
智能软件与⼯程学院
School of Intelligent Software and Engineering

堆
Heaps

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne.Thanks for their supports!

钮鑫涛
Nanjing University

2024 Fall

智能软件与⼯程学院
School of Intelligent Software and Engineering

Heap
• In computer science, a heap is data structure which means “a

disorganized pile.”

‣ In fact, this word has other meanings in computer science, which refers
to heap memory used for dynamic memory allocation. This topic,
however, is unrelated to the data structure in this course!

智能软件与⼯程学院
School of Intelligent Software and Engineering

Binary Heap
• A binary heap is a complete binary tree, in

which each node represents an item.

‣ A complete binary tree is a binary tree in
which every level, except possibly the last,
is completely filled, and all nodes in the last
level are as far left as possible.

16

14 10

8 7 9 3

2 4 1

• Values in the nodes satisfy heap-property.

‣ Max-heap: for each node except root,
value of that node ≤ value of its parent.

‣ Min-heap: for each node except root,
value of that node ≥ value of its parent.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Binary Heap
• We can use an array to represent a binary

heap. Obtaining parent and children are easy:

‣ Parent of node :

‣ Left child of :

‣ Right child of :

u ⌊idxu/2⌋

u 2 ⋅ idxu

u 2 ⋅ idxu + 1

16 14 10 8 7 9 3 2 4 1

16

14 10

8 7 9 3

2 4 1

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

‣ All in time!O(1)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Common operations of Binary Max-Heap

• Consider max-heap as an example. (Min-heap is similar.)

• Most common operations:

‣ HeapInsert: insert an element into the heap.

‣ HeapGetMax: return the item with maximum value.

‣ HeapExtractMax: remove the item with maximum value from the heap
and return it.

• Other operations (which we’ll see later)…

Runtime is O(1)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Max-Heap — HeapInsert
• Insert an item into a binary max-

heap represented by an array.

‣ Simply put the item to the end of
the array.

16 14 10 8 7 9 3 2 4 1

16

14 10

8 7 9 3

2 4 1

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

15

11

15

11

智能软件与⼯程学院
School of Intelligent Software and Engineering

Max-Heap — HeapInsert

16 14 10 8 7 9 3 2 4 1 15

16

14 10

8 7 9 3

2 4 1

1 2 3 4 5 6 7 8 9 10 11

1

2 3

4 5 6 7

8 9 10

15

11

• Insert an item into a binary max-
heap represented by an array.

‣ Simply put the item to the end of
the array.

‣ We need to maintain heap property
after insertion: along the path to
root, compare and swap. (Why?)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Max-Heap — HeapInsert

16 14 10 8 7 9 3 2 4 1 15

16

14 10

8 7 9 3

2 4 1

1 2 3 4 5 6 7 8 9 10 11

1

2 3

4 5 6 7

8 9 10

15

11

• Insert an item into a binary max-
heap represented by an array.

‣ Simply put the item to the end of
the array.

‣ We need to maintain heap property
after insertion: along the path to
root, compare and swap. (Why?)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Max-Heap — HeapInsert

16 14 10 8 15 9 3 2 4 1 7

16

14 10

8 15 9 3

2 4 1

1 2 3 4 5 6 7 8 9 10 11

1

2 3

4 5 6 7

8 9 10

7

11

• Insert an item into a binary max-
heap represented by an array.

‣ Simply put the item to the end of
the array.

‣ We need to maintain heap property
after insertion: along the path to
root, compare and swap. (Why?)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Max-Heap — HeapInsert

16 14 10 8 15 9 3 2 4 1 7

16

14 10

8 15 9 3

2 4 1

1 2 3 4 5 6 7 8 9 10 11

1

2 3

4 5 6 7

8 9 10

7

11

• Insert an item into a binary max-
heap represented by an array.

‣ Simply put the item to the end of
the array.

‣ We need to maintain heap property
after insertion: along the path to
root, compare and swap. (Why?)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Max-Heap — HeapInsert

16 15 10 8 14 9 3 2 4 1 7

16

15 10

8 14 9 3

2 4 1

1 2 3 4 5 6 7 8 9 10 11

1

2 3

4 5 6 7

8 9 10

7

11

• Insert an item into a binary max-
heap represented by an array.

‣ Simply put the item to the end of
the array.

‣ We need to maintain heap property
after insertion: along the path to
root, compare and swap. (Why?)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Max-Heap — HeapInsert

16 15 10 8 14 9 3 2 4 1 7

16

15 10

8 14 9 3

2 4 1

1 2 3 4 5 6 7 8 9 10 11

1

2 3

4 5 6 7

8 9 10

7

11

• Insert an item into a binary max-
heap represented by an array.

‣ Simply put the item to the end of
the array.

‣ We need to maintain heap property
after insertion: along the path to
root, compare and swap. (Why?)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Max-Heap — HeapInsert

16 15 10 8 14 9 3 2 4 1 7

16

15 10

8 14 9 3

2 4 1

1 2 3 4 5 6 7 8 9 10 11

1

2 3

4 5 6 7

8 9 10

7

11

HeapInsert(A, x):
heap_size += 1
A[heap_size] := x
idx := heap_size
while idx > 1 and A[Floor (idx / 2)] < A[idx]
 Swap (A[Floor (idx / 2)], A[idx])
 idx := Floor (idx / 2)

Runtime is O(lg n)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Max-Heap — HeapExtractMax
• Remove the maximum item from the heap

and return it.

‣ Remove and return root is simple, but
then what to do?

14 10 8 7 9 3 2 4 1

14 10

8 7 9 3

4 1

1 2 3 4 5 6 7 8 9 10

2 3

4 5 6 7

9 10

1

2

8

智能软件与⼯程学院
School of Intelligent Software and Engineering

Max-Heap — HeapExtractMax

1 14 10 8 7 9 3 2 4

1

14 10

8 7 9 3

4

1 2 3 4 5 6 7 8 9

2 3

4 5 6 7

9

1

2

8

• Remove the maximum item from the heap
and return it.

‣ Remove and return root is simple, but
then what to do?

‣ Move the last item to the root!

智能软件与⼯程学院
School of Intelligent Software and Engineering

Max-Heap — HeapExtractMax

1 14 10 8 7 9 3 2 4

1

14 10

8 7 9 3

4

1 2 3 4 5 6 7 8 9

2 3

4 5 6 7

9

1

2

8

• Remove the maximum item from the heap
and return it.

‣ Remove and return root is simple, but
then what to do?

‣ Move the last item to the root!

‣ Again, we need to maintain the heap
property: compare with children,
swap with bigger one; do this
recursively

智能软件与⼯程学院
School of Intelligent Software and Engineering

Max-Heap — HeapExtractMax

14 1 10 8 7 9 3 2 4

14

1 10

8 7 9 3

4

1 2 3 4 5 6 7 8 9

2 3

4 5 6 7

9

1

2

8

• Remove the maximum item from the heap
and return it.

‣ Remove and return root is simple, but
then what to do?

‣ Move the last item to the root!

‣ Again, we need to maintain the heap
property: compare with children,
swap with bigger one; do this
recursively

智能软件与⼯程学院
School of Intelligent Software and Engineering

Max-Heap — HeapExtractMax

14 1 10 8 7 9 3 2 4

14

1 10

8 7 9 3

4

1 2 3 4 5 6 7 8 9

2 3

4 5 6 7

9

1

2

8

• Remove the maximum item from the heap
and return it.

‣ Remove and return root is simple, but
then what to do?

‣ Move the last item to the root!

‣ Again, we need to maintain the heap
property: compare with children,
swap with bigger one; do this
recursively

智能软件与⼯程学院
School of Intelligent Software and Engineering

Max-Heap — HeapExtractMax

14 8 10 1 7 9 3 2 4

14

8 10

1 7 9 3

4

1 2 3 4 5 6 7 8 9

2 3

4 5 6 7

9

1

2

8

• Remove the maximum item from the heap
and return it.

‣ Remove and return root is simple, but
then what to do?

‣ Move the last item to the root!

‣ Again, we need to maintain the heap
property: compare with children,
swap with bigger one; do this
recursively

智能软件与⼯程学院
School of Intelligent Software and Engineering

Max-Heap — HeapExtractMax

14 8 10 1 7 9 3 2 4

14

8 10

1 7 9 3

4

1 2 3 4 5 6 7 8 9

2 3

4 5 6 7

9

1

2

8

• Remove the maximum item from the heap
and return it.

‣ Remove and return root is simple, but
then what to do?

‣ Move the last item to the root!

‣ Again, we need to maintain the heap
property: compare with children,
swap with bigger one; do this
recursively

智能软件与⼯程学院
School of Intelligent Software and Engineering

Max-Heap — HeapExtractMax

14 8 10 4 7 9 3 2 1

14

8 10

4 7 9 3

1

1 2 3 4 5 6 7 8 9

2 3

4 5 6 7

9

1

2

8

• Remove the maximum item from the heap
and return it.

‣ Remove and return root is simple, but
then what to do?

‣ Move the last item to the root!

‣ Again, we need to maintain the heap
property: compare with children,
swap with bigger one; do this
recursively

智能软件与⼯程学院
School of Intelligent Software and Engineering

Max-Heap — HeapExtractMax

14 8 10 4 7 9 3 2 1

14

8 10

4 7 9 3

1

1 2 3 4 5 6 7 8 9

2 3

4 5 6 7

9

1

2

8

• Remove the maximum item from the heap
and return it.

‣ Remove and return root is simple, but
then what to do?

‣ Move the last item to the root!

‣ Again, we need to maintain the heap
property: compare with children,
swap with bigger one; do this
recursively

智能软件与⼯程学院
School of Intelligent Software and Engineering

Max-Heap — HeapExtractMax
1HeapExtractMax(A):

max_item := A[1]
A[1] = A[heap_size--]
MaxHeapify(1, A)
return max_item

MaxHeapify(idx, A):
idx_l := 2*idx, idx_r := 2*idx + 1
idx_max := (idx_l <= heap_size and A[idx_l] > A[idx]) ? idx_l : idx
idx_max := (idx_r <= heap_size and A[idx_r] > A[idx_max]) ? idx_r : idx_max
if idx_max != idx

Swap (A[idx_max], A[idx])
MaxHeapify(idx_max, A)

Runtime is O(lg n)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Application of heaps:

Priority Queue

智能软件与⼯程学院
School of Intelligent Software and Engineering

Priority Queue
• Recall the Queue ADT represents a collection of items to which we can add

items and remove the next item.

‣ Add(item): add item to the queue.

‣ Remove(): remove the next item y from queue, return y.

• The queuing discipline decides which item to be removed.

‣ First-in-first-out queue (FIFO Queue)

‣ Last-in-first-out queue (LIFO Queue, Stack)

‣ Priority queue: each item associated with a priority, Remove
always deletes the item with max (or min) priority.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Priority Queue
• Use binary heap to implement priority queue

‣ Add(item): HeapInsert(item)

‣ Remove(): HeapExtractMax()

• Application of priority queues

‣ Scheduling, Event simulation, …

‣ Used in more sophisticated algorithms (will see them later…)

‣ All these operations finish within timeO(lg n)

‣ Other opera+ons: GetMax(), UpdatePriority(item, val)

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max

Take an array and make it a max-heap.

1. Keep a copy of the root item

2. Remove last item and put it to root

3. Maintain heap property

4. Return the copy of the root item

In each iteration:

Place one item in the array to its final position.

This one is the max item in current heap.

 That is, place ith biggest item to position n - i + 1.

The loop invariant:

 The largest i elements are already in their correct positions.

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max

8 1 9 14 7 10

1 2 3 4 5 6

14 8 10 1 7 9

14

8 10

1 7 9

2

5 6

1

3

4

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max

1 2 3 4 5 6

14 8 10 1 7 9

14

8 10

1 7 9

2

5 6

1

3

4

i = 6

14

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max

1 2 3 4 5 6

9 8 10 1 7 9

9

8 10

1 7

2

5

1

3

4

i = 6

14

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max

1 2 3 4 5 6

10 8 9 1 7 9

10

8 9

1 7

2

5

1

3

4

i = 6

14

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max

1 2 3 4 5 6

10 8 9 1 7 14

10

8 9

1 7

2

5

1

3

4

i = 6

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max

1 2 3 4 5 6

10 8 9 1 7 14

10

8 9

1 7

2

5

1

3

4

i = 5

10

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max

1 2 3 4 5 6

7 8 9 1 7 14

7

8 9

1

2

1

3

4

i = 5

10

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max

1 2 3 4 5 6

9 8 7 1 7 14

9

8 7

1

2

1

3

4

i = 5

10

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max

1 2 3 4 5 6

9 8 7 1 10 14

9

8 7

1

2

1

3

4

i = 5

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max

1 2 3 4 5 6

9 8 7 1 10 14

9

8 7

1

2

1

3

4

i = 4

9

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max

1 2 3 4 5 6

1 8 7 1 10 14

1

8 7

2

1

3i = 4

9

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max

1 2 3 4 5 6

8 1 7 1 10 14

8

1 7

2

1

3i = 4

9

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max

1 2 3 4 5 6

8 1 7 9 10 14

8

1 7

2

1

3i = 4

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max

1 2 3 4 5 6

8 1 7 9 10 14

8

1 7

2

1

3i = 3

8

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max

1 2 3 4 5 6

7 1 7 9 10 14

7

1

2

1

i = 3

8

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max

1 2 3 4 5 6

7 1 8 9 10 14

7

1

2

1

i = 3

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max

1 2 3 4 5 6

7 1 8 9 10 14

7

1

2

1

i = 2

7

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max

1 2 3 4 5 6

1 1 8 9 10 14

1

1

i = 2

7

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max

1 2 3 4 5 6

1 7 8 9 10 14

1

1

i = 2

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max

• Total runtime of these iterations

‣
n

∑
i=2

O(lg i) = O(lg(n!)) = O(n lg n)
Stirling’s formula

1. Keep a copy of the root item

2. Remove last item and put it to root

3. Maintain heap property

4. Return the copy of the root item

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max

• Given an array I[1…n], how to build a
max-heap?

‣ Start with an empty heap, then call
HeapInsert times?

‣ Cost is

‣ Not bad, but we can do better.

n

n

∑
i=1

O(lg i) = O(n lg n)

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort
8

1 9

14 7 10 2

2 3

5 6 7

1

8 1 9 14 7 10 2

1 2 3 4 5 6 7

4

• Given an array I[1…n], how to build a max-heap?

‣ Bottom-up approach: keep merging small heaps
into larger ones, until a single heap remains.

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort
8

1 9

14 7 10 2

2 3

5 6 7

1

8 1 9 14 7 10 2

1 2 3 4 5 6 7

4

• Given an array I[1…n], how to build a max-heap?

‣ Bottom-up approach: keep merging small heaps
into larger ones, until a single heap remains.

‣ Each leaf node is a 1-item heap.

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort
8

1 9

14 7 10 2

2 3

5 6 7

1

8 1 9 14 7 10 2

1 2 3 4 5 6 7

4

• Given an array I[1…n], how to build a max-heap?

‣ Bottom-up approach: keep merging small heaps
into larger ones, until a single heap remains.

‣ Each leaf node is a 1-item heap.

‣ Go through remaining nodes in index
decreasing order: at each node, we are
merging two heaps.

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort
8

1 9

14 7 10 2

2 3

5 6 7

1

8 1 9 14 7 10 2

1 2 3 4 5 6 7

4

‣ Maintain heap property during merging:
use MaxHeapify.

• Given an array I[1…n], how to build a max-heap?

‣ Bottom-up approach: keep merging small heaps
into larger ones, until a single heap remains.

‣ Each leaf node is a 1-item heap.

‣ Go through remaining nodes in index
decreasing order: at each node, we are
merging two heaps.

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort
8

1 10

14 7 9 2

2 3

5 6 7

1

8 1 10 14 7 9 2

1 2 3 4 5 6 7

4

‣ Maintain heap property during merging:
use MaxHeapify.

• Given an array I[1…n], how to build a max-heap?

‣ Bottom-up approach: keep merging small heaps
into larger ones, until a single heap remains.

‣ Each leaf node is a 1-item heap.

‣ Go through remaining nodes in index
decreasing order: at each node, we are
merging two heaps.

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort
8

1 10

14 7 9 2

2 3

5 6 7

1

8 1 10 14 7 9 2

1 2 3 4 5 6 7

4

‣ Maintain heap property during merging:
use MaxHeapify.

• Given an array I[1…n], how to build a max-heap?

‣ Bottom-up approach: keep merging small heaps
into larger ones, until a single heap remains.

‣ Each leaf node is a 1-item heap.

‣ Go through remaining nodes in index
decreasing order: at each node, we are
merging two heaps.

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort
8

14 10

1 7 9 2

2 3

5 6 7

1

8 14 10 1 7 9 2

1 2 3 4 5 6 7

4

‣ Maintain heap property during merging:
use MaxHeapify.

• Given an array I[1…n], how to build a max-heap?

‣ Bottom-up approach: keep merging small heaps
into larger ones, until a single heap remains.

‣ Each leaf node is a 1-item heap.

‣ Go through remaining nodes in index
decreasing order: at each node, we are
merging two heaps.

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort
8

14 10

1 7 9 2

2 3

5 6 7

1

8 14 10 1 7 9 2

1 2 3 4 5 6 7

4

‣ Maintain heap property during merging:
use MaxHeapify.

• Given an array I[1…n], how to build a max-heap?

‣ Bottom-up approach: keep merging small heaps
into larger ones, until a single heap remains.

‣ Each leaf node is a 1-item heap.

‣ Go through remaining nodes in index
decreasing order: at each node, we are
merging two heaps.

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort
14

8 10

1 7 9 2

2 3

5 6 7

1

14 8 10 1 7 9 2

1 2 3 4 5 6 7

4

‣ Maintain heap property during merging:
use MaxHeapify.

• Given an array I[1…n], how to build a max-heap?

‣ Bottom-up approach: keep merging small heaps
into larger ones, until a single heap remains.

‣ Each leaf node is a 1-item heap.

‣ Go through remaining nodes in index
decreasing order: at each node, we are
merging two heaps.

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort
14

8 10

1 7 9 2

2 3

5 6 7

1

14 8 10 1 7 9 2

1 2 3 4 5 6 7

4

BuildMaxHeap(A):
heap_size := n
for i := Floor(n/2) down to 1

MaxHeapify(i, A)

• Time complexity of BuildMaxHeap?

‣ calls to MaxHeapify, each
costing , so ?

‣ Correct but not tight…

Θ(n)
O(lg n) O(n lg n)

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort
14

8 10

1 7 9 2

2 3

5 6 7

1

14 8 10 1 7 9 2

1 2 3 4 5 6 7

4

BuildMaxHeap(A):
heap_size := n
for i := Floor(n/2) down to 1

MaxHeapify(i, A)

• Height of -items heap is

• Any height has nodes

• Cost of all MaxHeapify：

‣

n ⌊lg n⌋

h ≤ ⌈
n

2h+1
⌉

⌊lg n⌋

∑
h=0

(⌈
n

2h+1
⌉ ⋅ O(h)) = O(n ⋅

⌊lg n⌋

∑
h=0

h
2h

) = O(n)

智能软件与⼯程学院
School of Intelligent Software and Engineering

HeapSort

• Time complexity of HeapSort is .

• Extra space required during execution is .

O(n lg n)

O(1)

BuildMaxHeap(A):
heap_size := n
for i := Floor(n/2) down to 1

MaxHeapify(i, A)

HeapSort(I):
heap := BuildMaxHeap(I)

for i := n down to 2
cur_max := heap.HeapExtractMax()
I[i] := cur_max

Time Complexity: O(n)

Time Complexity: O(n lg n)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Further reading

• [CLRS] Ch.6

