
智能软件与工程学院
School of Intelligent Software and Engineering

单源最短路径
Single-Source Shortest Path

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne.Thanks for their supports!

钮鑫涛
Nanjing University

2024 Fall

智能软件与工程学院
School of Intelligent Software and Engineering

The Shortest Path Problem
• Given a map, what’s the shortest path from s to t?

• Consider a graph and a weight function that associates a
real-valued weight to each edge . Given and in , what’s
the min weight path from to ?

G = (V, E) w
w(u, v) (u, v) s t V

s t

智能软件与工程学院
School of Intelligent Software and Engineering

The Shortest Path Problem
• Weights are not always lengths.

‣ E.g., time, cost, … to walk the edge.

• The graph can be directed.

‣ Thus possible.

• Negative edge weight allowed.

• Negative cycle not allowed.

‣ Problem not well-defined then.

w(u, v) ≠ w(v, u)

智能软件与工程学院
School of Intelligent Software and Engineering

Single-Source Shortest Path (SSSP)

• The SSSP Problem: Given a graph and a weight function ,
given a source node , find a shortest path from to every node .

G = (V, E) w
s s u ∈ V

5

0 4

43

0

92

10

8
3

-3

-7 -5

3 4

1-5• Consider directed graphs without negative cycle.

‣ Case 1: Unit weight.

‣ Case 2: Arbitrary positive weight.

‣ Case 3: Arbitrary weight without cycle.

‣ Case 4: Arbitrary weight.

6

智能软件与工程学院
School of Intelligent Software and Engineering

SSSP in unit weight graphs
• How to solve SSSP in an unit weight graph?

‣ That is, a graph in which each edge is of weight 1.

• “Traverse by layer” in an unweighted graph!

‣ Visit all distance nods before visiting any distance node.

‣ Simple, just use BFS!

d d + 1

E S A

D C B

1 1

11 1 1

1

E S A

D C B

1 1

12 2

智能软件与工程学院
School of Intelligent Software and Engineering

SSSP in positive weight graphs
• Solve SSSP in a graph with arbitrary positive weights?

• Extension of unit graph SSSP algorithm:

‣ Add dummy nodes on edges so graph becomes unit weight graph.

‣ Run BFS on the resulting graph.

BS

A
50

80

1

BS

A
1

u1

u49

1 u21
1

v1 v79v21 1 1

The problem is that it is too slow when edge weights are large!

智能软件与工程学院
School of Intelligent Software and Engineering

49
2

1

Extension of the BFS algorithm
• To save time, bypass the events that process dummy nodes!

‣ Imagine we have an alarm clock for each node .

‣ Alarm for source node goes off at time 0.

‣ If goes off, for each edge , update

Tu u

s

Tu (u, v) Tv = min{Tv, Tu + w(u, v)}

BS

A
1

u1

u49

1 u2
1

1

v1 v79v21 1 1

50

80

• At any time, value of is an estimate of .

• At any time, , with equality holds when goes off.

Tu dist(s, u)

Tu ≥ dist(s, u) Tu

We just need to set the alarm clock of
each node, and update it when some
alarm clock goes off (snooze through

these boring nodes)!00

50

51

Not interesting!

Not interesting!

Interesting!

Interesting!

智能软件与工程学院
School of Intelligent Software and Engineering

Dijkstra's algorithm
• How to implement the “alarm clock”?

‣ Use priority queue (such as binary heap).

DijkstraSSSP(G, s):
for each u in V

 u.dist := INF, u.parent := NIL
s.dist := 0
Build priority queue Q based on dist
while !Q.empty()

 u := Q.ExtractMin()
 for each edge (u,v) in E

 if v.dist > u.dist + w(u, v)
 v.dist := u.dist + w(u, v)
 v.parent := u
 Q.UpdateKey(v)

Edsger W. Dijkstra

Shortest-path Tree

 (Similar to BFS tree.)

智能软件与工程学院
School of Intelligent Software and Engineering

Dijkstra's algorithm
• Correctness of Dijkstra’s algorithm?

‣ Similar to the correctness proof of BFS.

• Efficiency of Dijkstra’s algorithm?

‣ when using a binary heap.O((n + m) ⋅ log n)

DijkstraSSSP(G, s):
for each u in V

 u.dist := INF, u.parent := NIL
s.dist := 0
Build priority queue Q based on dist
while !Q.empty()

 u := Q.ExtractMin()
 for each edge (u,v) in E

 if v.dist > u.dist + w(u, v)
 v.dist := u.dist + w(u, v)
 v.parent := u
 Q.UpdateKey(v)

O(n)

O(n)

O(n log n)

O(m log n)

智能软件与工程学院
School of Intelligent Software and Engineering

Alternative derivation of Dijkstra’s algorithm

• What’s BFS doing: expand outward from , growing the region to which distances
and shortest paths are known.

‣ Growth should be orderly: closest nodes first.

• Given “known region ”,

‣ how to identify the node to expand to?

s

R

Known region R

s

智能软件与工程学院
School of Intelligent Software and Engineering

Alternative derivation of Dijkstra’s algorithm

• Given “known region ”, assume is such node to expand to (that is, the next
closet node to), let the shortest path from to is .

‣ It must be , for any . (Otherwise it is already)

‣ Let the last node of the path before be , then it must be .
(Otherwise is not the next closet node to)

R v
s s v s ⇝ v

dist(s, v) ≥ dist(s, v′￼) v′￼ ∈ R v ∈ R

s ⇝ v v u u ∈ R
v s

Known region R

s
vu

智能软件与工程学院
School of Intelligent Software and Engineering

Alternative derivation of Dijkstra’s algorithm

• Given “known region ”,

‣ Find ,

‣ Any satisfied node is the next node to expand to (the next closet node to)

R

min
u′￼∈R,v′￼∈V−R

{dist(s, u′￼) + w(u′￼, v′￼)}

v s

Known region R

s
vu

optimal substructure property

智能软件与工程学院
School of Intelligent Software and Engineering

Alternative derivation of Dijkstra’s algorithm
• BFS expands outward from , growing the region to which distances and shortest paths are known.

‣ Given “known region R”, expend to the node with

s
min

u′￼∈R,v′￼∈V−R
{dist(s, u′￼) + w(u′￼, v′￼)} .

DijkstraSSSPAbs(G, s):
for each u in V

 u.dist := INF
s.dist := 0
R := ∅
while R != V

 Find node v in V - R with min v.dist
 Add v to R
 for each edge (v, z) in E

 if z.dist > v.dist + w(v, z)
 z.dist := v.dist + w(v, z)

DijkstraSSSP(G, s):
for each u in V

 u.dist := INF, u.parent := NIL
s.dist := 0
Build priority queue Q based on dist
while !Q.empty()

 u := Q.ExtractMin()
 for each edge (u,v) in E

 if v.dist > u.dist + w(u, v)
 v.dist := u.dist + w(u, v)
 v.parent := u
 Q.UpdateKey(v)

Priority queue
implementation

智能软件与工程学院
School of Intelligent Software and Engineering

Alternative derivation of Dijkstra’s algorithm

∞

0

10

s

t

∞
5

3 2

∞

∞

1
x

zy 2

7

9
4 6

10

0

10

s

t

5
5

∞

∞

1
x

zy 2

7

9
4 63 2

8

0

10

s

t

5
5

14

7

1
x

zy 2

7

9
4 63 2

8

0

10

s

t

5
5

13

7

1
x

zy 2

7

9
4 63 2

8

0

10

s

t

5
5

9

7

1
x

zy 2

7

9
4 63 2

8

0

10

s

t

5
5

9

7

1
x

zy 2

7

9
4 63 2

智能软件与工程学院
School of Intelligent Software and Engineering

DFS, BFS, Prim, Dijkstra, and others…
DFSIterSkeleton(G, s):
Stack Q
Q.push(s)
while !Q.empty()

u := Q.pop()
if !u.visited

u.visited := True
for each edge (u, v) in E

Q.push(v)

BFSSkeletonAlt(G, s):
FIFOQueue Q
Q.enque(s)
while !Q.empty()

u := Q.dequeue()
if !u.visited

u.visited := True
for each edge (u, v) in E

Q.enque(v)

GraphExploreSkeleton(G, s):
GenericQueue Q
Q.add(s)
while !Q.empty()

u := Q.remove()
if !u.visited

u.visited := True
for each edge (u, v) in E

Q.add(v)

PrimMSTSkeleton(G, x):
PriorityQueue Q
Q.add(x)
while !Q.empty()

u := Q.remove()
if !u.visited

u.visited := True
for each edge (u, v) in E

if !v.visited and …
Q.update(v, …)

DijkstraSSSPSkeleton(G, x):
PriorityQueue Q
Q.add(x)
while !Q.empty()

u := Q.remove()
if !u.visited

u.visited := True
for each edge (u, v) in E

if !v.visited and …
Q.update(v, …)

智能软件与工程学院
School of Intelligent Software and Engineering

智能软件与工程学院
School of Intelligent Software and Engineering

*On the universal optimality of Dijkstra’s algorithm

• What does “optimal” mean, exactly? The problem space:

‣ Let denote a graph of nodes and edges

‣ Let denote the set of all such .

‣ Let denote all possible weight functions for a given .

‣ Let denote all correct SSSP algorithms (when edge weights are
positive)

G n m

𝒢n,m G

𝒲G G

𝒜

智能软件与工程学院
School of Intelligent Software and Engineering

*On the universal optimality of Dijkstra’s algorithm
• Algorithm is existentially optimal if:

‣

• Algorithm is instance optimal if:

‣

• Algorithm is universally optimal if:

‣

A ∈ 𝒜

∀n, m : max
G∈𝒢n,m,w∈𝒲G

A(G, w) ≤ O(1) ⋅ min
A*n,m∈𝒜 (max

G∈𝒢n,m,w∈𝒲G

A*n,m(G, w))
A ∈ 𝒜

∀n, m, ∀G ∈ 𝒢n,m, ∀w ∈ 𝒲G : A(G, w) ≤ O(1) ⋅ min
A*n,m∈𝒜

A*n,m(G, w)

A ∈ 𝒜

∀n, m, ∀G ∈ 𝒢n,m : max
w∈𝒲G

A(G, w) ≤ O(1) ⋅ min
A*n,m∈𝒜 (max

w∈𝒲G

A*n,m(G, w))

The usual definition

Extremely hard to achieve

Something in between

Can we design an universally optimal algorithm for SSSP ?

智能软件与工程学院
School of Intelligent Software and Engineering

Best paper of FOCS 2024

智能软件与工程学院
School of Intelligent Software and Engineering

*Universal optimality of Dijkstra’s Algorithm
• Distance Ordering Problem(DOP): Given a graph and a source node

, output an ordering of in increasing order of their distances from .

‣ Difficulty of SSSP Difficulty of DOP

G
s ∈ V(G) V(G) s

≥

Corollary Dijkstra’s algorithm implemented with any priority queue with the
working set property is a universally optimal algorithm for SSSP in
comparison-addition model, in terms of running time

Lower bound: Dijkstra’s algorithm implemented with any priority queue with
the working set property is a universally optimal algorithm for DO in
comparison-addition model, in terms of running time.

Upper bound: There are priority queue implementations with working set
property.

智能软件与工程学院
School of Intelligent Software and Engineering

*Working set
• Working set: Consider any priority queue supporting Insert and
ExtractMin. For any , define its working set in the following way:

‣ For any time between the insertion and extraction of , define as the
set of elements inserted after but are still in at time .

‣ Let be an arbitrary time that maximize , then

Q
x ∈ Q Wx

t x Wx,t
x Q t

t0 |Wx,t | Wx = Wx,t0

智能软件与工程学院
School of Intelligent Software and Engineering

*Working set

• Priority Queue with Working Set Property: A data structure is a priority
queue with the working set property if the amortized runtime of its
supported operations are:

‣ for Insert, ExtractMin and DecreaseKey.

‣ for (is the working set of the extracted element)

O(1)

O(1 + | log Wx |) Wx

智能软件与工程学院
School of Intelligent Software and Engineering

SSSP in graphs with negative weights

• Dijkstra’s algorithm no longer works!

• Why would this happen?

• Dijkstra’s algorithm for finding next closest node to expend to:

‣ Given “known region R”, find

‣ This is because: Let the last node of the path before be , then
it must be . (Otherwise is not the next closet node to)

min
u′￼∈R,v′￼∈V−R

{dist(s, u′￼) + w(u′￼, v′￼)} .

s ⇝ v v u
u ∈ R v s

However, negative edge makes this does not hold!

智能软件与工程学院
School of Intelligent Software and Engineering

Known region

SSSP in graphs with negative weights

• “Shortest path from to any node must pass through nodes that are
closer than ” no longer holds!

s v
v

S

A

B

C

3

5

7
-6

1

Shortest distance from to node is 3? No!!!
Try

S A
S → C → B → A

智能软件与工程学院
School of Intelligent Software and Engineering

SSSP in graphs with negative weights
• But how values are maintained in Dijkstra is helpful:

‣ Initially set , and for each node , set .

‣ When processing edge , execute procedure Update(u, v):

• This way two properties are maintained:

‣ For any , at any time, is either an overestimate, or correct.

‣ Assume is the last node on a shortest path from to . If is correct and
we run Update(u, v), then becomes correct.

dist

s . dist = 0 u ≠ s u . dist = ∞

(u, v)
v . dist = min{v . dist, u . dist + w(u, v)}

v v . dist

u s v u . dist
v . dist

智能软件与工程学院
School of Intelligent Software and Engineering

SSSP in graphs with negative weights

• Update(u,v) is safe and helpful!

‣ [Safe] Regardless of the sequence of Update operations we execute,
for any node , value is either an overestimate or correct.

‣ [Helpful] With correct sequence of Update, we get correct .

v v . dist

v . dist

智能软件与工程学院
School of Intelligent Software and Engineering

SSSP in graphs with negative weights

• Consider a shortest path from to .

‣ Observation 1: if Update(s, u1), Update(u1,u2), …, Update(uk-1,uk),
Update(uk,v) are executed, then we correctly obtain the shortest path.

‣ Observation 2: in above sequence, before and after each Update, we can add
arbitrary Update sequence, and still get shortest path from to .

s v

s v

s u1 u2 vuk……

Update(s, u1) Update(u1,u2) Update(uk-1,uk) Update(uk,v)
Update(…) Update(…) Update(…) Update(…) Update(…) Update(…)

• Algorithm: simply Update all edges, for times!k + 1

s u1 u2 vuk……

Update all edges Update all edges Update all edges Update all edges Update all edges

智能软件与工程学院
School of Intelligent Software and Engineering

SSSP in graphs with negative weights

• But how large is ?

‣ Observation 3: any shortest path cannot contain a cycle. (WHY?)

• Algorithm: simply Update all edges, for times!

‣ The Bellman-Ford Algorithm!

k + 1

n − 1

s u1 u2 vuk……

Update all edges Update all edges Update all edges Update all edges Update all edges

智能软件与工程学院
School of Intelligent Software and Engineering

The Bellman-Ford Algorithm
• Bellman-Ford Algorithm:

‣ Update all edges;

‣ Repeat above step for times.

• The complexity is :

n − 1

Θ (n(m + n))

BellmanFordSSSP(G, s):
for each u in V

 u.dist := INF, u.parent := NIL
s.dist := 0
repeat n - 1 times

 for each edge (u, v) in E
 if v.dist > u.dist + w(u, v)

 v.dist := u.dist + w(u, v)
 v.parent := u

Richard E. Bellman Lester Randolph Ford Jr.

智能软件与工程学院
School of Intelligent Software and Engineering

The Bellman-Ford Algorithm
• Edge order: (t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y)

∞

0

6

s

t

∞
7

8

∞

∞

5 x

zy 9

2
-3

-4

7

-2
6

0

6

s

t

7
7

8

∞

∞

5 x

zy 9

2
-3

-4

7

-2
6

0

6

s

t

7
7

8

4

2

5 x

zy 9

2
-3

-4

7

-2

2

0

6

s

t

7
7

8

4

2

5 x

zy 9

2
-3

-4

7

-2 2

0

6

s

t

7
7

8

4

5 x

zy 9

2
-3

-4

7

-2

-2

智能软件与工程学院
School of Intelligent Software and Engineering

The Bellman-Ford Algorithm
• What if the graph contains a negative cycle?

‣ It means that after repetitions of
“Update all edges”, some node still
has .

n − 1
v

v . dist > u . dist + w(u, v)

BellmanFordSSSP(G, s):
for each u in V

 u.dist := INF, u.parent := NIL
s.dist := 0
repeat n - 1 times

 for each edge (u, v) in E
 if v.dist > u.dist + w(u, v)

 v.dist := u.dist + w(u, v)
 v.parent := u

for each edge (u, v) in E
 If v.dist > u.dist + w(u, v)

 return “negative circles”
 Bellman-Ford can also detect negative cycle!

‣ Then the Observation 3 (any shortest
path cannot contain a cycle.) does not
hold!

智能软件与工程学院
School of Intelligent Software and Engineering

SSSP in DAG (with negative weights)

• Bellman-Ford still works, but we can be
more efficient!

• Core idea of Bellman-Ford: perform a
sequence of Update that includes every
shortest path as a subsequence.

• Observation: in DAG, every path, thus
every shortest path, is a subsequence in
the topological order.

DAGSSSP(G,s):
for each u in V

 u.dist := INF, u.parent := NIL
s.dist := 0
Run DFS to obtain topological order
for each node u in topological order

 for each edge (u, v) in E
 if v.dist > u.dist + w(u, v)

 v.dist := u.dist + w(u, v)
 v.parent := u

 time complexityO(m + n)

智能软件与工程学院
School of Intelligent Software and Engineering

∞ 0 ∞ ∞ ∞ ∞
r s t x y z

5

3

2 7

6 1

-1 -2

2
4

∞ 0 ∞ ∞ ∞ ∞
r s t x y z

5

3

2 7

6 1

-1 -2

2
4

∞ 0 2 6 ∞ ∞
r s t x y z

5

3

2 7

6 1

-1 -2

2
4

∞ 0 2 6 6 4
r s t x y z

5

3

2 7

6 1

-1 -2

2
4

∞ 0 2 6 5 4
r s t x y z

5

3

2 7

6 1

-1 -2

2
4

∞ 0 2 6 5 3
r s t x y z

5

3

2 7

6 1

-1 -2

2
4

∞ 0 2 6 5 3
r s t x y z

5

3

2 7

6 1

-1 -2

2
4

智能软件与工程学院
School of Intelligent Software and Engineering

Application of SSSP in DAG: Computing Critical Path

• Assume you want to finish a task that involves multiple steps. Each step takes some time.
For some step(s), it can only begin after certain steps are done.

• These dependency can be modeled as a DAG. (PERT Chart)

• How fast can you finish this task?

• Equivalently, longest path, a.k.a. critical path, in the DAG?

• Negate edge weights and compute a shortest path.

1 2 3 4

5

6

7

8 9 10

11

Dig ground

6 days

Lay foundations

11 days

Frame house

21 days

Install windows

4 days

Put in rough plumbing and electric

9 days

Install roof

3 days

Install sheetrock

4 days

Paint walls

3 days

Install flooring

3 days

Install interior

3 days

Install exteriors
11 days

智能软件与工程学院
School of Intelligent Software and Engineering

Summary
• The SSSP Problem: Given a graph and a weight function , given a source node , find a

shortest path from to every node .

• Case 1: Unit weight graphs (directed or undirected): Simply use BFS. runtime.

• Case 2: Arbitrary positive weight graphs (directed or undirected) : Dijkstra’s algorithm. A greedy
algorithm. runtime.

• Case 3: Arbitrary weight without cycle in directed graphs: Update in topological order.
runtime.

• Case 4: Arbitrary weight without negative cycle in directed graphs: Bellman-Ford algorithm.
 runtime, can detect negative cycle.

G = (V, E) w s
s v ∈ V

O(n + m)

O((n + m)log n)

O(n + m)

Θ(n(m + n))

The shortest path problem has optimal substructure property.

Update is a safe and helpful operation.

智能软件与工程学院
School of Intelligent Software and Engineering

Pathfinding*

智能软件与工程学院
School of Intelligent Software and Engineering

(Shortest) Pathfinding*

• Given a graph , how to find a (shortest) path from a source to
a destination , preferably efficiently.

G = (V, E) s
t

智能软件与工程学院
School of Intelligent Software and Engineering

We could use BFS or Dijkstra.

智能软件与工程学院
School of Intelligent Software and Engineering

But we could be MUCH faster!

智能软件与工程学院
School of Intelligent Software and Engineering

Greedy Best-First Search

• A (not necessarily accurate) estimate on the distance from to .

‣ On 2D grid, we can set heuristic(v,t) = ManhattanDist(v,t) = .

v t

|v . x − t . x | + |v . y − t . y |

GreedyBFS(G, s, t):
s.est_to_goal := heuristic(s,t)
Build priority queue Q based on est_to_goal
while !Q.empty()

u := Q.ExtractMin()
for each edge (u,v) in E
if v Q

v.est_to_goal := heuristic(v,t)
v.parent := u
Q.Add(v)

∉ Does greedy BFS always
generate correct answer?

智能软件与工程学院
School of Intelligent Software and Engineering

Greedy BFS does not always generate correct answer

智能软件与工程学院
School of Intelligent Software and Engineering

Pathfinding Framework
GreedyBFS(G, s, t):
for each node u in V

u.metric := INFINITY
s.metric:= est_to_goal(s,t)
Build priority queue Q based on metric
while !Q.empty()

u := Q.ExtractMin()
for each edge (u,v) in E
 new_metric := est_to_goal(v,t)
if v Q or new_metric < v.metric

v.metric := new_metric
v.parent := u
Q.AddorUpdate(v)

∉

Dijkstra(G, s, t):
for each node u in V

u.metric := INFINITY
s.metric := est_to_source(s,s) := 0
Build priority queue Q based on metric
while !Q.empty()

u := Q.ExtractMin()
for each edge (u,v) in E
 new_metric := update_est_to_source(v, u, s)
 := min(v.metric, u.metric + dist(u,v))
 := min(v.metric, dist(s, u)+ dist(u,v))
if v Q or new_metric < v.metric

v.metric := new_metric
v.parent := u
Q.AddorUpdate(v)

∉

智能软件与工程学院
School of Intelligent Software and Engineering

PathfindingFramework(G, s, t):
for each node u in V

u.metric := INFINITY
s.metric := CalcMetric(s,s,t)
Build priority queue Q based on metric
while !Q.empty()

u := Q.ExtractMin()
for each edge (u,v) in E

new_metric := UpdateMetric(v, u, s, t)
if v Q or new_metric < v.metric

v.metric := new_metric
v.parent := u
Q.AddorUpdate(v)

∉

GreedyBFS: est_to_goal(s, t)
Dijkstra: est_to_source(s,s) := 0

GreedyBFS: est_to_goal(v, t)
Dijkstra: update_est_to_source(v,u,s)

GreedyBFS is fast, but may be incorrect;
Dijkstra’s algorithm is slower, but always correct;

Can we have an algorithm that is both fast and correct?

智能软件与工程学院
School of Intelligent Software and Engineering

The A* algorithm

• Usually set to the straight-line distance
between and .u t

AStarPathfinding(G, s, t):
for each node u in V

u.est_to_s := INFINITY
u.est_to_t := heuristic(u,t)
u.metric := u.est_to_s + u.est_to_t

s.est_to_s := 0, s.metric := s.est_to_s + s.est_to_t
Build priority queue Q based on metric
while !Q.empty()

u := Q.ExtractMin()
for each edge (u,v) in E
if v Q or v.est_to_s > u.est_to_s + dist(u, v)

v.est_to_s := u.est_to_s + dist(u, v)
v.metric := v.est_to_s + v.est_to_t
v.parent := u
Q.Add(v)

∉

• For each node :

‣ u.est_to_s maintains an (over or
accurate) estimate of dist(u,s), and this
value changes during execution;

‣ u.est_to_t maintains an (under or
accurate) estimate of dist(u,t), and this
value does not change during execution.

‣ Use u.est_to_s + u.est_to_t as the
metric to guide the search!

u

智能软件与工程学院
School of Intelligent Software and Engineering

f(a) = 1.5 + 4
f(d) = 2 + 4.5

d

e

c

b

a

2

1.5

2

3
4

2

3

h(d) = 4.5

h(a) = 4 h(e) = 2

h(b) = 2

h(c) = 2

1

f(e) = 5 + 2
f(b) = 3 + 2

d

e

c

b

a

2

1.5

2

3
4

2

3

h(d) = 4.5

h(a) = 4 h(e) = 2

h(b) = 2

h(c) = 2

1

f(b) = 3.5 + 2
f(d) = 2 + 4.5

d

e

c

b

a

2

1.5

2

3
4

2

3

h(d) = 4.5

h(a) = 4 h(e) = 2

h(b) = 2

h(c) = 2

1

 metric, : estimate to goal f : h

f(c) = 6.5 + 4
f(d) = 2 + 4.5

d

e

c

b

a

2

1.5

2

3
4

2

3

h(d) = 4.5

h(a) = 4 h(e) = 2

h(b) = 2

h(c) = 2

1

d

e

c

b

a

2

1.5

2

3
4

2

3

h(d) = 4.5

h(a) = 4 h(e) = 2

h(b) = 2

h(c) = 2

1

f(e) = 5 + 2
f(c) = 6 + 4

d

e

c

b

a

2

1.5

2

3
4

2

3

h(d) = 4.5

h(a) = 4 h(e) = 2

h(b) = 2

h(c) = 2

1

f(e) = 5 + 2

智能软件与工程学院
School of Intelligent Software and Engineering

The A* algorithm

智能软件与工程学院
School of Intelligent Software and Engineering

The A* algorithm
• Correctness of the A* algorithm?

‣ It is correct as long as u.est_to_t dist(u,t) always hold.

• Time complexity of the A* algorithm?

‣ More complicated as a node may be added to the queue multiple times.

‣ In AI community, it is normally considered to be , where is the
branching factor (the average number of successors per state), and is the
depth of the solution (the shortest path).

‣ The heuristic function has a major effect on the practical performance of A*
search, since a good heuristic allows A* to prune away many of the nodes.

≤

O(bd) b
d

bd

智能软件与工程学院
School of Intelligent Software and Engineering

Further reading
• [CLRS] Ch.24 (excluding 24.4)

• [DPV] Ch.4

• [Erickson] Ch.8

• Refer to https://www.redblobgames.com/pathfinding/a-star/introduction.html if you want to know more
about A* algorithm

https://www.redblobgames.com/pathfinding/a-star/introduction.html

