u := Q.remove()
if  !u.visited

u.visited := True
for each edge (u, v) in E

if !v.visited and …
Q.update(v, …)
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*On the universal optimality of Dijkstra’s algorithm

• What does “optimal” mean, exactly? The problem space:


‣ Let  denote a graph of  nodes and  edges


‣ Let  denote the set of all such .


‣ Let  denote all possible weight functions for a given .


‣ Let  denote all correct SSSP algorithms (when edge weights are 
positive)

G n m

𝒢n,m G

𝒲G G

𝒜
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*On the universal optimality of Dijkstra’s algorithm
• Algorithm  is existentially optimal if:


‣ 


• Algorithm  is instance optimal if:


‣ 


• Algorithm  is universally optimal if:


‣

A ∈ 𝒜

∀n, m : max
G∈𝒢n,m,w∈𝒲G

A(G, w) ≤ O(1) ⋅ min
A*n,m∈𝒜 ( max

G∈𝒢n,m,w∈𝒲G

A*n,m(G, w))
A ∈ 𝒜

∀n, m, ∀G ∈ 𝒢n,m, ∀w ∈ 𝒲G : A(G, w) ≤ O(1) ⋅ min
A*n,m∈𝒜

A*n,m(G, w)

A ∈ 𝒜

∀n, m, ∀G ∈ 𝒢n,m : max
w∈𝒲G

A(G, w) ≤ O(1) ⋅ min
A*n,m∈𝒜 ( max

w∈𝒲G

A*n,m(G, w))

The usual definition

Extremely hard to achieve 

Something in between

Can we design an universally optimal algorithm for SSSP ?
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Best paper of FOCS 2024
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*Universal optimality of Dijkstra’s Algorithm
• Distance Ordering Problem(DOP):  Given a graph  and a source node 

, output an ordering of  in increasing order of their distances from .


‣ Difficulty of SSSP  Difficulty of DOP

G
s ∈ V(G) V(G) s

≥

Corollary Dijkstra’s algorithm implemented with any priority queue with the 
working set property is a universally optimal algorithm for SSSP in 
comparison-addition model, in terms of running time

Lower bound: Dijkstra’s algorithm implemented with any priority queue with 
the working set property is a universally optimal algorithm for DO in 
comparison-addition model, in terms of running time.

Upper bound: There are priority queue implementations with working set 
property.
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*Working set
• Working set: Consider any priority queue  supporting Insert and 
ExtractMin. For any , define its working set  in the following way:


‣ For any time  between the insertion and extraction of , define  as the 
set of elements inserted after  but are still in  at time .


‣ Let  be an arbitrary time that maximize , then 

Q
x ∈ Q Wx

t x Wx,t
x Q t

t0 |Wx,t | Wx = Wx,t0
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*Working set

• Priority Queue with Working Set Property: A data structure is a priority 
queue with the working set property if the amortized runtime of its 
supported operations are:


‣  for Insert, ExtractMin and DecreaseKey.


‣  for (  is the working set of the extracted element)

O(1)

O(1 + | log Wx | ) Wx
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SSSP in graphs with negative weights

• Dijkstra’s algorithm no longer works!


• Why would this happen?


• Dijkstra’s algorithm for finding next closest node to expend to: 


‣ Given “known region R”, find  

‣ This is because: Let the last node of the path  before  be , then 
it must be . (Otherwise  is not the next closet node to )

min
u′￼∈R,v′￼∈V−R

{dist(s, u′￼) + w(u′￼, v′￼)} .

s ⇝ v v u
u ∈ R v s

However, negative edge makes this does not hold!
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Known region

SSSP in graphs with negative weights

• “Shortest path from  to any node  must pass through nodes that are 
closer than ” no longer holds! 

s v
v

S

A

B

C

3

5

7
-6

1

Shortest distance from  to node  is 3? No!!!  
Try 

S A
S → C → B → A
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SSSP in graphs with negative weights
• But how  values are maintained in Dijkstra is helpful:


‣ Initially set , and for each node , set .

‣ When processing edge , execute procedure Update(u, v): 
 

• This way two properties are maintained:


‣ For any , at any time,  is either an overestimate, or correct.


‣ Assume  is the last node on a shortest path from  to . If  is correct and 
we run  Update(u, v), then  becomes correct.

dist

s . dist = 0 u ≠ s u . dist = ∞

(u, v)
v . dist = min{v . dist, u . dist + w(u, v)}

v v . dist

u s v u . dist
v . dist
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SSSP in graphs with negative weights

• Update(u,v) is safe and helpful!


‣ [Safe] Regardless of the sequence of Update operations we execute, 
for any node , value  is either an overestimate or correct.


‣ [Helpful] With correct sequence of Update, we get correct .

v v . dist

v . dist
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SSSP in graphs with negative weights

• Consider a shortest path from  to .


‣ Observation 1: if Update(s, u1), Update(u1,u2), …, Update(uk-1,uk), 
Update(uk,v) are executed, then we correctly obtain the shortest path.


‣ Observation 2: in above sequence, before and after each Update, we can add 
arbitrary Update sequence, and still get shortest path from  to .

s v

s v

s u1 u2 vuk……

Update(s, u1) Update(u1,u2) Update(uk-1,uk) Update(uk,v)
Update(…) Update(…) Update(…) Update(…) Update(…) Update(…)

• Algorithm: simply Update all edges, for   times!k + 1

s u1 u2 vuk……

Update all edges Update all edges Update all edges Update all edges Update all edges
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SSSP in graphs with negative weights

• But how large is ?

‣ Observation 3: any shortest path cannot contain a cycle. (WHY?)


• Algorithm: simply Update all edges, for  times!


‣ The Bellman-Ford Algorithm!

k + 1

n − 1

s u1 u2 vuk……

Update all edges Update all edges Update all edges Update all edges Update all edges
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The Bellman-Ford Algorithm
• Bellman-Ford Algorithm: 


‣ Update all edges;


‣ Repeat above step for  times.


• The complexity is : 

n − 1

Θ (n(m + n))

BellmanFordSSSP(G, s): 
for  each u in V

  u.dist := INF, u.parent := NIL
s.dist := 0
repeat n - 1 times

  for each edge (u, v) in E
    if v.dist > u.dist + w(u, v)

   v.dist := u.dist + w(u, v)
      v.parent := u

Richard E. Bellman Lester Randolph Ford Jr.
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The Bellman-Ford Algorithm
• Edge order: (t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y)
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The Bellman-Ford Algorithm
• What if the graph contains a negative cycle?

‣ It means that after  repetitions of 
“Update all edges”, some node  still 
has .

n − 1
v

v . dist > u . dist + w(u, v)

BellmanFordSSSP(G, s): 
for  each u in V

  u.dist := INF, u.parent := NIL
s.dist := 0
repeat n - 1 times

  for each edge (u, v) in E
    if v.dist > u.dist + w(u, v)

   v.dist := u.dist + w(u, v)
      v.parent := u

for each edge (u, v) in E
      If v.dist > u.dist + w(u, v)

           return “negative circles”
 Bellman-Ford can also detect negative cycle!

‣ Then the Observation 3 (any shortest 
path cannot contain a cycle.) does not 
hold!
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SSSP in DAG (with negative weights)

• Bellman-Ford still works, but we can be 
more efficient!


• Core idea of Bellman-Ford: perform a 
sequence of Update that includes every 
shortest path as a subsequence.


• Observation: in DAG, every path, thus 
every shortest path, is a subsequence in 
the topological order.

DAGSSSP(G,s): 
for each u in V

  u.dist := INF, u.parent := NIL
s.dist := 0
Run DFS to obtain topological order
for each node u in topological order

  for each edge (u, v) in E
    if v.dist > u.dist + w(u, v)

      v.dist := u.dist + w(u, v)
      v.parent := u

 time complexityO(m + n)
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Application of SSSP in DAG: Computing Critical Path 

• Assume you want to finish a task that involves multiple steps. Each step takes some time. 
For some step(s), it can only begin after certain steps are done.


• These dependency can be modeled as a DAG. (PERT Chart)


• How fast can you finish this task?


• Equivalently, longest path, a.k.a. critical path, in the DAG? 

• Negate edge weights and compute a shortest path.

1 2 3 4

5

6

7

8 9 10

11

Dig ground

6 days

Lay foundations

11 days

Frame house

21 days

Install windows


4 days

Put in rough plumbing and electric

9 days

Install roof 

3 days

Install sheetrock 

4 days

Paint walls

3 days

Install flooring

3 days

Install interior


3 days

Install exteriors
11 days
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Summary
• The SSSP Problem: Given a graph  and a weight function , given a source node , find a 

shortest path from  to every node .


• Case 1: Unit weight graphs (directed or undirected): Simply use BFS.  runtime.


• Case 2: Arbitrary positive weight graphs (directed or undirected) :  Dijkstra’s algorithm. A greedy 
algorithm. runtime.


• Case 3: Arbitrary weight without cycle in directed graphs: Update in topological order.   
runtime.


• Case 4: Arbitrary weight without negative cycle in directed graphs: Bellman-Ford algorithm. 
 runtime, can detect negative cycle.

G = (V, E) w s
s v ∈ V

O(n + m)

O((n + m)log n)

O(n + m)

Θ(n(m + n))

The shortest path problem has optimal substructure property.

Update is a safe and helpful operation.



智能软件与工程学院 
School of Intelligent Software and Engineering 

Pathfinding*
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(Shortest) Pathfinding*

• Given a graph ,  how to find a (shortest) path from a source  to 
a destination , preferably efficiently.

G = (V, E) s
t
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We could use BFS or Dijkstra.
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But we could be MUCH faster!
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Greedy Best-First Search

• A (not necessarily accurate) estimate on the distance from  to .


‣ On 2D grid, we can set heuristic(v,t) = ManhattanDist(v,t) = .

v t

|v . x − t . x | + |v . y − t . y |

GreedyBFS(G, s, t): 
s.est_to_goal := heuristic(s,t)
Build priority queue Q based on est_to_goal
while  !Q.empty()

u := Q.ExtractMin()
for each edge (u,v) in E
if v  Q

v.est_to_goal := heuristic(v,t)
v.parent := u
Q.Add(v)

∉ Does greedy BFS always 
generate correct answer?
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Greedy BFS does not always generate correct answer
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Pathfinding Framework
GreedyBFS(G, s, t): 
for each node u in V

u.metric := INFINITY
s.metric:= est_to_goal(s,t)
Build priority queue Q based on metric
while  !Q.empty()

u := Q.ExtractMin()
for each edge (u,v) in E
      new_metric := est_to_goal(v,t)
if v  Q or new_metric < v.metric

v.metric := new_metric
v.parent := u
Q.AddorUpdate(v)

∉

Dijkstra(G, s, t): 
for each node u in V

u.metric := INFINITY
s.metric := est_to_source(s,s) := 0
Build priority queue Q based on metric
while  !Q.empty()

u := Q.ExtractMin()
for each edge (u,v) in E
      new_metric := update_est_to_source(v, u, s)
                          := min(v.metric, u.metric + dist(u,v))
                          := min(v.metric, dist(s, u)+ dist(u,v))
if v  Q or new_metric < v.metric

v.metric := new_metric
v.parent := u
Q.AddorUpdate(v)

∉
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PathfindingFramework(G, s, t): 
for each node u in V

u.metric := INFINITY
s.metric := CalcMetric(s,s,t)
Build priority queue Q based on metric
while  !Q.empty()

u := Q.ExtractMin()
for each edge (u,v) in E

new_metric := UpdateMetric(v, u, s, t)
if v  Q or  new_metric < v.metric

v.metric := new_metric
v.parent := u
Q.AddorUpdate(v)

∉

GreedyBFS: est_to_goal(s, t)
Dijkstra: est_to_source(s,s) := 0

GreedyBFS: est_to_goal(v, t)
Dijkstra:  update_est_to_source(v,u,s)

GreedyBFS is fast, but may be incorrect; 
Dijkstra’s algorithm is slower, but always correct; 

Can we have an algorithm that is both fast and correct?
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The A* algorithm

• Usually set to the straight-line distance 
between  and .u t

AStarPathfinding(G, s, t): 
for each node u in V

u.est_to_s := INFINITY
u.est_to_t := heuristic(u,t)
u.metric := u.est_to_s + u.est_to_t

s.est_to_s := 0, s.metric := s.est_to_s + s.est_to_t
Build priority queue Q based on metric
while  !Q.empty()

u := Q.ExtractMin()
for each edge (u,v) in E
if v  Q or v.est_to_s >  u.est_to_s + dist(u, v)

v.est_to_s := u.est_to_s + dist(u, v)
v.metric := v.est_to_s + v.est_to_t
v.parent := u
Q.Add(v)

∉

• For each node :


‣ u.est_to_s maintains an (over or 
accurate) estimate of dist(u,s), and this 
value changes during execution;


‣ u.est_to_t maintains an (under or 
accurate) estimate of dist(u,t), and this 
value does not change during execution.


‣ Use u.est_to_s + u.est_to_t  as the 
metric to guide the search!

u
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The A* algorithm
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The A* algorithm
• Correctness of the A* algorithm?


‣ It is correct as long as u.est_to_t  dist(u,t) always hold.


• Time complexity of the A* algorithm?


‣ More complicated as a node may be added to the queue multiple times.


‣ In AI community, it is normally considered to be , where  is the 
branching factor (the average number of successors per state), and  is the 
depth of the solution (the shortest path).


‣ The heuristic function has a major effect on the practical performance of A* 
search, since a good heuristic allows A* to prune away many of the  nodes.

≤

O(bd) b
d

bd
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Further reading
• [CLRS] Ch.24 (excluding 24.4) 


• [DPV] Ch.4


• [Erickson] Ch.8


• Refer to https://www.redblobgames.com/pathfinding/a-star/introduction.html if you want to know more 
about A* algorithm

https://www.redblobgames.com/pathfinding/a-star/introduction.html

