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SSSP and APSP

• Single-Source Shortest Paths (SSSP) Problem:


‣ Given a graph  and a weight function , given a source 
node , find a shortest path from  to every .


• All-Pairs Shortest Paths (APSP) Problem:


‣ Given a graph  and a weight function , for every pair 
, find a shortest path from  to .

G = (V, E) w
s s u ∈ V

G = (V, E) w
(u, v) ∈ V × V u v
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APSP from multiple SSSP
• Straightforward solution for APSP: For each , execute SSSP algorithm once!v ∈ V

SSSP APSP

BFS 
(Unit-weight graphs) O(n + m) = O(n2) O(n3)

Dijkstra 
(Positive-weight graphs)

O((n + m)lg n) = O(n2 lg n)
(Using binary heap for priority queue)

O(n3 lg n)

Bellman-Ford 
(Arbitary-weight Directed) O(nm) = O(n3) O(n4)

Topological Sort Variant 
(Arbitrary-weight DAG) O(n + m) = O(n2) O(n3)
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APSP from multiple SSSP

• Positive-weight Graphs: Repeating Dijkstra gives .


• Arbitrary-weight Graphs: Repeating Bellman-Ford gives .


• Faster algorithms for arbitrary-weight graphs?


‣ Intuition: modify edge weights without changing shortest path, so that 
Dijkstra’s algorithm can work.

O(n3 lg n)

O(n4)
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APSP from multiple SSSP
• Intuition: modify edge weights without changing shortest path, so that 

Dijkstra’s algorithm can work.

‣ Add  to each edge? 

• NO! Shortest paths may change!


• Given , different paths may change by different amount!

max{−1 ⋅ w(u, v)}

(u, v)
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APSP from multiple SSSP
• Faster algorithms for arbitrary-weight graphs?


‣ Intuition: modify edge weights without changing shortest path, so that Dijkstra’s 
algorithm can work.


‣ Requirement: 


‣ Or alternatively, for every path from  to ,   changes it by the same amount:


- Let the 


- Imagine  is entry gift and  is exit tax for traveling through .

ŵ(u
p1⇝ v) > ŵ(u

p2⇝ v) ⟺ w(u
p1⇝ v) > w(u

p2⇝ v)

u v ŵ

ŵ(u, v) = h(u) + w(u, v) − h(v)

h(u) h(v) (u, v)

new weight of path

new weight of edge
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APSP from multiple SSSP

•  


 + … + 






 

ŵ(u
p1⇝ v) = ŵ(u → x1 → . . . → xk → v) = ŵ(u → x1) + . . . + ŵ(xk → v)

= (h(u) + w(u → x1) − h(x1)) + (h(x1) + w(x1 → x2) − h(x2))
(h(xk−1) + w(xk−1 → xk) − h(xk)) + (h(xk) + w(xk → v) − h(v))
= h(u) + w(u → x1) + . . . + w(xk → v) − h(v)

= h(u) + w(u → x1 → . . . → xk → v) − h(v) = h(u) + w(u
p1⇝ v) − h(v)
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APSP from multiple SSSP

• Since we need  (for Dijkstra algorithm)


• Just let  for some fixed , then 

ŵ(u, v) = h(u) + w(u, v) − h(v) ≥ 0

h(u) = dist(z, u) z ∈ V
ŵ(u, v) = dist(u) + w(u, v) − dist(v) ≥ 0

‣ But it is possible that we cannot find such  that reaches every node.z

The shortest path from  to  must be 
“smaller than” the shortest path from  to  

add the edge from  to .

z v
z u

u v
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APSP from multiple SSSP
• Add node  that goes to every node in  with a weight  edge.


‣  with 

z G 0

H = (V ∪ {z}, E ∪ {(z, x) |x ∈ V}) w(z, x) = 0
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APSP from multiple SSSP
• Re-weight edges: 




‣ For node pairs in , addition of  does 
not create new shortest path.


‣ For node pairs in , a path is shortest 
under  iff this path is shortest under .

ŵ(u, v) = dist(u) + w(u, v) − dist(v) ≥ 0

G z

G
w ŵ

JohnsonAPSP(G,s): 
Create H := (V+{z}, E+{(z, v) | v∈V}) with w(z,v) = 0
Bellman-FordSSSP(H,z) to obtain distH

for each edge (u, v) in H.E 
  w’(u,v) := distH(z,u) + w(u,v) - distH(z,v)

for each node u in G.V
  DijkstraSSSP(G,u) with w’ to obtain distG,w’

            for each node v in G.V
           distG(u,v) := distG,w’(u,v) + distH(z,v) - distH(z,u)

Proposed by Donald Bruce Johnson
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APSP from multiple SSSP
• Johnson’s algorithm combines Dijkstra and Bellman-Ford, resulting a 

runtime of , for arbitrary weight graphs.O(n3 lg n)

JohnsonAPSP(G,s): 
Create H := (V+{z}, E+{(z, v) | v∈V}) with w(z,v) = 0
Bellman-FordSSSP(H,z) to obtain distH

for each edge (u, v) in H.E 
  w’(u,v) := distH(z,u) + w(u,v) - distH(z,v)

for each node u in G.V
  DijkstraSSSP(G,u) with w’ to obtain distG,w’

            for each node v in G.V
           distG(u,v) := distG,w’(u,v) + distH(z,v) - distH(z,u)
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Floyd-Warshall Algorithm
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APSP via Recursion

• 


• This recurrence is correct, but it does not lead to a recursive algorithm directly!


‣ Cycle in the graph can make the recursion never ends!

dist(u, v) = {0 if u = v
min(x,v)∈E{dist(u, x) + w(x, v)} otherwise

U V

C

B

A



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

APSP via Recursion

• Introduce an additional parameter in the recurrence:


‣ dist(u, v, l) : shortest path from  to  that uses at most  edges.


•

u v l

dist(u, v) =

0 if l = 0 and u = v
∞ if l = 0 and u ≠ v

min {
dist(u, v, l − 1)
min

(x,v)∈E
{dist(u, x, l − 1) + w(x, v)}} otherwise
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APSP via Recursion
• 


• Evaluate this recurrence easily in a “bottom-up” fashion!


‣ dist(⋅, ⋅, 0) are easy to compute, given input graph.

‣ dist(⋅, ⋅, 1) are easy to compute, if dist(⋅, ⋅, 0) are known.

‣ dist(⋅, ⋅, l + 1) are easy to compute, if dist(⋅,⋅,l) are known.


‣ dist(⋅, ⋅, n - 1) are what we want!

dist(u, v) =

0 if l = 0 and u = v
∞ if l = 0 and u ≠ v

min {
dist(u, v, l − 1)
min

(x,v)∈E
{dist(u, x, l − 1) + w(x, v)}} otherwise

Don’t always need a recursive algorithm to evaluate recurrence, often an iterative alternative exists.
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APSP via Recursion
RecursiveAPSP(G): 
for each pair (u,v) in V*V
if u = v then dist[u,v,0] := 0
else dist[u,v,0] := INF

for l := 1 to n -1
for each node u
for each node v

dist[u,v,l] := dist[u,v, l - 1]
for each edge (x,v) going to v
if dist[u,v,l] > dist[u,x,l - 1] + w(x,v)
      dist[u,v,l] := dist[u,x,l - 1] + w(x,v)

Can we do better?

Time complexity: 
O(n4)
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APSP via Recursion

• 


• This recursion is like “  and  split” in divide-and-conquer. How about “  and  split”?


• 


• Start with dist(⋅,⋅,1), then double l each time, until . 

dist(u, v) =

0 if l = 0 and u = v
∞ if l = 0 and u ≠ v

min {
dist(u, v, l − 1)
min

(x,v)∈E
{dist(u, x, l − 1) + w(x, v)}} otherwise

1 l − 1 l/2 l/2

dist(u, v, l) =
w(u, v) if l = 1 and (u, v) ∈ E
∞ if l = 1 and (u, v) ∉ E
minx∈V{dist(u, x, l/2) + dist(x, v, l/2)} otherwise

2⌈lg n⌉
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APSP via Recursion
FasterRecursiveAPSP(G): 
for each pair (u,v) in V*V
if (u, v) in E  then dist[u,v,1] := w(u, v)
else dist[u,v,1] := INF

for i := 1 to 
for each node u
for each node v

dist[u,v, ] := INF
for each node x
if dist[u,v, ] > dist[u,x, ] + dist[x,v, ]
      dist[u,v, ] := dist[u,x, ] + dist[x,v, ]

⌈lg n⌉

2i

2i 2i−1 2i−1

2i 2i−1 2i−1

Can this approach be better?

Time complexity: 
O(n3 lg n)



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

APSP via Recursion
• Strategy: recuse on the set of node the shortest paths use.(Previous algorithms recuse 

on number of edges the shortest paths use.)


• Number the vertices arbitrarily: ; Define  to be the set 
of vertices numbered at most .


• Define  be length of shortest path from  to , s.t. only nodes in  can be 
intermediate nodes in paths. Let  be such a shortest path.

x1, x2, . . . , xn Vr = {x1, x2, . . . , xr}
r

dist(u, v, r) u v Vr
π(u, v, r)

x5
x6

v

x3

x2

x4

x1

u
dist(u, v) = dist(u, v,6) = w(u → x5 → x6 → v)

dist(u, v,4) = w(u → x1 → x2 → x3 → v)



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

APSP via Recursion
• Observation: either  goes through  or not.


• Latter case:  = 


• Former case:  = +  = +

π(u, v, r) xr

π(u, v, r) π(u, v, r − 1)

π(u, v, r) π(u, xr, r) π(xr, v, r) π(u, xr, r − 1) π(xr, v, r − 1)

x5
x6

v

x3
x2

x4
x1

u

xrπ(u, xr, r − 1) π(xr, v, r − 1)

π(u, v, r) = π(u, v, r − 1)
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The Floyd-Warshall Algorithm 

• dist(u, v, r) =

w(u, v) if r = 0 and (u, v) ∈ E
∞ if r = 0 and (u, v) ∉ E

min {dist(u, v, r − 1)
dist(u, xr, r − 1) + dist(xr, v, r − 1)} otherwise

FloydWarshallAPSP(G): 
for each pair (u,v) in V*V
if (u, v) in E  then dist[u,v, 0] := w(u, v)
else dist[u,v,0] := INF

for r := 1 to 
for each node u
for each node v

dist[u,v,r] := dist[u,v,r - 1]
if dist[u,v,r] > dist[u,xr, r - 1] + dist[xr,v, r - 1]

      dist[u,v,r] := dist[u,xr, r - 1] + dist[xr,v, r - 1]

n

Time complexity: 
O(n3)

Robert W. Floyd Stephen WarshallBernard Roy
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Transitive Closure of a directed graph
• Given directed graph  with vertex set , define the transitive closure of  as the 

graph , where 


‣ 


• Just assign weight 1 to each edge, and run Floyd-Warshall. Then if there is a path between  and ,  
, otherwise 


• Or alternatively (and more efficiently), use  (logical Or) and  (logical And) for the arithmetic operations  
and +，and Define  to indicate if there is a path from  to  with all intermediate vertices in  :


‣ 


‣ For , 

G = (V, E) V = {1,2,...,n} G
G* = (V, E*)

E* = {(i, j) : there is a path from vertex i to j in G} .

u v
dist(u, v) < n dist(u, v) = ∞

∨ ∧ min
t(k)
u,v u v {1,2,...,k}

t(0)
uv = {0, if u ≠ v and (u, v) ∉ E

1, if u = v or (u, v) ∈ E

k ≥ 1 t(k)
u,v = t(k−1)

u,v ∨ (t(k−1)
u,xk

∧ t(k−1)
xk,v )
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Application of APSP: Compute Transitive Closure 

FloydWarshallAPSP(G): 
for each pair (u,v) in V*V

if (u, v) in E  then dist[u,v, 0] := w(u, v)
else dist[u,v,0] := INF

for r := 1 to 
for each node u

for each node v
dist[u,v,r] := dist[u,v,r - 1]
if dist[u,v,r] > dist[u,xr, r - 1] + dist[xr,v, r - 1]

      dist[u,v,r] := dist[u,xr, r - 1] + dist[xr,v, r - 1]

n

FloydWarshallTransitiveClosure(G): 
for each pair (u,v) in V*V

if (u, v) in E  then t[u,v, 0] :=  TRUE
else t[u,v,0] := FALSE

for r := 1 to 
for each node u

for each node v
t[u,v,r] := t[u,v,r - 1]
if t[u,xr, r - 1] AND t[xr,v, r - 1]

      t[u,v,r] := TRUE

n
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Further reading
• [CLRS] Ch.25


• [Erickson] Ch.9


