BEERMHES TiEF b

School of flntelfigent Software and fngmeermg

R EE_
Single-Source Shortest

.

- Sy 'f‘ B -
e
» ‘ . \~ . .
’ .) .

g
e

‘3,-2‘0

HEH

Nanjing University
2024 Fall

The slides aze main[y ac{aptec{ ﬁom the o’zigina/ ones shared by C/Laodong ZA@I@Q and _Kevin _\», " !

O &btk T F2 R4
| BEERHS TEF6x
4435 School of an(ﬁ’gent Soﬁ'ware and Engineering

The Shortest Path Problem

 (Given a map, what’s the shortest path from s to t?

» Consider a graph G = (V, E) and a weight function wthat associates a

real-valued weight w(u, v) to each edge (u, v). Given s and ¢ in V, what’s
the min weight path from s to 77

®

-y

X008
® gRUE I s
2> X8
2 B% 0] £ A % S &
BERX+ BT BATH05E T 0 & e % &
d v &
8 @ gfgll/,g @4& w.-:\sﬁ(’
255 %% @
& fio
3= P i 3
W= © ERAEFMRR @ SN RRIBZRE =
o :
4 o gg B8
FEEL = Ry, %18 B9 AE
R =z SERE—KX & SR
- 2 & = A\ ‘
AN w 2 gl _ieimm TES
. G : FRE -
BARAZE (AMNARR)(E#izH)

L

Bﬂ%ﬁgm
4 B éﬂﬁ‘ // \\ 0!
\ #ﬂ(
(v25a) e H AR AL
4y (7Y 5
= RS FOETES
3

3y
WY SRS TR
€ 9 hool o Qnt@[ﬁgent [[

- The Shortest Path Problem

 Weights are not always lengths.

> E.g., time, cost, ... to walk the edge.

 The graph can be directed.
» Thus w(u, v) # w(v, u) possible.
* Negative edge weight allowed.

 Negative cycle not allowed.

> Problem not well-defined then.

‘ﬁ*iE 52 %z-?lim
ool of ntzlligent Software

Slngle-Source Shortest Path (SSSP)

* The SSSP Problem: Given a graph G = (V, E) and a weight function w,
given a source node s, find a shortest path from s to every node u € V.

» Consider directed graphs without negative cycle.

> Case 1: Unit weight.

> Case 2: Arbitrary positive weight.

> Case 3: Arbitrary weight without cycle. 10

> Case 4: Arbitrary weight.

EEI S TR F
f tellige igen frw and ‘E Engineering

SSSP in unit weight graphs

« How to solve SSSP in an unit weight graph??

> That is, a graph in which each edge is of weight 1.

e “Traverse by layer” in an unweighted graph!

> Visit all distance d nods before visiting any distance d + 1 node.

> Simple, just use BFS!

1 \® 1 @ Q/
1
2/'- @ Q\‘

WY SERESTEER

SSSP in positive weight graphs

e Solve SSSP in a graph with arbitrary positive weights?

* Extension of unit graph SSSP algorithm:

> Add dummy nodes on edges so graph becomes unit weight graph.
> Run BFS on the resulting graph.

(A L(A,
50 1 1 (1) 1
S 50 G 1 1@‘1

The problem is that it is too slow when edge weights are large!

WY BeEm5TE %Bn
) School of melligent Software and Engine

Extension of the BFS algorithm

* Jo save time, bypass the events that process dummy nodes!

> Imagine we have an alarm clock 1, for each node u.

> Alarm for source node s goes off at time O.

~ If T, goes off, for each edge (u, v), update I, =min{T,T, +wu,v)}

We just need to set the alarm clock of

Not interesting!

each node, and update it when some
alarm clock goes off (snooze through

. El\ these boring nodes)!

Interesting!

. _ _ , “Not interesting!
e At any time, value of T, is an estimate of dist(s, u).

 Atanytime, T, > dist(s, u), with equality holds when T, goes off.

Dijkstra's algorithm

e How to implement the “alarm clock”? DijkstraSSSP(G, s): é.?é’.?i‘?i%aégﬁii
for each u in V
> Use priority queue (such as binary heap). u dist = INF u.parém — NITL
s.dist :==0
Build priority queue Q based on dist

while !Q.empty()
u = Q.ExtractMin()

for each edge (1#,v) in E
it v.dist > u.dist + w(u, v)
vdist ;= u.dist + w(u, v)
v.parent .= u
Q.UpdateKey(v)

Edsger W. Dijkstra

Dijkstra's algorithm

» Correctness of Dijkstra’s algorithm? D11kstraSSSP(G, s):
foreach uin V
u.dist .= INF, u.parent .= NIL
 Efficiency of Dijkstra’s algorithm? s.dist == 0
Build priority queue Q based on dist Om)
> O((n + m) - log n)when using a binary heap. while 10.empty()
u = Q.ExtractMin() O(nlog n)
for each edge (u,v) in E
it v.dist > u.dist + w(u, v)
vdist .= u.dist + w(u, v)
v.parent ;= u
O.UpdateKey(v)

> Similar to the correctness proof of BFS. O(n)

O(mlogn

| BEEHS IEF b
of 1

Z 2
<, &/ School

mzz(figent Software and EEngineering

Alternative derivation of Dijkstra’s algorithm

 What’s BFS doing: expand outward from s, growing the region to which distances
and shortest paths are known.

> Growth should be orderly: closest nodes first.

* Given “known region R”,

> how to identify the node to expand to?

(=B

» Given “known region R”, assume Vv is such node to expand to (that is, the next
closet node to), let the shortest path from stovis s « v.

> |t must be dist(s,v) > dist(s, V'), forany v' € R.

> Let the last node of the path s ~ v before v be u, then it must be u € R.

* Given “known region R”’

> Find min {dist(s,u’) + wu',v")},
u'e€R,v'eV—R

> Any satisfied node v is the next node to expand to (the next closet node to)

BEEE '3__&—7—575

Z >
2 =
) School of nelligent Software and Engine

Alternative derivation of Dijkstra’s algorithm

 BFS expands outward from s, growing the region to which distances and shortest paths are known.

» Given “known region R”, expend to the node with min {dist(s,u’) + w(u',v’)} .

u'e€R,v'eV-R
DiikstraSSSPAbs(G. s): DURSansS PG s
. foreachuin V
foreach uin V Jist = INF — NIL
L dist = INF | u.dist ;= , u.parent =
. s.dist :=0
s.dist :=0 . L .
R - Build priority queue Q based on dist
" hile !0.
while R 1=V while 1Q.empty() |
. , , , , u = Q.ExtractMin()
Find node vin V- R with min v.dist :
for each edge (u,v) in E
Addvto R

it v.dist > u.dist + w(u, v)
v.dist .= u.dist + w(u, v)
v.parent ;= u
Q.UpdateKey(v)

for each edge (v, 2) in E
if z.dist > v.dist + w(v, 7)
z.dist :=v.dist + w(v, 7)

WY SeeRi S T
5 f , ,

Alternative derivation of Dijkstra’s algorithm

. %ﬁbﬂﬁ:'ﬁ_&%ﬁm
V) School of Mntelligent and Engine

DFS BFS,

DESIterSkeleton(G. s):
Stack QO

Q.push(s)

while !Q.empty()

u = Q.pop()
if lu.visited

u.visited = True
for each edge (u, v) in E

O .push(v)

DijkstraSSSPSkeleton(G, x):

PriorityQueue Q
0.add(x)

while 'Q.empty()
u = Q.remove()

if lu.visited
u.visited .= True
for each edge (1, v) in E
if lv.visited and ...
O .update(v, ..

)

Prim, Dijkstra, and others...

BESSkeletonAlt(G, s):
FIFOQueue Q
0 .enque(s)

while 10 .empty()
u .= Q.dequeue()

if lu.visited
u.visited = True
for each edge (u, v) in E

0 .enque(v)

GraphExploreSkeleton(G, s):

GenericQueue QO
Q.add(s)
while !Q.empity()
u .= Q.remove()
if lu.visited
u.visited := True
for each edge (1, v) in E
Q.add(v)

PrimMSTSkeleton(G, x):

PriorityQueue Q
Q.add(x)

while 'Q.empty()
u .= Q.remove()

if lu.visited
u.visited := True
for each edge (u, v) in E
if lv.visited and ...
O .update(v, ..

)

EEEMFS T 2=
&/ School (yf Qnt‘e[ﬁgent Sofrware and Engineering

ﬁ*ﬂﬁﬁﬁiﬁmjkstra, WILFEEERILY . RMBEAMETRE
!

SO
2020 FEMAMEE

1100 AE[E T1zXE

& &8 MAFF

=51 | RS QbitAl

IIPRT705E, AR AR ARRAERZE)EAZHE AZ—NDijkstra, IER THRMK:

WHIFBEE BRI (Universal Optimality) ,
tTALRR?

XMRRENECEEN S ERNELSH, BMEESFRR THEEAREIE ENRAEEE!

mEXERFZARFAEREX—B SN T EAUFRINEIE,

W S5 T
<, Scﬁoo(f [1

‘On the universal optimality of Dijkstra’s algorithm

 What does “optimal” mean, exactly? The problem space:

> Let G denote a graph of n nodes and m edges
~ Let &, denote the set of all such G.
~ Let W ; denote all possible weight functions for a given G.

> Let &/ denote all correct SSSP algorithms (when edge weights are
positive)

| meER S TR
of

g School Qnt‘e[ﬁ'genf Soﬁ'ware and fngineering

‘On the universal optimality of Dijkstra’s algorithm

» Algorithm A € & is existentially optimal if:

» Vn,m : max A(G,w) < O(l)- min max A* (G, w)
GeZ, WEW g Ax.ed \ GeZ,, .weWs

« Algorithm A € ¢f is instance optimal if: XA Rer e

> Vn,m,VG e ¥, , . VweWs;:AG,w) <0(1)- min AF (G, w)

n,m? 5
A€

'+ Algorithm A € &/ is universally optimal if: [ECa TG

> Vn,m,VG € %, , . max A(G,w) < O(1)- min (max Ay, (G, W))

WEW At €d \ WEW ;

Can we design an universally optimal algorithm for SSSP ?

O&abthk T FO 4=
BTG S Tiz=Pr
School of Qnt‘e[ﬁ'gent Soﬁ'ware and fngineering

Best paper of FOCS 2024

Universal Optimality of Dijkstra via Beyond-Worst-Case Heaps*

Bernhard Haeupler Richard Hladik Vaclav Rozhon
INSAIT, Sofia University INSAIT, Sofia University INSAIT, Sofia University
“St. Kliment Ohridski” “St. Kliment Ohridski” “St. Kliment Ohridski”

& ETH Zurich & ETH Zurich
Robert E. Tarjan Jakub Tétek
Princeton University INSAIT, Sofia University

“St. Kliment Ohridski”

Abstract

This paper proves that Dijkstra’s shortest-path algorithm is universally optimal in both its
running time and number of comparisons when combined with a sufficiently efficient heap data
structure.

Universal optimality is a powerful beyond-worst-case performance guarantee for graph al-
gorithms that informally states that a single algorithm performs as well as possible for every
single graph topology. We give the first application of this notion to any sequential algorithm.

We design a new heap data structure with a working-set property guaranteeing that the
heap takes advantage of locality in heap operations. Our heap matches the optimal (worst-case)
bounds of Fibonacci heaps but also provides the beyond-worst-case guarantee that the cost of
extracting the minimum element is merely logarithmic in the number of elements inserted after
it instead of logarithmic in the number of all elements in the heap. This makes the extraction
of recently added elements cheaper.

We prove that our working-set property guarantees universal optimality for the problem of
ordering vertices by their distance from the source vertex: The sequence of heap operations
generated by any run of Dijkstra’s algorithm on a fixed graph possesses enough locality that
one can couple the number of comparisons performed by any heap with our working-set bound
to the minimum number of comparisons required to solve the distance ordering problem on this
graph for a worst-case choice of arc lengths.

| HeERES TiEF b
ofﬂn

> =~
2. & , , ,
< 4? School w(ﬁgent Soﬁware and fEngmeermg

"Universal optimality of Dijkstra’s Algorithm

« Distance Ordering Problem(DOP): Given a graph G and a source node
s € V(G), output an ordering of V((G) in increasing order of their distances from s.

> Difficulty of SSSP > Difficulty of DOP

Lower bound: Dijkstra’s algorithm implemented with any priority queue with

the working set property is a universally optimal algorithm for DO in
comparison-addition model, in terms of running time.

Corollary Dijkstra’s algorithm implemented with any priority queue with the

working set property is a universally optimal algorithm for SSSP In
comparison-addition model, in terms of running time

Upper bound: There are priority queue implementations with working set
property.

*Working set

» Working set: Consider any priority queue Q supporting :
xtractMin. Forany x € Q, define its working set W_ in the following way:

- For any time 7 between the insertion and extraction of x, define W, , as the

‘nsert and

set of elements inserted after x but are still in O at time .

~ Let £, be an arbitrary time that maximize | W, .|, then W = W

O ® O

T e——

W”L',t

O

|
|

|

L

x,to

» |'1me

*Working set

* Priority Queue with Working Set Property: A data structure is a priority
queue with the working set property if the amortized runtime of its
supported operations are:

» (1) for Insert, ExtractMin and DecreaseKey.

> O(1 + |log W_|) for (W_ is the working set of the extracted element)

| BERGFSITiEFbr
f

[—
Z &/ School o Qnt@[ﬁgent Sofrware and fngineering

SSSP in graphs with negative weights

* Dijkstra’s algorithm no longer works!
 \Why would this happen?
* Dijkstra’s algorithm for finding next closest node to expend to:

> Given “known region R”, find min {dist(s,u’) + w(u',v’)} .
u'eRy'eV—R

> This is because: Let the last node of the path s » v before v be u, then
it must be u € R. (Otherwise v is not the next closet node to)

However, negative edge makes this does not hold!

W | A S TR

Z[—*
) School of Mtelligent Software and Engincering

SSSP in graphs with negative weights

Known region

Shortest distance from S to node A is 3? No!!!
TryS—-—C—>B-—-> A

e “Shortest path from s to any node v must pass through nodes that are
closer than v” no longer holds!

| BG5S TiEFMr
ofiln

>
Z ~
< 45? School

t@[ﬁgent Sofrware and fngineering

SSSP in graphs with negative weights

« But how dist values are maintained in Dijkstra is helpful:

> |nitially set s . dist = 0, and for each node u # s, set u . dist = 0.

» When processing edge (u, v), execute procedure Update (u, v):
v.dist = min{v.dist,u .dist + w(u,v)}

* This way two properties are maintained:
> For any v, at any time, v . dist is either an overestimate, or correct.

» Assume u is the last node on a shortest path from s to v. If u . dist is correct and
we run Update (u, v),thenv.dist becomes correct.

=

0 &btk T 2 R4 e
P9, BERGESIREF xR
7‘5 4435 School of Qnt@[ﬁgent Sofrware and fngineering

SSSP in graphs with negative weights

e Update (u,v) Is safe and helpful!

» [Safe] Regardless of the sequence of Update operations we execute,
for any node v, value v . dist is either an overestimate or correct.

> [Helpful] With correct sequence of Update, we get correct v . dist.

g = AR S LI

Z
& =
5/ Sctiool of Mtelligent Software and Engincering

SSSP in graphs with negative weights

Update(s, Update(uy,u) Update(ux-1,ux) Update(ug,v)

o0 o

e Consider a shortest path from s to v.

’0

> Observation 1: if Update (s, ui), Update (ui,uz), ..., Update (ux-1,ux),
Update (ux, v) are executed, then we correctly obtain the shortest path.

> Observation 2: in above sequence, before and after each Update, we can add
arbitrary sequence, and still get shortest path from s to v.

 Algorithm: simply Update all edges, for k + 1 times!

Update all edges Update all edges

Update all edges Update all edges Update all edges

- O

ﬁ $A1¢ '3 %z%llm
ool of

 SSSPin graphs with negative weights

Update all edges Update all edges

Update all edges Update all edges Update all edges

e But how large is k + 17

> Observation 3: any shortest path cannot contain a cycle. (WHY?)
o Algorithm: simply Update all edges, for n — 1 times!

> The Bellman-Ford Algorithm!

| EREReE S TSR

The Bellman-Ford Algorithm

* Bellman-Ford Algorithm: BellmanFordSSSP(G. s):
» Update all edges; for eachuin V
u.dist .= INF, u.parent := NIL
> Repeat above step for n — 1 times. < dist =0

repeat n - 1 times
for each edge (u,v)in E
it v.dist > u.dist + w(u, v)
vdist .= u.dist + w(u, v)
v.parent .= u

« The complexity is : ® (n(m + n))

Richard E. Bellman Lester Randolph Ford Jr.

| EEEHS IREF
of 1

>
Z ~
< 45? School

nt@[ﬁgent Sofrware and fngineering

The Bellman-Ford Algorithm

+ Edge order: (7, %), (1,), (1, 2), (%, 1), (3, %), (¥, 2), (2, %), (2, 5), (5, 1), (5,)

t S X

X

| BEERIFS TiEFbx

PAN
H
(4 =
> &? School of Qnt‘e[ﬁ'genf Soﬁ'ware and fngineering

The Bellman-Ford Algorithm

 What if the graph contains a negative cycle? BellmanFordSSSP(G, s):

for eachuinV

> Then the Observation 3 (any shortest u.dist := INF, uparent := NIL

path cannot contain a cycle.) does not

Hold! s.dist =0
repeat n - 1 times
> |t means that after n — 1 repetitions of for each edge (14, v) in E
“Update all edges”, some node v still it v.dist > u.dist + w(u, v)
hasv.dist > u.dist + w(u,v). v.dist = u.dist + w(u, v)

v.parent := u
for each edge (u, v) in E
Bellman-Ford can also detect negative cycle! It vidist > u.dist + w(u, v)
‘ ' return “negative circles”

EEATﬁF 5TEFMr

ntelligent Software and Engineering

- SSSP in DAG (with negative weights)

 Bellman-Ford still works, but we can be
more efficient!

 Core idea of Bellman-Ford: perform a
seguence of Update that includes every

shortest path as a subsequence.

 Observation: in DAG, every path, thus
every shortest path, is a subsequence In
the topological order.

O(m + n) time complexity

DAGSSSP(G.S):
for each uin V
u.dist .= INF', u.parent .= NIL
s.dist :=0
Run DFS to obtain topological order
for each node u in topological order
for each edge (u, v) in E
it v.dist > u.dist + w(u, v)
vdist .= u.dist + w(u, v)
v.parent ;= u

&)
| ERERR{TS TR 6 1
£ 2] School of Qnt‘e[ﬁ'gent Soﬁ'ware and Engineering

 Assume you want to finish a task that involves multiple steps. Each step takes some time.
For some step(s), it can only begin after certain steps are done.

 These dependency can be modeled as a DAG. (PERT Chart)
 How fast can you finish this task?
 Equivalently, longest path, a.k.a. critical path, in the DAG?

* Negate edge weights and compute a shortest path.

Install roof
3 days

Dig ground Lay foundations Frame house

a 6 days e 11 days e 21 days

Install sheetrock Paint walls Install flooring

4 days ° 3 days e 3 days

3

OD&bkhk T 30 R4 e
PY.| EERGESTiEFk
7‘5 4‘55 School of ﬂnt‘e[ﬁ'gent Soﬁ'ware and fngineering

Summary

» The SSSP Problem: Given a graph G = (V, E) and a weight function w, given a source node s, find a
shortest path from s to every node v € V.

« Case 1: Unit weight graphs (directed or undirected): Simply use BFS. O(n + m) runtime.

 Case 2: Arbitrary positive weight graphs (directed or undirected) : Dijkstra’s algorithm. A greedy
algorithm. O((n + m)log n)runtime.

o Case 3: Arbitrary weight without cycle in directed graphs: Update in topological order. O(n + m)
runtime.

 Case 4: Arbitrary weight without negative cycle in directed graphs: Bellman-Ford algorithm.
®(n(m + n)) runtime, can detect negative cycle.

The shortest path problem has optimal substructure property.

Update Is a safe and helpful operation.

O&abthk T FO 4=
BEE Gt S Tiz=PFr
School of an[ﬁgent Sofrware and fngineering

Pathfinding)

O&abthk T FO 4=
| BEERGHSIREFxR
9 School (f Qnt‘e[ﬁ'gent Sofrware and fngineering

(Shortest) Pathfinding’

e Givenagraph G = (V, E), how to find a (shortest) path from a source s to
a destination 7, preterably efficiently.

LW R -
Al i K
Yo ln

2
"

We could use BFS or Dijkstra.

=
7L

[Tigent Sofrware and fngineering

e S TIEEE

PAN
> H
Z Schoo @(Qnte

ERERMHS Ti2¥ But we could be MUCH faster!

_ NN+
School (f Qnt‘e[ﬁ'gent Soﬁ'ware and Engineem’ng

Dijkstra’s Algorithm Greedy Best-First Search Dijkstra’s Algorithm Greedy Best-First Search Dijkstra’s Algorithm Greedy Best-First Search

¢ ¢

K
EF

Dijkstra’s Algorithm Greedy Best-First Search E Dijkstra’s Algorithm Greedy Best-First Search E Dijkstra's Algorithm Greedy Best-First Search
i [T1 E [TT11
¢ | X > 4 X >4
: L | : []
.. TN ThnoEEEETsEnERY rvvmpEmEEEREEEE sEEEENEEEEEEEE.
Dijkstra’s Algorithm Greedy Best-First Search : Dijkstra’s Algorithm Greedy Best-First Search : Dijkstra’s Algorithm Greedy Best-First Search
N [T % [TTT1] [T11
_ [TT71 [TT171 [T]
E | E

Greedy Best-First Search

GreedyBES(G, s, t):
s.est_to_goal := heuristic(s,t)
Build priority queue Q based on est_to_goal
while !Q.empty()
u = Q.ExtractMin()
for each edge (u,v) in E

Does greedy BFS always

if
V % Q generate correct answer?
v.est_to_goal := heuristic(v,t)

v.parent .= u

O .Add(v)

e A (not necessarily accurate) estimate on the distance from v to f.

>~ On 2D grid, we can set heuristic(v,t) = ManhattanDist(vit) = |v.x —t. x|+ |v.y—1t.Vy].

%0461 i I T Fa A Greedy BFS does not always generate correct answer

School (f Qnt‘e[ﬁ'gent Sofrware and fngineering

Dijkstra’s Algorithm Greedy Best-First Search ; Dijkstra’s Algorithm Greedy Best-First Search E Dijkstra’s Algorithm Greedy Best-First Search

Dijkstra’s Algorithm Greedy Best-First Search E Dijkstra’s Algorithm Greedy Best-First Search E Dijkstra’s Algorithm Greedy Best-First Search

ssp B m

Dijkstra’s Algorithm Greedy Best-First Search E Dijkstra’s Algorithm Greedy Best-First Search] Dijkstra’s Algorithm Greedy Best-First Search

[TTLI g TTITITTITITTIT] : [TITTTTTTTT]

Engineerir g

- Pathfinding Framework

Dijkstra(G, s, t):
GreedyBES(G, s, t): for each node uin V
for each node uin V u.metric .= INFINITY
u.metric ;= INFINITY s.metric .= est_to_source(s,s) ;=0
s.metric:= est_to_goal(s,t) Build priority queue Q based on metric
Build priority queue Q based on metric while 1Q.empty()
while !Q.empty() u ;= Q.ExtractMin()
u = Q.ExtractMin() for each edge (u,v) in E
for each edge (u,v) in E new_metric .= update_est_to_source(v, u,)
new_metric .= est_to_goal(v,t) .= min(v.metric, u.metric + dist(u,v))
If v & O or new_metric < v.metric .= min(v.metric, dist(s, u)+ dist(u,v))
v.metric ;= new_metric if v & O or new_metric < v.metric
v.parent ;= U v.metric = new metric
0.AddorUpdate(v) v.parent .= u

O .AddorUpdate(v)

BERGES _ji%ﬁm

§sﬁ(fq telligent Software and Engineering

PathﬁndmgFramework(G.,s, t):
for each node uin V . GreedyBFS est_to_goal(s, 1) x‘

u.metric .= INFINITY __
s.metric := CalcMetric(s,s,t)

 est_to. Source(s S) —O 1’

e e e

Build priority queue Q based on metric

while !Q.empty() —
«

u = O.ExtractMin() - GreedyBFS est to_goal(v t)

for each edge (u,v) in E _
new_metric .= UpdateMetric(v, u, s, t)
if v & Qor new_metric < v.metric
v.metric = new_metric

v.parent = u GreedyBFS is fast, but may be incorrect;

Dijkstra’s algorithm is slower, but always correct;
Q.AddOl’ Up date(v) Can we have an algorithm that is both fast and correct?

3
O&2bthk T FO 4=

PV.| SEREHS TiEFbr

7‘5 4@5 School of Qnt@[ﬁgent Sofrware and fngineering

The A" algorithm

e For each node u:

> u.est_to_s maintains an (over or

accurate) estimate of dist(u,s), and this
value changes during execution;

> u.est_to_t maintains an (under or
accurate) estimate of dist(u,t), and this

value does not change during execution.

> Useu.est to s + u.est to t as the
metric to guide the search!

o Usually set to the straight-line distance
between 1 and .

AStarPathfinding(G, s, t):

for each node uin V
u.est to s .= INFINITY
u.est_to_t .= heuristic(u,t)
u.metric .= u.est_to_s + u.est_to_t
s.est_ to_s =0, s.metric ;= s.est_to_s + s.est_to_t
Build priority queue Q based on metric
while !Q.empty()
u = Q.ExtractMin()
for each edge (u,v) in E

ifv& Qorvest to_s> u.est_to_s + dist(u, v)
vest_to_s = u.est_to_s + dist(u, v)

v.metric :=v.est to s+ v.est to t

v.parent .= u

O .Add(v)

Bt S T FR A f : metric, h: estimate to goal

igent Software and fngineering

h(d) = 4.5 o h(d) = 4.5 o hd) = 4.5

f(b)=3.5+2 fc) = 6.5+4

fla)=1.5+4 We)=2 fld)=2+45 He)=2 fld)=2+45

h(c) =2 fd)=2+45

2 . h(d) =4.5 o hd) = 4.5 2 hid) =4.5

nay=4h @hle) =2 ' o) = | Di(e) =2

Wby =12 |2

h(c) =2 fle)=5+2 he) = 2 fle)=5+2 h(c) =2 fle)=5+2
f(b)y=3+2 flc)=6+4

O&abthk T FO 4=
BEE S Ti=Px
School (f Qnt‘e[ﬁ'gent Soﬁ'ware and Engineem’ng

The A" algorithm

Dijkstra’s Algorithm Greedy Best-First A* Search

12 13 14 15 16 17 18 19 20 21 22 23 8 7 6 5 4 3 2

N

24 24 24 24 24 24

11 12 13 14 15 16

17 18

19

21

8 7 6 5 4 3 2 1

10 11 12 13 14
9 10 11 12 13

8 9 10 M1 12 13 14 15 16 17 18 19

R R R R R R R R R

7 8 1 22
6 7 21 22
5 6 20 21
4 5 19 20
3 4 18 19 18 22
2 3 17 18 20 19
1 2 16 17
1 15 16

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The A" algorithm

e Correctness of the A" algorithm?

> |t is correct as long as u.est_to_t < dist(u,t) always hold.

 Time complexity of the A" algorithm?

> More complicated as a node may be added to the queue multiple times.

» In Al community, it is normally considered to be O(b%), where b is the

branching factor (the average number of successors per state), and d is the
depth of the solution (the shortest path).

> The heuristic function has a major effect on the practical performance of A*
search, since a good heuristic allows A* to prune away many of the b< nodes.

| EEERGS LIEF
£ ¢ School cf an(ﬁ’gent Soﬁ'ware and Engineering

Further reading

 [CLRS] Ch.24 (excluding 24.4)
 [DPV] Ch.4
* [Erickson] Ch.8

* Refer to https:// www.redblobgames.com/pathfinding/a-star/introduction.html if you want to know more

about A* algorithm

v THOMAS H.CORMEN
. CHARLES E. LEISERSON
RONALD L. RIVEST

\ CLIFFORD STEIN

Algorithms

/ob
SZ

INTRODUCTION TO

ALGORITHMS

EDITION

Sanjoy Dasgupta
Christos Papadimitriou
Umesh Vazirani

Jeff Erickson

https://www.redblobgames.com/pathfinding/a-star/introduction.html

