

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne. Thanks for their supports!

堆 Heaps

钮鑫涛 Nanjing University 2024 Fall

Heap

 \triangleright In fact, this word has other meanings in computer science, which refers to *heap memory* used for dynamic memory allocation. This topic,

- In computer science, a *heap* is data structure which means "a disorganized pile."
	- however, is **unrelated** to the data structure in this course!

- A binary heap is a **complete binary tree**, in which each node represents an item.
	- ‣ A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible.
	- Values in the nodes satisfy **heap-property**.
		- ‣ Max-heap: for each node except root, value of that node \leq value of its parent.
		- ‣ Min-heap: for each node except root, value of that node \geq value of its parent.

Binary Heap

- We can use an array to represent a binary heap. Obtaining parent and children are easy:
	- \blacktriangleright Parent of node $u : \lfloor i dx_u/2 \rfloor$
	- Left child of $u : 2 \cdot idx_u$
	- Right child of $u : 2 \cdot i dx_u + 1$
	- \triangleright All in $O(1)$ time!

Binary Heap

- Consider max-heap as an example. (Min-heap is similar.)
- Most common operations:
	- ‣ **HeapInsert**: insert an element into the heap.
	- ‣ **HeapGetMax**: return the item with maximum value. Runtime is *O*(1)
	- ‣ **HeapExtractMax**: remove the item with maximum value from the heap and return it.
- Other operations (which we'll see later)...
	-

Common operations of Binary Max-Heap

- Insert an item into a binary maxheap represented by an array.
	- ‣ Simply put the item to the end of the array.

- Insert an item into a binary maxheap represented by an array.
	- ‣ Simply put the item to the end of the array.
	- ‣ We need to maintain heap property after insertion: along the path to root, compare and swap. (Why?)

- Insert an item into a binary maxheap represented by an array.
	- ‣ Simply put the item to the end of the array.
	- ‣ We need to maintain heap property after insertion: along the path to root, compare and swap. (Why?)

- Insert an item into a binary maxheap represented by an array.
	- ‣ Simply put the item to the end of the array.
	- ‣ We need to maintain heap property after insertion: along the path to root, compare and swap. (Why?)

- Insert an item into a binary maxheap represented by an array.
	- ‣ Simply put the item to the end of the array.
	- ‣ We need to maintain heap property after insertion: along the path to root, compare and swap. (Why?)

- Insert an item into a binary maxheap represented by an array.
	- ‣ Simply put the item to the end of the array.
	- ‣ We need to maintain heap property after insertion: along the path to root, compare and swap. (Why?)

- Insert an item into a binary maxheap represented by an array.
	- ‣ Simply put the item to the end of the array.
	- ‣ We need to maintain heap property after insertion: along the path to root, compare and swap. (Why?)

HeapInsert(A, x): $heap_size += 1$ $A[heap_size] := x$ *idx* := *heap_size* while $idx > 1$ and $A[Floor(idx / 2)] < A[idx]$ *Swap* (*A*[*Floor* (*idx /* 2)], *A*[*idx*]) $idx := Floor$ ($idx / 2$)

Max-Heap — HeapInsert

Runtime is *O*(lg *n*)

- Remove the maximum item from the heap and return it.
	- ‣ Remove and return root is simple, but then what to do?

Max-Heap — HeapExtractMax 14 10 8 7 9 3 3 2 4 14 10 8 7 7 9 3 4 | 1 1 2 3 4 5 6 7 8 9 10 2 3 $4 / 5$ 6/ \ 7 9 10 1 2 8

- Remove the maximum item from the heap and return it.
	- ‣ Remove and return root is simple, but then what to do?
	- Move the last item to the root!

Max-Heap — HeapExtractMax 1 14 10 8 7 9 3 3 2 4 1 14 10 8 7 7 9 3 4 1 2 3 4 5 6 7 8 9 2 3 $4 / 5$ 6/ \ 7 9 1 2 8

- Remove the maximum item from the heap and return it.
	- ‣ Remove and return root is simple, but then what to do?
	- ‣ Move the last item to the root!
	- ‣ Again, we need to maintain the heap property: compare with children, swap with bigger one; do this recursively

- Remove the maximum item from the heap and return it.
	- ‣ Remove and return root is simple, but then what to do?
	- ‣ Move the last item to the root!
	- ‣ Again, we need to maintain the heap property: compare with children, swap with bigger one; do this recursively

- Remove the maximum item from the heap and return it.
	- ‣ Remove and return root is simple, but then what to do?
	- ‣ Move the last item to the root!
	- ‣ Again, we need to maintain the heap property: compare with children, swap with bigger one; do this recursively

- Remove the maximum item from the heap and return it.
	- ‣ Remove and return root is simple, but then what to do?
	- ‣ Move the last item to the root!
	- ‣ Again, we need to maintain the heap property: compare with children, swap with bigger one; do this recursively

- Remove the maximum item from the heap and return it.
	- ‣ Remove and return root is simple, but then what to do?
	- ‣ Move the last item to the root!
	- ‣ Again, we need to maintain the heap property: compare with children, swap with bigger one; do this recursively

- Remove the maximum item from the heap and return it.
	- ‣ Remove and return root is simple, but then what to do?
	- ‣ Move the last item to the root!
	- ‣ Again, we need to maintain the heap property: compare with children, swap with bigger one; do this recursively

- Remove the maximum item from the heap and return it.
	- ‣ Remove and return root is simple, but then what to do?
	- ‣ Move the last item to the root!
	- ‣ Again, we need to maintain the heap property: compare with children, swap with bigger one; do this recursively

Max-Heap — HeapExtractMax

HeapExtractMax(A): max *_item* := $A[1]$ $A[1] = A[heap_size-]$ *MaxHeapify*(1, *A*) **return** *max_item*

MaxHeapify(idx, A):

 $idx_l := 2*idx, idx_r := 2*idx + 1$ *idx_max* := (*idx_l* <= *heap_size* and $A[idx_l] > A[idx_l]$? *idx_l* : *idx idx_max* := (*idx_r* <= *heap_size* **and** $A[idx_r] > A[idx_max]$) ? *idx_r* : *idx_max* **if** idx_max != idx

Swap (*A*[*idx_max*], *A*[*idx*]) *MaxHeapify*(*idx_max, A*)

Runtime is *O*(lg *n*)

Application of heaps:

Priority Queue

Priority Queue

- Recall the Queue ADT represents a collection of items to which we can add items and remove the next item.
	- \rightarrow Add(item): add item to the queue.
	- Remove (): remove the next item y from queue, return y .
- The queuing discipline decides which item to be removed.
	- ‣ First-in-first-out queue (FIFO Queue)
	- ‣ Last-in-first-out queue (LIFO Queue, Stack)
	- ‣ **Priority queue**: each item associated with a **priority**, **Remove** always deletes the item with max (or min) priority.

Priority Queue

- Use binary heap to implement priority queue
	- ‣ Add(item): HeapInsert(item)
	- ‣ Remove(): HeapExtractMax()
	- ‣ Other operations: GetMax(), UpdatePriority(item, val)
	- All these operations finish within $O(\lg n)$ time
- Application of priority queues
	- ‣ Scheduling, Event simulation, …
	- ‣ Used in more sophisticated algorithms (will see them later…)

HeapSort(I): $heap := BuildMaxHeap(I)$ **for** $i := n$ **down to** 2 *cur_max* := *heap.HeapExtractMax*() $I[i] := cur_max$

- Take an array and make it a max-heap.
	- In each iteration:
	- Place **one** item in the array to its final position.
		- This **one** is the max item in current heap.
		- That is, place ith biggest item to position $n i + 1$.

- 1. Keep a copy of the root item
- 2. Remove last item and put it to root
- 3. Maintain heap property
- 4. Return the copy of the root item
- **The loop invariant:**
	- The largest *i* elements are already in their correct positions.

HeapSort(I): $heap := BuildMaxHeap(I)$ **for** $i := n$ **down** to 2 *cur_max* := *heap.HeapExtractMax*() $I[i] := cur_max$

HeapSort(I): $heap := BuildMaxHeap(I)$ **for** $i := n$ **down to** 2 *cur_max* := *heap.HeapExtractMax*() $I[i] := cur_max$

HeapSort(I): $heap := BuildMaxHeap(I)$ **for** $i := n$ **down to** 2 *cur_max* := *heap.HeapExtractMax*() $I[i] := cur_max$

HeapSort(I): $heap := BuildMaxHeap(I)$ **for** $i := n$ **down to** 2 *cur_max* := *heap.HeapExtractMax*() $I[i] := cur_max$

HeapSort(I): $heap := BuildMaxHeap(I)$ **for** $i := n$ **down to** 2 *cur_max* := *heap.HeapExtractMax*() $I[i] := cur_max$

HeapSort(I): $heap := BuildMaxHeap(I)$ **for** $i := n$ **down to** 2 *cur_max* := *heap.HeapExtractMax*() $I[i] := cur_max$

HeapSort(I): $heap := BuildMaxHeap(I)$ **for** $i := n$ **down to** 2 *cur_max* := *heap.HeapExtractMax*() $I[i] := cur_max$

HeapSort(I): $heap := BuildMaxHeap(I)$ **for** $i := n$ **down to** 2 *cur_max* := *heap.HeapExtractMax*() $I[i] := cur_max$

HeapSort(I): $heap := BuildMaxHeap(I)$ **for** $i := n$ **down to** 2 *cur_max* := *heap.HeapExtractMax*() $I[i] := cur_max$

HeapSort(I): $heap := BuildMaxHeap(I)$ **for** $i := n$ **down to** 2 *cur_max* := *heap.HeapExtractMax*() $I[i] := cur_max$

HeapSort(I): $heap := BuildMaxHeap(I)$ **for** $i := n$ **down to** 2 *cur_max* := *heap.HeapExtractMax*() $I[i] := cur_max$

HeapSort(I): $heap := BuildMaxHeap(I)$ **for** $i := n$ **down to** 2 *cur_max* := *heap.HeapExtractMax*() $I[i] := cur_max$

HeapSort(I): $heap := BuildMaxHeap(I)$ **for** $i := n$ **down to** 2 *cur_max* := *heap.HeapExtractMax*() $I[i] := cur_max$

HeapSort(I): $heap := BuildMaxHeap(I)$ **for** $i := n$ **down to** 2 *cur_max* := *heap.HeapExtractMax*() $I[i] := cur_max$

HeapSort(I): $heap := BuildMaxHeap(I)$ **for** $i := n$ **down to** 2 *cur_max* := *heap.HeapExtractMax*() $I[i] := cur_max$

1 1

HeapSort(I): $heap := BuildMaxHeap(I)$ **for** $i := n$ **down** to 2 *cur_max* := *heap.HeapExtractMax*() $I[i] := cur_max$

• Total runtime of these iterations

$$
\sum_{i=2}^{n} O(\lg i) = O(\lg(n!)) = O(n \lg n)
$$

^O(lg *ⁱ*) ⁼ *^O*(lg(*n*!)) ⁼ *^O*(*ⁿ* lg *ⁿ*) Stirling's formula

- 1. Keep a copy of the root item
- 2. Remove last item and put it to root
- 3. Maintain heap property
- 4. Return the copy of the root item

HeapSort(I): $heap := BuildMaxHeap(I)$ **for** $i := n$ **down to** 2 *cur_max* := *heap.HeapExtractMax*() $I[i] := cur_max$

- Given an array *I*[1…*n*], how to build a max-heap?
	- ‣ Start with an empty heap, then call HeapInsert n times?

‣ Not bad, but we can do better.

• Cost is
$$
\sum_{i=1}^{n} O(\lg i) = O(n \lg n)
$$

- Given an array *I*[1…*n*], how to build a max-heap?
	- ‣ Bottom-up approach: keep merging small heaps into larger ones, until a single heap remains.

- Given an array *I*[1…*n*], how to build a max-heap?
	- ‣ Bottom-up approach: keep merging small heaps into larger ones, until a single heap remains.
	- ‣ Each leaf node is a 1-item heap.

- Given an array *I*[1…*n*], how to build a max-heap?
	- ‣ Bottom-up approach: keep merging small heaps into larger ones, until a single heap remains.
	- ‣ Each leaf node is a 1-item heap.
	- ‣ Go through remaining nodes in index decreasing order: at each node, we are merging two heaps.

- Given an array *I*[1…*n*], how to build a max-heap?
	- ‣ Bottom-up approach: keep merging small heaps into larger ones, until a single heap remains.
	- ‣ Each leaf node is a 1-item heap.
	- ‣ Go through remaining nodes in index decreasing order: at each node, we are merging two heaps.
	- ‣ Maintain heap property during merging: use MaxHeapify.

- Given an array *I*[1…*n*], how to build a max-heap?
	- ‣ Bottom-up approach: keep merging small heaps into larger ones, until a single heap remains.
	- ‣ Each leaf node is a 1-item heap.
	- ‣ Go through remaining nodes in index decreasing order: at each node, we are merging two heaps.
	- ‣ Maintain heap property during merging: use MaxHeapify.

- Given an array *I*[1…*n*], how to build a max-heap?
	- ‣ Bottom-up approach: keep merging small heaps into larger ones, until a single heap remains.
	- ‣ Each leaf node is a 1-item heap.
	- ‣ Go through remaining nodes in index decreasing order: at each node, we are merging two heaps.
	- ‣ Maintain heap property during merging: use MaxHeapify.

- Given an array *I*[1…*n*], how to build a max-heap?
	- ‣ Bottom-up approach: keep merging small heaps into larger ones, until a single heap remains.
	- ‣ Each leaf node is a 1-item heap.
	- ‣ Go through remaining nodes in index decreasing order: at each node, we are merging two heaps.
	- ‣ Maintain heap property during merging: use MaxHeapify.

- Given an array *I*[1…*n*], how to build a max-heap?
	- ‣ Bottom-up approach: keep merging small heaps into larger ones, until a single heap remains.
	- ‣ Each leaf node is a 1-item heap.
	- ‣ Go through remaining nodes in index decreasing order: at each node, we are merging two heaps.
	- ‣ Maintain heap property during merging: use MaxHeapify.

- Given an array *I*[1…*n*], how to build a max-heap?
	- ‣ Bottom-up approach: keep merging small heaps into larger ones, until a single heap remains.
	- ‣ Each leaf node is a 1-item heap.
	- ‣ Go through remaining nodes in index decreasing order: at each node, we are merging two heaps.
	- ‣ Maintain heap property during merging: use MaxHeapify.

- Time complexity of BuildMaxHeap?
	- \blacktriangleright $\Theta(n)$ calls to MaxHeapify, each $costing O(lgn)$, so $O(n \lg n)$?
	- ‣ Correct but not tight…

BuildMaxHeap(A): $heap_size := n$ **for** $i := Floor(n/2)$ **down to** 1 *MaxHeapify*(*i, A*)

 $O(n)$

- Height of n -items heap is $\lfloor \lg n \rfloor$
- Any height h has $\leq \lceil \frac{1}{2h+1} \rceil$ nodes *h* has $\leq \lceil \frac{n}{2^{h}} \rceil$ $\frac{1}{2^{h+1}}$
- Cost of all MaxHeapify:

BuildMaxHeap(A): $heap_size := n$ **for** $i := Floor(n/2)$ **down to** 1 *MaxHeapify*(*i, A*)

$$
\sum_{h=0}^{\lfloor \lg n \rfloor} \left(\lceil \frac{n}{2^{h+1}} \rceil \cdot O(h) \right) = O(n \cdot \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h}) =
$$

HeapSort(I): $heap := BuildMaxHeap(I)$

for $i := n$ **down to** 2 *cur_max* := *heap.HeapExtractMax*() $I[i] := cur_max$

- Time complexity of HeapSort is $O(n \lg n)$.
- Extra space required during execution is $O(1)$.

 $heap_size := n$ **for** $i := Floor(n/2)$ **down to** 1 *MaxHeapify*(*i, A*)

BuildMaxHeap(A):

Time Complexity: *O*(*n* lg *n*)

Further reading

• [CLRS] Ch.6

