
智能软件与⼯程学院
School of Intelligent Software and Engineering

全源最短路径
All-Pairs Shortest Path

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne.Thanks for their supports!

钮鑫涛
Nanjing University

2024 Fall

智能软件与⼯程学院
School of Intelligent Software and Engineering

SSSP and APSP

• Single-Source Shortest Paths (SSSP) Problem:

‣ Given a graph and a weight function , given a source
node , find a shortest path from to every .

• All-Pairs Shortest Paths (APSP) Problem:

‣ Given a graph and a weight function , for every pair
, find a shortest path from to .

G = (V, E) w
s s u ∈ V

G = (V, E) w
(u, v) ∈ V × V u v

智能软件与⼯程学院
School of Intelligent Software and Engineering

APSP from multiple SSSP
• Straightforward solution for APSP: For each , execute SSSP algorithm once!v ∈ V

SSSP APSP

BFS
(Unit-weight graphs) O(n + m) = O(n2) O(n3)

Dijkstra
(Positive-weight graphs)

O((n + m)lg n) = O(n2 lg n)
(Using binary heap for priority queue)

O(n3 lg n)

Bellman-Ford
(Arbitary-weight Directed) O(nm) = O(n3) O(n4)

Topological Sort Variant
(Arbitrary-weight DAG) O(n + m) = O(n2) O(n3)

智能软件与⼯程学院
School of Intelligent Software and Engineering

APSP from multiple SSSP

• Positive-weight Graphs: Repeating Dijkstra gives .

• Arbitrary-weight Graphs: Repeating Bellman-Ford gives .

• Faster algorithms for arbitrary-weight graphs?

‣ Intuition: modify edge weights without changing shortest path, so that
Dijkstra’s algorithm can work.

O(n3 lg n)

O(n4)

智能软件与⼯程学院
School of Intelligent Software and Engineering

APSP from multiple SSSP
• Intuition: modify edge weights without changing shortest path, so that

Dijkstra’s algorithm can work.

‣ Add to each edge?

• NO! Shortest paths may change!

• Given , different paths may change by different amount!

max{−1 ⋅ w(u, v)}

(u, v)

C

S

A

T

B

3 3

4
-3

4

C

S

A

T

B

6 6

7
0

7

智能软件与⼯程学院
School of Intelligent Software and Engineering

APSP from multiple SSSP
• Faster algorithms for arbitrary-weight graphs?

‣ Intuition: modify edge weights without changing shortest path, so that Dijkstra’s
algorithm can work.

‣ Requirement:

‣ Or alternatively, for every path from to , changes it by the same amount:

- Let the

- Imagine is entry gift and is exit tax for traveling through .

ŵ(u
p1⇝ v) > ŵ(u

p2⇝ v) ⟺ w(u
p1⇝ v) > w(u

p2⇝ v)

u v ŵ

ŵ(u, v) = h(u) + w(u, v) − h(v)

h(u) h(v) (u, v)

new weight of path

new weight of edge

智能软件与⼯程学院
School of Intelligent Software and Engineering

APSP from multiple SSSP

•

 + … +

ŵ(u
p1⇝ v) = ŵ(u → x1 → . . . → xk → v) = ŵ(u → x1) + . . . + ŵ(xk → v)

= (h(u) + w(u → x1) − h(x1)) + (h(x1) + w(x1 → x2) − h(x2))
(h(xk−1) + w(xk−1 → xk) − h(xk)) + (h(xk) + w(xk → v) − h(v))
= h(u) + w(u → x1) + . . . + w(xk → v) − h(v)

= h(u) + w(u → x1 → . . . → xk → v) − h(v) = h(u) + w(u
p1⇝ v) − h(v)

智能软件与⼯程学院
School of Intelligent Software and Engineering

APSP from multiple SSSP

• Since we need (for Dijkstra algorithm)

• Just let for some fixed , then

ŵ(u, v) = h(u) + w(u, v) − h(v) ≥ 0

h(u) = dist(z, u) z ∈ V
ŵ(u, v) = dist(u) + w(u, v) − dist(v) ≥ 0

‣ But it is possible that we cannot find such that reaches every node.z

The shortest path from to must be
“smaller than” the shortest path from to

add the edge from to .

z v
z u

u v

智能软件与⼯程学院
School of Intelligent Software and Engineering

APSP from multiple SSSP
• Add node that goes to every node in with a weight edge.

‣ with

z G 0

H = (V ∪ {z}, E ∪ {(z, x) |x ∈ V}) w(z, x) = 0

3 4

-5

6

-4
7

1

2
8

3 4

-5

6

-4
7

1

2
8z 0

0

0

0

0

智能软件与⼯程学院
School of Intelligent Software and Engineering

APSP from multiple SSSP
• Re-weight edges:

‣ For node pairs in , addition of does
not create new shortest path.

‣ For node pairs in , a path is shortest
under iff this path is shortest under .

ŵ(u, v) = dist(u) + w(u, v) − dist(v) ≥ 0

G z

G
w ŵ

JohnsonAPSP(G,s):
Create H := (V+{z}, E+{(z, v) | v∈V}) with w(z,v) = 0
Bellman-FordSSSP(H,z) to obtain distH

for each edge (u, v) in H.E
 w’(u,v) := distH(z,u) + w(u,v) - distH(z,v)

for each node u in G.V
 DijkstraSSSP(G,u) with w’ to obtain distG,w’

 for each node v in G.V
 distG(u,v) := distG,w’(u,v) + distH(z,v) - distH(z,u)

Proposed by Donald Bruce Johnson

智能软件与⼯程学院
School of Intelligent Software and Engineering

3 4

-5

6

-4
7

1

2
8

-1

0

-4 0

-5

3 4

-5

6

-4
7

1

2
8z 0

0

0

0

0

-1

0

-4 0

-5

4 0

0

2

0
10

0

2
13z 0

1

5

0

4

2/1

0/0

0/-4 2/2

2/-3

4 0

0

2

0

10

0

2
13

re-weighting each edge

By ŵ(u, v) = h(u) + w(u, v) − h(v)

Add a new node

Compute each

z
h(u)

distG,w’(u,v) / distG,w(u,v)

 in each node

0/4

2/7

2/3 0/5

0/0

4 0

0

2

0

10

0

2
13

2/5

4/8

0/0 2/6

2/1

4 0

0

2

0

10

0

2
13

0/0

2/3

2/-1 0/1

0/-4

4 0

0

2

0

10

0

2
13

0/-1

2/2

2/-2 0/0

0/-5

4 0

0

2

0

10

0

2
13

智能软件与⼯程学院
School of Intelligent Software and Engineering

APSP from multiple SSSP
• Johnson’s algorithm combines Dijkstra and Bellman-Ford, resulting a

runtime of , for arbitrary weight graphs.O(n3 lg n)

JohnsonAPSP(G,s):
Create H := (V+{z}, E+{(z, v) | v∈V}) with w(z,v) = 0
Bellman-FordSSSP(H,z) to obtain distH

for each edge (u, v) in H.E
 w’(u,v) := distH(z,u) + w(u,v) - distH(z,v)

for each node u in G.V
 DijkstraSSSP(G,u) with w’ to obtain distG,w’

 for each node v in G.V
 distG(u,v) := distG,w’(u,v) + distH(z,v) - distH(z,u)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Floyd-Warshall Algorithm

智能软件与⼯程学院
School of Intelligent Software and Engineering

APSP via Recursion

•

• This recurrence is correct, but it does not lead to a recursive algorithm directly!

‣ Cycle in the graph can make the recursion never ends!

dist(u, v) = {0 if u = v
min(x,v)∈E{dist(u, x) + w(x, v)} otherwise

U V

C

B

A

智能软件与⼯程学院
School of Intelligent Software and Engineering

APSP via Recursion

• Introduce an additional parameter in the recurrence:

‣ dist(u, v, l) : shortest path from to that uses at most edges.

•

u v l

dist(u, v) =

0 if l = 0 and u = v
∞ if l = 0 and u ≠ v

min {
dist(u, v, l − 1)
min

(x,v)∈E
{dist(u, x, l − 1) + w(x, v)}} otherwise

智能软件与⼯程学院
School of Intelligent Software and Engineering

APSP via Recursion
•

• Evaluate this recurrence easily in a “bottom-up” fashion!

‣ dist(⋅, ⋅, 0) are easy to compute, given input graph.

‣ dist(⋅, ⋅, 1) are easy to compute, if dist(⋅, ⋅, 0) are known.

‣ dist(⋅, ⋅, l + 1) are easy to compute, if dist(⋅,⋅,l) are known.

‣ dist(⋅, ⋅, n - 1) are what we want!

dist(u, v) =

0 if l = 0 and u = v
∞ if l = 0 and u ≠ v

min {
dist(u, v, l − 1)
min

(x,v)∈E
{dist(u, x, l − 1) + w(x, v)}} otherwise

Don’t always need a recursive algorithm to evaluate recurrence, often an iterative alternative exists.

智能软件与⼯程学院
School of Intelligent Software and Engineering

APSP via Recursion
RecursiveAPSP(G):
for each pair (u,v) in V*V
if u = v then dist[u,v,0] := 0
else dist[u,v,0] := INF

for l := 1 to n -1
for each node u
for each node v

dist[u,v,l] := dist[u,v, l - 1]
for each edge (x,v) going to v
if dist[u,v,l] > dist[u,x,l - 1] + w(x,v)
 dist[u,v,l] := dist[u,x,l - 1] + w(x,v)

Can we do better?

Time complexity:
O(n4)

智能软件与⼯程学院
School of Intelligent Software and Engineering

APSP via Recursion

•

• This recursion is like “ and split” in divide-and-conquer. How about “ and split”?

•

• Start with dist(⋅,⋅,1), then double l each time, until .

dist(u, v) =

0 if l = 0 and u = v
∞ if l = 0 and u ≠ v

min {
dist(u, v, l − 1)
min

(x,v)∈E
{dist(u, x, l − 1) + w(x, v)}} otherwise

1 l − 1 l/2 l/2

dist(u, v, l) =
w(u, v) if l = 1 and (u, v) ∈ E
∞ if l = 1 and (u, v) ∉ E
minx∈V{dist(u, x, l/2) + dist(x, v, l/2)} otherwise

2⌈lg n⌉

智能软件与⼯程学院
School of Intelligent Software and Engineering

APSP via Recursion
FasterRecursiveAPSP(G):
for each pair (u,v) in V*V
if (u, v) in E then dist[u,v,1] := w(u, v)
else dist[u,v,1] := INF

for i := 1 to
for each node u
for each node v

dist[u,v,] := INF
for each node x
if dist[u,v,] > dist[u,x,] + dist[x,v,]
 dist[u,v,] := dist[u,x,] + dist[x,v,]

⌈lg n⌉

2i

2i 2i−1 2i−1

2i 2i−1 2i−1

Can this approach be better?

Time complexity:
O(n3 lg n)

智能软件与⼯程学院
School of Intelligent Software and Engineering

APSP via Recursion
• Strategy: recuse on the set of node the shortest paths use.(Previous algorithms recuse

on number of edges the shortest paths use.)

• Number the vertices arbitrarily: ; Define to be the set
of vertices numbered at most .

• Define be length of shortest path from to , s.t. only nodes in can be
intermediate nodes in paths. Let be such a shortest path.

x1, x2, . . . , xn Vr = {x1, x2, . . . , xr}
r

dist(u, v, r) u v Vr
π(u, v, r)

x5
x6

v

x3

x2

x4

x1

u
dist(u, v) = dist(u, v,6) = w(u → x5 → x6 → v)

dist(u, v,4) = w(u → x1 → x2 → x3 → v)

智能软件与⼯程学院
School of Intelligent Software and Engineering

APSP via Recursion
• Observation: either goes through or not.

• Latter case: =

• Former case: = + = +

π(u, v, r) xr

π(u, v, r) π(u, v, r − 1)

π(u, v, r) π(u, xr, r) π(xr, v, r) π(u, xr, r − 1) π(xr, v, r − 1)

x5
x6

v

x3
x2

x4
x1

u

xrπ(u, xr, r − 1) π(xr, v, r − 1)

π(u, v, r) = π(u, v, r − 1)

智能软件与⼯程学院
School of Intelligent Software and Engineering

The Floyd-Warshall Algorithm

• dist(u, v, r) =

w(u, v) if r = 0 and (u, v) ∈ E
∞ if r = 0 and (u, v) ∉ E

min {dist(u, v, r − 1)
dist(u, xr, r − 1) + dist(xr, v, r − 1)} otherwise

FloydWarshallAPSP(G):
for each pair (u,v) in V*V
if (u, v) in E then dist[u,v, 0] := w(u, v)
else dist[u,v,0] := INF

for r := 1 to
for each node u
for each node v

dist[u,v,r] := dist[u,v,r - 1]
if dist[u,v,r] > dist[u,xr, r - 1] + dist[xr,v, r - 1]

 dist[u,v,r] := dist[u,xr, r - 1] + dist[xr,v, r - 1]

n

Time complexity:
O(n3)

Robert W. Floyd Stephen WarshallBernard Roy

智能软件与⼯程学院
School of Intelligent Software and Engineering

Transitive Closure of a directed graph
• Given directed graph with vertex set , define the transitive closure of as the

graph , where

‣

• Just assign weight 1 to each edge, and run Floyd-Warshall. Then if there is a path between and ,
, otherwise

• Or alternatively (and more efficiently), use (logical Or) and (logical And) for the arithmetic operations
and +，and Define to indicate if there is a path from to with all intermediate vertices in :

‣

‣ For ,

G = (V, E) V = {1,2,...,n} G
G* = (V, E*)

E* = {(i, j) : there is a path from vertex i to j in G} .

u v
dist(u, v) < n dist(u, v) = ∞

∨ ∧ min
t(k)
u,v u v {1,2,...,k}

t(0)
uv = {0, if u ≠ v and (u, v) ∉ E

1, if u = v or (u, v) ∈ E

k ≥ 1 t(k)
u,v = t(k−1)

u,v ∨ (t(k−1)
u,xk

∧ t(k−1)
xk,v)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Application of APSP: Compute Transitive Closure

FloydWarshallAPSP(G):
for each pair (u,v) in V*V

if (u, v) in E then dist[u,v, 0] := w(u, v)
else dist[u,v,0] := INF

for r := 1 to
for each node u

for each node v
dist[u,v,r] := dist[u,v,r - 1]
if dist[u,v,r] > dist[u,xr, r - 1] + dist[xr,v, r - 1]

 dist[u,v,r] := dist[u,xr, r - 1] + dist[xr,v, r - 1]

n

FloydWarshallTransitiveClosure(G):
for each pair (u,v) in V*V

if (u, v) in E then t[u,v, 0] := TRUE
else t[u,v,0] := FALSE

for r := 1 to
for each node u

for each node v
t[u,v,r] := t[u,v,r - 1]
if t[u,xr, r - 1] AND t[xr,v, r - 1]

 t[u,v,r] := TRUE

n

智能软件与⼯程学院
School of Intelligent Software and Engineering

Further reading
• [CLRS] Ch.25

• [Erickson] Ch.9

