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Heap
• In computer science, a heap is data structure which means “a 

disorganized pile.” 


‣ In fact, this word has other meanings in computer science, which refers 
to heap memory used for dynamic memory allocation. This topic, 
however, is unrelated to the data structure in this course! 
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Binary Heap
• A binary heap is a complete binary tree, in 

which each node represents an item.


‣ A complete binary tree is a binary tree in 
which every level, except possibly the last, 
is completely filled, and all nodes in the last 
level are as far left as possible.

16

14 10

8 7 9 3

2 4 1

• Values in the nodes satisfy heap-property.


‣ Max-heap: for each node except root, 
value of that node ≤ value of its parent.


‣ Min-heap: for each node except root, 
value of that node ≥ value of its parent.
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Binary Heap
• We can use an array to represent a binary 

heap. Obtaining parent and children are easy:


‣ Parent of node  : 

‣ Left child of  : 

‣ Right child of  : 

u ⌊idxu/2⌋

u 2 ⋅ idxu

u 2 ⋅ idxu + 1
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‣ All in   time!O(1)
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Common operations of Binary Max-Heap

• Consider max-heap as an example. (Min-heap is similar.)

• Most common operations:


‣ HeapInsert: insert an element into the heap.


‣ HeapGetMax: return the item with maximum value.


‣ HeapExtractMax: remove the item with maximum value from the heap 
and return it.


• Other operations (which we’ll see later)…

Runtime is  O(1)
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Max-Heap  — HeapInsert
• Insert an item into a binary max-

heap represented by an array.


‣ Simply put the item to the end of 
the array.
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Max-Heap  — HeapInsert
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• Insert an item into a binary max-
heap represented by an array.


‣ Simply put the item to the end of 
the array.

‣ We need to maintain heap property 
after insertion: along the path to 
root, compare and swap. (Why?)
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Max-Heap  — HeapInsert
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• Insert an item into a binary max-
heap represented by an array.


‣ Simply put the item to the end of 
the array.

‣ We need to maintain heap property 
after insertion: along the path to 
root, compare and swap. (Why?)
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Max-Heap  — HeapInsert
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• Insert an item into a binary max-
heap represented by an array.


‣ Simply put the item to the end of 
the array.

‣ We need to maintain heap property 
after insertion: along the path to 
root, compare and swap. (Why?)
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Max-Heap  — HeapInsert

16 14 10 8 15 9 3 2 4 1 7

16

14 10

8 15 9 3

2 4 1

1 2 3 4 5 6 7 8 9 10 11

1

2 3

4 5 6 7

8 9 10

7

11

• Insert an item into a binary max-
heap represented by an array.


‣ Simply put the item to the end of 
the array.

‣ We need to maintain heap property 
after insertion: along the path to 
root, compare and swap. (Why?)
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Max-Heap  — HeapInsert
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16

15 10

8 14 9 3

2 4 1

1 2 3 4 5 6 7 8 9 10 11

1

2 3

4 5 6 7

8 9 10

7

11

• Insert an item into a binary max-
heap represented by an array.


‣ Simply put the item to the end of 
the array.

‣ We need to maintain heap property 
after insertion: along the path to 
root, compare and swap. (Why?)
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Max-Heap  — HeapInsert
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• Insert an item into a binary max-
heap represented by an array.


‣ Simply put the item to the end of 
the array.

‣ We need to maintain heap property 
after insertion: along the path to 
root, compare and swap. (Why?)
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Max-Heap  — HeapInsert
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HeapInsert(A, x):
heap_size += 1
A[heap_size] := x 
idx := heap_size
while idx > 1 and  A[Floor (idx / 2)] <  A[idx]
 Swap (A[Floor (idx / 2)],  A[idx])
 idx := Floor (idx / 2)

Runtime is  O(lg n)
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Max-Heap  — HeapExtractMax
• Remove the maximum item from the heap 

and return it.


‣ Remove and return root is simple, but 
then what to do?
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Max-Heap  — HeapExtractMax
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• Remove the maximum item from the heap 
and return it.


‣ Remove and return root is simple, but 
then what to do?

‣ Move the last item to the root!
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Max-Heap  — HeapExtractMax
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• Remove the maximum item from the heap 
and return it.


‣ Remove and return root is simple, but 
then what to do?

‣ Move the last item to the root!

‣ Again, we need to maintain the heap 
property: compare with children, 
swap with bigger one; do this 
recursively
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Max-Heap  — HeapExtractMax
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• Remove the maximum item from the heap 
and return it.


‣ Remove and return root is simple, but 
then what to do?

‣ Move the last item to the root!

‣ Again, we need to maintain the heap 
property: compare with children, 
swap with bigger one; do this 
recursively
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Max-Heap  — HeapExtractMax
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• Remove the maximum item from the heap 
and return it.


‣ Remove and return root is simple, but 
then what to do?

‣ Move the last item to the root!

‣ Again, we need to maintain the heap 
property: compare with children, 
swap with bigger one; do this 
recursively
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Max-Heap  — HeapExtractMax
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• Remove the maximum item from the heap 
and return it.


‣ Remove and return root is simple, but 
then what to do?

‣ Move the last item to the root!

‣ Again, we need to maintain the heap 
property: compare with children, 
swap with bigger one; do this 
recursively
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Max-Heap  — HeapExtractMax
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• Remove the maximum item from the heap 
and return it.


‣ Remove and return root is simple, but 
then what to do?

‣ Move the last item to the root!

‣ Again, we need to maintain the heap 
property: compare with children, 
swap with bigger one; do this 
recursively
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Max-Heap  — HeapExtractMax
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• Remove the maximum item from the heap 
and return it.


‣ Remove and return root is simple, but 
then what to do?

‣ Move the last item to the root!

‣ Again, we need to maintain the heap 
property: compare with children, 
swap with bigger one; do this 
recursively
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Max-Heap  — HeapExtractMax
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• Remove the maximum item from the heap 
and return it.


‣ Remove and return root is simple, but 
then what to do?

‣ Move the last item to the root!

‣ Again, we need to maintain the heap 
property: compare with children, 
swap with bigger one; do this 
recursively
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Max-Heap  — HeapExtractMax
1HeapExtractMax(A):

max_item := A[1]
A[1] = A[heap_size--]
MaxHeapify(1, A)
return max_item

MaxHeapify(idx, A):
idx_l :=  2*idx,  idx_r := 2*idx + 1
idx_max :=  ( idx_l <= heap_size and A[idx_l] > A[idx] ) ? idx_l : idx
idx_max :=  ( idx_r <= heap_size and A[idx_r] > A[idx_max] ) ? idx_r : idx_max
if idx_max != idx

Swap (A[idx_max], A[idx])
MaxHeapify(idx_max, A)

Runtime is  O(lg n)
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Application of heaps:

Priority Queue
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Priority Queue
• Recall the Queue ADT represents a collection of items to which we can add 

items and remove the next item.


‣ Add(item): add item to the queue.


‣ Remove(): remove the next item y from queue, return y.

• The queuing discipline decides which item to be removed.


‣ First-in-first-out queue (FIFO Queue)


‣ Last-in-first-out queue (LIFO Queue, Stack)

‣ Priority queue: each item associated with a priority, Remove 
always deletes the item with max (or min) priority.
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Priority Queue
• Use binary heap to implement priority queue


‣ Add(item): HeapInsert(item) 

‣ Remove(): HeapExtractMax()

• Application of priority queues


‣ Scheduling, Event simulation, …


‣ Used in more sophisticated algorithms (will see them later…)

‣ All these operations finish within  timeO(lg n)

‣ Other opera+ons: GetMax(), UpdatePriority(item, val)
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HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max

Take an array and make it a max-heap.

1. Keep a copy of the root item


2. Remove last item and put it to root


3. Maintain heap property


4. Return the copy of the root item

In each iteration:


Place one item in the array to its final position.


This one is the max item in current heap.


    That is, place ith biggest item to position n - i + 1.

The loop invariant: 

          The largest i elements are already in their correct positions.
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HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max
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HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max
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HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max
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HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2
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I[i] := cur_max
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HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max
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HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max
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HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max
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HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max

1 2 3 4 5 6

9 8 7 1 7 14

9

8 7

1

2

1

3

4

i = 5

10



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max
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HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max

1 2 3 4 5 6

9 8 7 1 10 14

9

8 7

1

2

1

3

4

i = 4

9



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max
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HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max
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HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max
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HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max
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HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max
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HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max
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HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max
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HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max
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HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max
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HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max

• Total runtime of these iterations


‣
n

∑
i=2

O(lg i) = O(lg(n!)) = O(n lg n)
Stirling’s formula

1. Keep a copy of the root item


2. Remove last item and put it to root


3. Maintain heap property


4. Return the copy of the root item
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HeapSort

HeapSort(I):
heap := BuildMaxHeap(I)
for i := n down to 2

cur_max := heap.HeapExtractMax()
I[i] := cur_max

• Given an array I[1…n], how to build a 
max-heap?


‣ Start with an empty heap, then call 
HeapInsert  times?


‣ Cost is  

‣ Not bad, but we can do better.

n

n

∑
i=1

O(lg i) = O(n lg n)
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HeapSort
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• Given an array I[1…n], how to build a max-heap?


‣ Bottom-up approach: keep merging small heaps 
into larger ones, until a single heap remains.
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• Given an array I[1…n], how to build a max-heap?


‣ Bottom-up approach: keep merging small heaps 
into larger ones, until a single heap remains.

‣ Each leaf node is a 1-item heap.
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HeapSort
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• Given an array I[1…n], how to build a max-heap?


‣ Bottom-up approach: keep merging small heaps 
into larger ones, until a single heap remains.

‣ Each leaf node is a 1-item heap.

‣ Go through remaining nodes in index 
decreasing order: at each node, we are 
merging two heaps.
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HeapSort
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‣ Maintain heap property during merging: 
use  MaxHeapify.

• Given an array I[1…n], how to build a max-heap?


‣ Bottom-up approach: keep merging small heaps 
into larger ones, until a single heap remains.

‣ Each leaf node is a 1-item heap.

‣ Go through remaining nodes in index 
decreasing order: at each node, we are 
merging two heaps.
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‣ Maintain heap property during merging: 
use  MaxHeapify.

• Given an array I[1…n], how to build a max-heap?


‣ Bottom-up approach: keep merging small heaps 
into larger ones, until a single heap remains.

‣ Each leaf node is a 1-item heap.

‣ Go through remaining nodes in index 
decreasing order: at each node, we are 
merging two heaps.
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HeapSort
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‣ Maintain heap property during merging: 
use  MaxHeapify.

• Given an array I[1…n], how to build a max-heap?


‣ Bottom-up approach: keep merging small heaps 
into larger ones, until a single heap remains.

‣ Each leaf node is a 1-item heap.

‣ Go through remaining nodes in index 
decreasing order: at each node, we are 
merging two heaps.
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HeapSort
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‣ Maintain heap property during merging: 
use  MaxHeapify.

• Given an array I[1…n], how to build a max-heap?


‣ Bottom-up approach: keep merging small heaps 
into larger ones, until a single heap remains.

‣ Each leaf node is a 1-item heap.

‣ Go through remaining nodes in index 
decreasing order: at each node, we are 
merging two heaps.
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BuildMaxHeap(A):
heap_size := n
for i := Floor(n/2) down to 1

MaxHeapify(i, A)

• Time complexity of BuildMaxHeap?


‣  calls to MaxHeapify, each 
costing , so ?


‣ Correct but not tight…

Θ(n)
O(lg n) O(n lg n)
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BuildMaxHeap(A):
heap_size := n
for i := Floor(n/2) down to 1

MaxHeapify(i, A)

• Height of -items heap is 


• Any height  has  nodes


• Cost of all MaxHeapify：


‣

n ⌊lg n⌋

h ≤ ⌈
n

2h+1
⌉

⌊lg n⌋

∑
h=0

(⌈
n

2h+1
⌉ ⋅ O(h)) = O(n ⋅

⌊lg n⌋

∑
h=0

h
2h

) = O(n)
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• Time complexity of HeapSort is  . 


• Extra space required during execution is   .

O(n lg n)

O(1)

BuildMaxHeap(A):
heap_size := n
for i := Floor(n/2) down to 1

MaxHeapify(i, A)

HeapSort(I):
heap := BuildMaxHeap(I)

for i := n down to 2
cur_max := heap.HeapExtractMax()
I[i] := cur_max

Time Complexity: O(n)

Time Complexity: O(n lg n)
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Further reading

• [CLRS] Ch.6


