ty

IVersSl

=

Nanjing Un
2024 Fall

The slides ae main[y ac[aptec[f;zom the ofzigina[ones shated by Chaoclong ZAeng and _Kevin

ﬁ
1t
O
Il
ESm
”_mM
nn
Jm
&l

S
~
W
WV

=
SV
S
3y

3
N
S
=
S
Q!
V)
-
s
53

=

B
1S
=

R

[
|
Q

<
()
V)

Heap

* |n computer science, a heap Is data structure which means “a
disorganized pile.”

> |In fact, this word has other meanings in computer science, which refers
to heap memory used for dynamic memory allocation. This topic,
however, IS unrelated to the data structure in this course!

~

s) ._"'

Binary Heap

A binary heap Is a complete binary tree, In

. . 16
which each node represents an item.

VRN

> A complete binary tree is a binary tree in 14 10
which every level, except possibly the last, / \ / \
Is completely filled, and all nodes in the last
level are as far left as possible. 8 7 9
* Values in the nodes satisty heap-property. / \ \

2 4 1

» Max-heap: for each node except root,
value of that node < value of its parent.

> Min-heap: for each node except root,
value of that node > value of its parent.

 We can use an array to represent a binary
heap. Obtaining parent and children are easy:

~ Parent of node u : |idx, /2]

Binary Heap

» Left child of u : 2 - idx

~ Right child of 1 : 2 - idx, + 1

~ Allin O(1) time!

Uu

2

16

/

14

/s

8 7 9 3
8/\9 \10
0 4 1
1 2 3 5 8 9 10 |
16 | 14 | 10 7 o | 4 | 1

Common operations of Binary Max-Heap

 Consider max-heap as an example. (Min-heap is similar.)

 Most common operations:

» HeapInsert: insert an element into the heap.

» HeapGetMax: return the item with maximum value. [G @by

» HeapExtractMax: remove the item with maximum value from the heap
and return It.

* Other operations (which we’ll see later)...

| BERES]

[—
7‘5 4‘3? School of Qnt@[ﬁgent Sofrware and fngineering

[EF R

* Insert an item into a binary max-

heap represented by an array.

> Simply put the item to the end of
the array.

Max-Heap —

Heaplnsert

2

.

16

/

14

/s

NG

10

o/ \s

11

8 7 9 3
8/ \9 \10 11
0 4 1 15
1 > 3 5 7 8 9 10
16 | 14 | 10 7 3 | 2 | 4 | 1

15

=]

O&2bthk T FO 4=
P9, BERGESIREF xR
7‘5 435 School of Qnt@[ﬁgent Sofrware and fngineering

Max-Heap — Heaplnsert

* Insert an item into a binary max- 16
heap represented by an array. > N
14 10
> Simply put the item to the end of
the array. 4/ \ S 6/ \ !
s 8 7 9 3
> We need to maintain heap property
after insertion: along the path to / \ \\
root, compare and swap. (Why?) ° ’ 19 i
2 4 1 15

16 14 10 8 | 7 9|3 | 2 4

=]

O&2bthk T FO 4=
P9, BERGESIREF xR
7‘5 g School of Qnt@[ﬁgent Sofrware and fngineering

Max-Heap — Heaplnsert

* Insert an item into a binary max- 16
heap represented by an array. > N
14 10
> Simply put the item to the end of
the array. 4/ \ S 6/ \ !
s 8 7 9 3
> We need to maintain heap property
after insertion: along the path to / \ \\
root, compare and swap. (Why?) ° ’ 19 A
2 4 1 15

16 | 14 | 10 3 / 9 3 2 4

=]

O&2bthk T FO 4=
P9, BERGESIREF xR
7‘5 435 School of Qnt@[ﬁgent Sofrware and fngineering

Max-Heap — Heaplnsert

* Insert an item into a binary max- 16
heap represented by an array. > N
14 10
> Simply put the item to the end of
the array. 4/ \ 5 6/ \ !
L 3 15 9 3
> We need to maintain heap property
after insertion: along the path to / \ \\
root, compare and swap. (Why?) ° ’ 19 A
2 4 1 7

16 | 14 | 10 3 15 9 3 2 4

=]

O&2bthk T FO 4=
P9, BERGESIREF xR
7‘5 g School of Qnt@[ﬁgent Sofrware and fngineering

Max-Heap — Heaplnsert

* Insert an item into a binary max- 16
heap represented by an array. > N
14 10
> Simply put the item to the end of
the array. 4/ \ S 6/ \ !
L 3 15 9 3
> We need to maintain heap property
after insertion: along the path to / \ \\
root, compare and swap. (Why?) ° ’ 19 i
2 4 1 7

16 | 14 | 10 3 15 9 3 2 4

=]

O&2bthk T FO 4=
P9, BERGESIREF xR
7‘5 435 School of Qnt@[ﬁgent Sofrware and fngineering

Max-Heap — Heaplnsert

* Insert an item into a binary max- 16
heap represented by an array. > N
15 10
> Simply put the item to the end of
the array. 4/ \ 5 6/ \ !
o 3 14 9 3
> We need to maintain heap property
after insertion: along the path to / \ \\
root, compare and swap. (Why?) ° ’ 19 i
2 4 1 7

16 | 15 | 10 3 14 9 3 2 4

=]

O&2bthk T FO 4=
P9, BERGESIREF xR
7‘5 435 School of Qnt@[ﬁgent Sofrware and fngineering

Max-Heap — Heaplnsert

* Insert an item into a binary max- 16
heap represented by an array. > N
15 10
> Simply put the item to the end of
the array. 4/ \ S 6/ \ !
o 3 14 9 3
> We need to maintain heap property
after insertion: along the path to / \ \\
root, compare and swap. (Why?) ° ’ 19 i
2 4 1 7

16 | 15 | 10 3 14 9 3 2 4

Ti#EFkr

Heaplnsert(A, x):

heap_size +=1

Alheap_size] :=x

idx .= heap_size

while idx > 1 and A[Floor (idx / 2)] < Alidx]
Swap (Al Floor (idx / 2)], Alidx])
idx = Floor (idx / 2)

Runtime is O(lgn)

o/ \s

2

16

/

15

Max-Heap — Heaplnsert

NG

o/ \s

10

8 14 9 3
8/ \9 \1&11
D 4 1 7
1 2 3 5 7 8 9 10 11
16 | 15 | 10 14 3 | 2 | 4 | 1| 7

3

O&abthk T ¥O =24 (=
PV.| SEREHS TiEFbr
7‘5 4@5 School of Qnt@[ﬁgent Sofrware and fngineering

e Remove the maximum item from the heap
and return It.

> Remove and return root is simple, but
then what to do?

2

/

14

o/ \s

AN

Max-Heap — HeapExtractMax

3

10

YN

8 7 9 3

8/ \9 \10

2 4 1
1 2 3 5 7 8 9
14 | 10 7 3 | 2 | 4

3
O&abthk T ¥O =24 (=

PV.| SEREHS TiEFbr

7‘5 4@5 School of Qnt@[ﬁgent Sofrware and fngineering

Max-Heap — HeapExtractMax

.

e Remove the maximum item from the heap 1

and return It. 2 / \ 3

14 10
> Remove and return root is simple, but / \ / \
then what to do? 4 5 6 7
3 7 9 3
> Move the last item to the root! / \
38 9
2 4

| BEERGHSIREFxR
I,

Z 2 / , ,
% <§3 SCﬁOO[O nt@[ﬁgent SOf[’W@Vé ancffngmeermg

Max-Heap — HeapExtractMax

e Remove the maximum item from the heap 1

and return it. 2 / \ 3

14 10
> Remove and return root is simple, but / \ / \
then what to do? 4 5 6 7
8 7 9 3
>~ Move the last item to the root! / \
3 9
> Again, we need to maintain the heap 2 4
property: compare with children,
swap with bigger one; do this
recursively 2 3 4 5 617 189

| BEERGHSIREFxR
I,

Z 2 / , ,
% <§3 SCﬁOO[O nt@[ﬁgent SOf[’W@Vé ancffngmeermg

Max-Heap — HeapExtractMax

e Remove the maximum item from the heap i

and return it. 2 / \ 3

1 10
> Remove and return root is simple, but / \ / \
then what to do? 4 5 6 7
8 7 9 3
>~ Move the last item to the root! / \
3 9
> Again, we need to maintain the heap 2 4
property: compare with children,
swap with bigger one; do this
recursively 2 3 4 5 617 189

14 1 10 3 / 9 3 2 4

| BEERGHSIREFxR
I,

Z 2 / , ,
% <§3 SCﬁOO[O nt@[ﬁgent SOf[’W@Vé ancffngmeermg

Max-Heap — HeapExtractMax

e Remove the maximum item from the heap 14

and return it. 2 / \ 3

1 10
> Remove and return root is simple, but / \ / \
then what to do? 4 5 6 7
8 7 9 3
>~ Move the last item to the root! / \
3 9
> Again, we need to maintain the heap 2 4
property: compare with children,
swap with bigger one; do this
recursively 2 3 4 5 617 189

14 1 10 3 / 9 3 2 4

| BEERGHSIREFxR
I,

Z 2 / , ,
% <§3 SCﬁOO[O nt@[ﬁgent SOf[’W@Vé ancffngmeermg

Max-Heap — HeapExtractMax

e Remove the maximum item from the heap 14

and return it. 2 / \ 3

8 10
> Remove and return root is simple, but / \ / \
then what to do? 4 5 6 7
1 7 9 3
>~ Move the last item to the root! / \
3 9
> Again, we need to maintain the heap 2 4
property: compare with children,
swap with bigger one; do this
recursively 2 3 4 5 617 189

14 3 10 1 14 9 3 2 4

| BEERGHSIREFxR
I,

Z 2 / , ,
% <§3 SCﬁOO[O nt@[ﬁgent SOf[’W@Vé ancffngmeermg

Max-Heap — HeapExtractMax

e Remove the maximum item from the heap 14

and return it. 2 / \ 3

8 10
> Remove and return root is simple, but / \ / \
then what to do? 4 5 6 7
1 7 9 3
>~ Move the last item to the root! / \
3 9
> Again, we need to maintain the heap 2 4
property: compare with children,
swap with bigger one; do this
recursively 2 3 4 5 617 189

14 3 10 1 14 9 3 2 4

| BEERGHSIREFxR
I,

Z 2 / , ,
% <§3 SCﬁOO[O nt@[ﬁgent SOf[’W@Vé ancffngmeermg

Max-Heap — HeapExtractMax

e Remove the maximum item from the heap 14

and return it. 2 / \ 3

8 10
> Remove and return root is simple, but / \ / \
then what to do? 4 5 6 7
4 7 9 3
>~ Move the last item to the root! / \
3 9
> Again, we need to maintain the heap 2 1
property: compare with children,
swap with bigger one; do this
recursively 2 3 4 5 617 189

14 3 10 4 14 9 3 2 1

2 £
< 45? School

o4t
. %ﬁb
ofﬂ

iS5 Ti2F

nt@[ﬁgent Sofrware and fngineering

Max-Heap — HeapExtractMax

e Remove the maximum item from the heap
and return It.

> Remove and return root is simple, but

>

> Again, we need to maintain the heap

then what to do?
Move the last item to the root!
property: compare with children,

swap with bigger one; do this
recursively

2

14

/

3

/s

AN

3

10

YN

4 7 9 3
8/ \9
2 1
1 3 5 7 8 9
14 10 7 3 | 2 | 1

3 ‘é'fFﬂﬁF S5TiEF R

ntelligent Software and Engineering

-~ Max-Heap — HeapExtractMax

HeapExtractMax(A):
max_item = A| 1]

All] = Alheap_size--]
MaxHeapify(l, A)
return max_item

MaxHeapify(1idx, A):

idx [:= 2%idx, idx r :=2%idx + 1

idx_max .= (idx_l <= heap_size and Alidx_I] > Alidx]) ? idx_[: idx

idx_max .= (idx_r <= heap_size and Alidx_r]| > Alidx_max]) ? idx_r : idx_max

if idx max = idx
Runtime is O(lgn)

Swap (Alidx_max], Alidx])
MaxHeapify(idx_max, A)

I_Applic:ation of heaps:
Priority Queue |

Priority Queue

* Recall the Queue ADT represents a collection of items to which we can add
items and remove the next item.

» Add (item): add item to the queue.

» Remove ():remove the next item y from queue, return v.

 The queuing discipline decides which item to be removed.
> First-in-first-out queue (FIFO Queue)
» Last-in-first-out queue (LIFO Queue, Stack)

> Priority queue: each item associated with a priority, Remove
always deletes the item with max (or min) priority.

Priority Queue

 Use binary heap to implement priority queue

» Add (1tem): Heaplnsert (1tem)

» Remove (): HeapExtractMax ()

» Other operations: GetMax (), UpdatePriority (item, wval)

> All these operations finish within O(lg n) time

* Application of priority queues
» Scheduling, Event simulation, ...

> Used in more sophisticated algorithms (will see them later...)

HeapSort

Take an array and make it a max-heap.

—\
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
L d
l 4
4
-
4
-
l 4
-
-
-
"
L 4

In each Iteration:

HeapSort(I):

heap BmldMaxHeap(I)
for i := n down to 2

cur_max .= heap .HeapExtmctMax() This one is the max item in current heap.
[|1] := cur_max '

Place one item in the array to its final position.

That is, place it" biggest item to positionn - i + 1.

1. Keep a copy of the root item
2. Remove last item and put it to root The loop invariant:
3. Maintain heap property

The largest 1 elements are already in their correct positions.

4. Return the copy of the root item

O &btk T F2 R4
| BEERHS TEF6x
4‘35 School cf Qntz(figent Soﬁ'ware and fngineering

HeapSort

HeapSort(l):
heap .= BuildMaxHeap(I)
for i := n down to 2
cur_max .= heap .HeapExtractMax()

[|1] := cur_max

1 3 4 5 6
3 9 14 I4 10
14 10 1 14 9
1
14

HeapSort(l):

heap .= BuildMaxHeap(I)

for i :=n down to 2
cur_max .= heap .HeapExtractMax()
[|1] := cur_max

1 3 4 5
14 10 1 /
1
14
14
/ \ .
10

HeapSort(l):

heap .= BuildMaxHeap(I)

for i :=n down to 2
cur_max .= heap .HeapExtractMax()
[|1] := cur_max

14

10

HeapSort

HeapSort(l):

heap .= BuildMaxHeap(I)
for i :=n down to 2

cur_max .= heap .HeapExtractMax()
[|1] := cur_max

1 2
10 3 9

3
14

10

HeapSort(l):

heap .= BuildMaxHeap(I)
for i :=n down to 2

cur_max .= heap .HeapExtractMax()
[|1] := cur_max

10

14

10

HeapSort

HeapSort(l):

heap .= BuildMaxHeap(I)
for i :=n down to 2

cur_max .= heap .HeapExtractMax()
[|1] := cur_max

1 2 6
10 3 9 14
1

10
10

HeapSort

HeapSort(l):

heap .= BuildMaxHeap(I)
for i :=n down to 2

cur_max .= heap .HeapExtractMax()
[|1] := cur_max

14

10

HeapSort

HeapSort(l):

heap .= BuildMaxHeap(I)

for i :=n down to 2
cur_max .= heap .HeapExtractMax()
[|1] := cur_max

14

10

HeapSort(l):

heap .= BuildMaxHeap(I)

for i :=n down to 2
cur_max .= heap .HeapExtractMax()
[|1] := cur_max

1 10

14

HeapSort(l):

heap .= BuildMaxHeap(I)

for i :=n down to 2
cur_max .= heap .HeapExtractMax()
[|1] := cur_max

1 10

14

HeapSort(l):

heap .= BuildMaxHeap(I)

for i :=n down to 2
cur_max .= heap .HeapExtractMax()
[|1] := cur_max

1 10

14

HeapSort(l):

heap .= BuildMaxHeap(I)

for i :=n down to 2
cur_max .= heap .HeapExtractMax()
[|1] := cur_max

1 10

14

HeapSort(l):

heap .= BuildMaxHeap(I)

for i :=n down to 2
cur_max .= heap .HeapExtractMax()
[|1] := cur_max

9 10

14

HeapSort(l):

heap .= BuildMaxHeap(I)

for i :=n down to 2
cur_max .= heap .HeapExtractMax()
[|1] := cur_max

9 10

14

O &btk T F2 R4
| BEERHS TEF6x
&5 School cf anmgent Soﬁ'ware and fngineering

HeapSort

1 5 6
14 10 14
HeapSort(l):
heap .= BuildMaxHeap(I) q
for i :=n down to 2

cur_max .= heap .HeapExtractMax()

[|1] := cur_max

HeapSort(l):

heap .= BuildMaxHeap(I)

for i :=n down to 2
cur_max .= heap .HeapExtractMax()
[|1] := cur_max

10

14

HeapSort(l):

heap .= BuildMaxHeap(I)

for i :=n down to 2
cur_max .= heap .HeapExtractMax()
[|1] := cur_max

10

14

HeapSort(l):

heap .= BuildMaxHeap(I)
for i :=n down to 2
cur_max .= heap .HeapExtractMax()

[|1] := cur_max

10

14

HeapSort(l):

heap .= BuildMaxHeap(I)
for i :=n down to 2
cur_max .= heap .HeapExtractMax()

[|1] := cur_max

10

14

HeapSort

HeapSort(l):

heap := BuildMaxHeap(I) 1. Keep a copy of the root item
for i := n down to 2

cur_max = heap .Heap ExtractMax()------------------
I[i] := cur_max 3. Maintain heap property

2. Remove last item and put it to root

4. Return the copy of the root item

e Jotal runtime of these iterations

-
-~ -
- -
~ -
-
-
-
-
-

. Z Olgy) = Ollgn?) = Onlgn) Stirling’s formula

=2

HeapSort

* Given an array I[1...n], how to build a
max-heap??

HeapSort(l):

heap .= BuildMaxHeap(I)
fori:=n down to 2

cur_max .= heap .HeapExtractMax()

» Start with an empty heap, then call
HeapInsert n times?

[|1] := cur_max

> Costis) O(lgi) = O(nlgn)
=1

» Not bad, but we can do better.

=

0 &btk T £O R4 1S
P9, BERGESIREF xR
7‘5 4@5 School of Qnt@[ﬁgent Sofrware and fngineering

HeapSort

* Given an array I[1...n], how to build a max-heap?

> Bottom-up approach: keep merging small heaps

Into larger ones, until a single heap remains.
4/ \ 5
14 7
1 2 3

HeapSort

* Given an array I[1...n], how to build a max-heap?

> Bottom-up approach: keep merging small heaps
Into larger ones, until a single heap remains.

> Each leaf node is a 1-item heap.

14

10

HeapSort

* Given an array I[1...n], how to build a max-heap?

> Bottom-up approach: keep merging small heaps
Into larger ones, until a single heap remains.

> Each leaf node is a 1-item heap.

> Go through remaining nodes in index
decreasing order: at each node, we are
merging two heaps.

14

10

Given an array I[1...

HeapSort

n], how to build a max-heap?

> Bottom-up approach: keep merging small heaps
Into larger ones, until a single heap remains.

> Each leaf node is a 1-item heap.

> Go through remaining nodes in index
decreasing order: at each node, we are

merging two heaps.

14

10

> Maintain heap property during merging:

use MaxHeapif

Y.

Given an array I[1...

HeapSort

n], how to build a max-heap?

> Bottom-up approach: keep merging small heaps
Into larger ones, until a single heap remains.

> Each leaf node is a 1-item heap.

> Go through remaining nodes in index
decreasing order: at each node, we are

merging two heaps.

10

14

> Maintain heap property during merging:

use MaxHeapif

Y.

Given an array I[1...

HeapSort

n], how to build a max-heap?

> Bottom-up approach: keep merging small heaps
Into larger ones, until a single heap remains.

> Each leaf node is a 1-item heap.

> Go through remaining nodes in index
decreasing order: at each node, we are

merging two heaps.

10

14

> Maintain heap property during merging:

use MaxHeapif

Y.

Given an array I[1...

HeapSort

n], how to build a max-heap?

> Bottom-up approach: keep merging small heaps
Into larger ones, until a single heap remains.

> Each leaf node is a 1-item heap.

> Go through remaining nodes in index
decreasing order: at each node, we are

merging two heaps.

14

10

> Maintain heap property during merging:

use MaxHeapif

Y.

Given an array I[1...

HeapSort

n], how to build a max-heap?

> Bottom-up approach: keep merging small heaps
Into larger ones, until a single heap remains.

> Each leaf node is a 1-item heap.

> Go through remaining nodes in index
decreasing order: at each node, we are

merging two heaps.

14

10

> Maintain heap property during merging:

use MaxHeapif

Y.

Given an array I[1...

HeapSort

n], how to build a max-heap?

> Bottom-up approach: keep merging small heaps
Into larger ones, until a single heap remains.

> Each leaf node is a 1-item heap.

> Go through remaining nodes in index
decreasing order: at each node, we are

merging two heaps.

14

14

10

> Maintain heap property during merging:

use MaxHeapif

Y.

HeapSort

BuildMaxHeap(A):

heap_size .= n

for i := Floor(n/2) down to 1
MaxHeapify(i, A)

e Time complexity of BuildMaxHeap?

» ®(n) calls to MaxHeapify, each

14

costing O(lgn), so O(nlgn)?

14

10

> Correct but not tight...

BuildMaxHeap(A):

heap_size .= n

for i := Floor(n/2) down to 1
MaxHeapify(i, A)

» Height of n-items heap is |1gn |

HeapSort

n
. Any height 41 has < [2h+1] nodes

* Cost of all MaxHeapify:

[1gn]

- 2 U] - 0 = O
h=0

[1gn] h

2 o) =0

h=0

14
/ \ .
10
S\ o/ \s
7 9 2
1 3 4 5 6
14 10| 1 | 7 | 9

| BEERHEFS TEF b
of

> —
7‘5 g? School Qnt@(ﬁgent Software and EEngineering

HeapSort

HeapSort(I): BuildMaxHeap(A):

| heap_size :=n
= BuildMaxH ..
heap uildMaxHeap(1) for i := Floor(n/2) down to 1

for I :=n down to 2 MaxHeapify(i, A)
cur_max = heap .HeapExtractMax()

I[1] := cur_max Time Complexity: O(nlg n)

Time Complexity: O(n)

» Time complexity of HeapSort is O(nlgn).

» Extra space required during execution is O(1) .

| e S TR
9 School of an(ﬁ’gent Soﬁ'ware and Engineering

Further reading

+ [CLRS] Ch.6

V THOMAS H.CORMEN

CHARLES E. LEISERSON

RONALD L. RIVEST

\ CLIFFORD STEIN

INTRODUCTION TO

ALGORITHMS

THIRD EDITION

