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Bogosort: The stupid sort

My Bogosort, when it doesn't sort the
array correctly the thousands time

Not Sorted!

Shuffle IliDelitYAGain
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The Sorting Problem

e Sort n numbers into ascending order.

* \We can actually sort a collection of any type of data, as long as a total order is defined for that type
of data.

» That is, for any distinct data items a and b, we compare them, i.e., we can determine:

» a < b,or b < a, otherwise, a = b, where “<” is a binary relation:

- E.g.,indava,touse Collections.sort (List<DataType> 1list,
Comparator<DataType> comparator) for sorting, you should implement the
comparator and define the following function in it:

public i1nt compare (DataType 1teml, DataType i1tem2)

 We can also sort partially ordered items (more on this later).
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- Sorting algorithms till now

* Insertion Sort: gradually increase size of sorted part.
- O(n?) time, O(1) space

 Merge Sort: example of divide-and-conquer
» O(nlogn) time, O(n) space

 Heap Sort: leverage the heap data structure

» O(nlogn) time, O(1) space
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~ Characteristics of sorting algorithms

» In-place (J&#h): a sorting algorithm is in-place if O(1) extra space is
needed beyond input.

« Stability (]2%E): a sorting algorithm is stable if numbers with the same
value appear in the output array in the same order as they do in the input

array.
Stable Not stable
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Sorting algorithms till now

Insertion Sort: gradually in
crease size of sorted part.

Heap Sort: leverage the heap
data structure

Merge Sort: example of
divide-and-conqguer

» O(n?) time, O(1) space
space

> In-place, and stable.

> O(nlogn) time, O(n) . » O(nlogn) time, O(1) space
i > In-place, but not stable.

> Not in-place, but stable.

Counterexample for stability: <2a, 2b, 1>:
It is already a max heap, then
1. 2ais extracted, and placed in the end

2. 2b is extracted, and placed in the end but
one index
At last, we get <1, 2b, 2a>




O&abthk T FO 4=
BEE Gt S Tiz=PFr
School cf an[ﬁgent Soﬁ'ware and angineering

ementary sortin



=

Dotk T FO A4 e
P9, BERGESIREF xR
7‘5 435 School of Qnt@[ﬁgent Sofrware and fngineering

The Selection Sort Algorithm

 Basic idea: pick out minimum element from input, then recursively sort
remaining elements, and finally concatenate the minimum element with
sorted remaining elements.

SelectionSort(A):
SelectionSortRec(A): for i:=1to A.length
it |Al=1 il =1
return A } forj:=i+1to A.length
else // B if A[j] < A[minldx]
min .= GetMinElement(A) minldx := j

A’ := RemoveElement(A, min) y OWap (i, minldx)

return Concatenate(min, SelectionSortRec(A’))




AnaIyS|s of SelectionSort

 Why it is correct? (What is the loop invariant?)

» After the i iteration, the first i items are sorted, and they are the i
smallest elements in the original array.

 Time complexity for sorting n items?

SelectionSort(A):
n—1 for i:=1to A.length
Z O(1) + O — i) = On?) minldx := i
i1 forj:=i+1to A.length
if A[j] < A[minldx]
minldx :=j

Swap(i, minldx)
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Analysis of SelectionSort

e Space complexity?
» (1) extra space, thus in-place
. Stability?

> Not stable! Swap operation can mess up
relative order

- Counterexample for stability: <2a, 2b, 1>

SelectionSort(A):

for i:=1to A.length
minldx =i
forj:=i+ 1to A.length
It A[j] < A[minldx]
minldx = j
Swap(i, minldx)
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Before we move on

SelectionSort(A): SelectionSortRec(A):
for i:=11to A.length if 1Al=1

minldx =1 return A

forj:=i+1to A.length else

if A[j] < A[minldx] min .= GetMinElement(A)
minldx = j | A = RemoveElement(A, min) ...~
Swap(i, minldx) return Concatenate(min, SelectionSortRec(A; ))
T <

Get the minimal element and extract it?
Similar operations: HeapGetMax, HeapExtractMax
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Before we move on

SelectionSortRec(A): SelectionSortRecVariant(A):
if [Al=1 it |Al=1
return A return A
else else
min = GetMinElement(A) max .= GetMaxElement(A)
A’ := RemoveElement(A, min) A’ := RemoveElement(A, max)
return Concatenate(min, SelectionSortRec(A’)) return Concatenate(SelectionSortRec(A’), max)

Let A get organized as a heap, then it leads to the faster
HeapSort algorithm.

The choice of data structure affects the performance of
algorithms!
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The Bubble Sort Algorithm

 Basic idea: repeatedly step through the array, compare adjacent pairs and
swaps them if they are in the wrong order. Thus, larger elements "bubble"” to
the “top”.

BubbleSort(A):

for i:=A.length down to 2
for j:=1toi-1
it A[j] > A[j+1]
Swap(A[jl, A[j+11)
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Analysis of BubbleSort

» Correctness: * Space complexity: BubbleSort(A):
for i:=A.length down to 2
> What is the invariant? > O(1) for j:==1toi-1
if A[j] > A[j+1]
 Time complexity: e Stability: Swap(A[j], A[j+1])

- O(n?) » Stable



Improving BubbleSort

BubbleSort(A):

for i:=A.length down to 2
for j.=1toi-1
it A[j] > A[j+1]
Swap(A[j], A[j+1])

 What if in one iteration we never swap data items?

> Then A[1...i] are sorted, and we are done! (Why?)



Improving BubbleSort

BubbleSortImporved(A):  When the input is mostly sorted, this variant
n = A.length performs much better.
repeat

swapped := false
for j.=1ton-1
if A[j] > A[j+1]
Swap(Aljl, Alj+1])
swapped = true

> Particularly, when the input is sorted, this variant
has O(n) runtime.

- Other algorithms that also have this property,

W= 1 E.g., InsertionSort.

until swapped = false
> Nonetheless, the worst case performance is still

O(n?).

- E.g., when input is reversely sorted.



BubbleSortimporved(A):

n .= A.length
repeat ! 3 | 2 } 1| 8| 9 | 12| 15
swapped .= false e -
for ji=1ton-1 2 | 3 1} 8 | 9 | 12| 15
if A[j] > A[j+1] — -
Swap(Al/], Alj+1]) 2 | 1] 3 8]} 9 | 12 | 15
swapped .= true —
Ll 2 | 1| 3| 8 9}12 15
until swapped = false
> | 1| 38| 9 |12 15

swapped = true



BubbleSortimporved(A):

n .= A.length
repeat

swapped := false
for j.=1ton-1
if A[j] > A[j+1]
Swap(A[jl, A[j+11)
swapped .= true
na=n-|
until swapped = false

12

15

12

15

swapped = true




BubbleSortImporved(A):
n .= A.length

repeat

swapped := false

for j.=1ton-1

if A[j] > A[j+1]

Swap(A[j], A[j+1]) A

12

15

swapped .= true

n:=n-1 swapped = false
until swapped = false




BubbleSortimporved(A):

n .= A.length
repeat

swapped := false
for j.=1ton-1
if A[j] > A[j+1]
Swap(A[jl, A[j+11)
swapped .= true
na=n-|
until swapped = false /

LS—' 2 } 1 3 12 | 15
2 3 1 } 3 12 | 15
7‘2/ 1 im m8 } 12 | 15
2 1 3 3 9 } 12 | 15
2 1 3 3 12 | 15

The last swap index is 2, and then the following items has no
swap, indicating that the following items are already sorted!




BubbleSortimporved(A):

n .= A.length
repeat
swapped := false
for j.=1ton-1
if A[j] > A[j+1] e
Swap(Alj], Alj+11) o2 1] 3| 8 ]} o | 12 | 15
swapped = true Pad -
/7
Ll R 2 | 1| 3| 8 9)12 15
until swapped = false /
/
/ 2 1 3 3 9 12 15
/

/ '\
4
The last swap index is 2, and then the following items has no _
swap, indicating that the following items are already sorted! Therefore, in the next step, 7 should be 2



Improving BubbleSort

> \We can be more aggressive when reducing n after each iteration: in A[1...n],
items after the last swap are all in correct sorted position.

BubbleSortImporved(A): BubbleSortImporvedFurther(A):
n .= A.length n .= A.length
repeat repeat
swapped = false lastSwapldx .= -1
for j:=1ton-1 for j;=1ton-1
it A[j]> A[j+1] it A[j] > A[j+1]
Swap(A[j], A[j+1]) Swap(A[j], A[j+1])
swapped = true lastSwapldx =j + 1
n—n_| n .= lastSwapldx - 1

until swapped = false until n <=1



BubbleSortlmporvedFurther(A):

n .= A.length
repeat
lastSwapldx = -1
for j.=1ton-1
if A[j] > A[j+1]
Swap(A[j], A[j+11)
lastSwapldx :=j + 1
n .= lastSwapldx - 1
until n <=1

LS—' 2 } 1 3 9 12 | 15
2 3 1 } 3 9 12 | 15
2 1 im m8 } 9 12 | 15
2 1 3 3 9 } 12 | 15
2 1 3 3 9 12 | 15

lastSwapldx = 2

lastSwapldx = 3



BubbleSortlmporvedFurther(A):

n .= A.length
repeat
lastSwapldx = -1
for j.=1ton-1
if A[j] > A[j+1]
Swap(Aljl, Alj+1])
lastSwapldx :=j + 1

n .= lastSwapldx - 1
until n <=1

3 3 12 | 15
1 {L STB 3 12 | 15
1 3 3 12 | 15

n=1 — break loop

lastSwapldx = 2
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Comparison of simple sorting algorithms

* Insertion Recall the insertion sort....
_ Insertion-Sort(A):
» n(n—1)/2 swaps,andn - (n — 1)/2 comparisons -> worst for i =2 to A length
key = Ali]

» n(n—1)/4 swaps,andn - (n — 1)/4 comparisons ->on average  /=i-1
while j>0 and A[j] > key

* Selection ,.4[]-.+ A=Al
J=j-1
Alj + 1] :=key
» n— | swaps,andn - (n—1)/2 comparisons return A
 Bubble

»n-(n—1)/2 swaps,andn - (n — 1)/2 comparisons
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Improving Insertion Sorting

* [nsertion sorting is effective when:
> Input size i1s small

> The input array is nearly sorted (resulting in few comparisons and
swaps)

* |Insertion sorting is ineffective when;

> Elements must move far in array
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Improving Insertion Sorting

* Allow elements to move large steps
* Bring elements close to final location

> Make array almost sorted

 |dea: for some decreasing step size h, e.g. (...,3,4,2,1), the sequence
must end with 1 (to ensure the correctness of sorting)

> For each step, sort the array so elements separated by exactly A
elements apart are in order.
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*

Let’s first see an example of ShellSort: sort 16 integers.

[Pass 1] Group elements of distance 8 together, end up
with eight groups each of size two. Sort these groups
individually.

[Pass 2] Group elements of distance 4 together, end up
with four groups each of size four. Sort these groups
individually.

[Pass 3] Group elements of distance 2 together, end up
with two groups each of size eight. Sort these groups
individually.

[Pass 4] Group elements of distance 1, this is just an
ordinary sort on all elements.

Shell’s method for sorting

503 87 512 61 908 170 897 275 653 426 154 509 612 677 765 703
<<

y
:
i
»’

= >

903 87 154 61 612 170 765 275 653 426 512 509 908 677 897 /03

503 87 154 61 612 170 512 275 633 426 765 509 908 677 897 /03

154 61 503 87 512 170 612 275 653 426 765 509 897 677 908 703
\VAVAVAVAVAVAVAVAV AV AV AV AV AV AV

61 87 154 170 275 426 503 509 512 612 653 677 703 765 897 908
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- General framework of ShellSort

 Jo sort n items, define a set of decreasing distances
{dl’ dz, . . dk} with dl < n and dk 1.

e ShellSort then go through k passes, for the i pass:

~ Divide items into d; groups each of size about n/d,, and thejth

group contains items with index j, j +d;, j + 2d., j + 3d., -

Donald L. Shell

» For each of the dl- groups, sort the items in that group. (uses
InsertionSort.)




Benefit of ShellSort

- In a sequence of items <ay, a,, -*+, a,p, if 1 < jand a; > a;, then the pair

(a;, a;) is call an inversion.

 The process of sorting is to correct all inversions!

o Earlier passes in ShellSort reduce number of inversions, making the
sequence “closer” to being sorted.

e InsertionSort performs better (i.e., faster) as the input sequence
becomes “closer” to being sorted.



ldeal versus Reality

 Unfortunately, ShellSort is not that fast, at least when using Shell’s original distances...
o Upper bound on the runtime of SshellSort:

> Assume we have n items where n is some power of two.
» The distances are n/2, n/4, ..., 1.

» For the i pass, we run n/2' instances of InsertionSort, each having to sort 2t items.

(Ign)—1
. So the total runtime is Z (n/2¢ - 0(2%)) = O(n?)

=1

e Will ShellSort actually perform so poor?



 When using Shell’s original distances, the runtime of ShellSort can be
®(n?) for certain input sequences.

« Example: input is [n], where [n/2] are in even positions, and [n]\|n/2] are
IN odd positions.

3 0 9 1 10 2 11 3 12 4 13 5 14 6 15 /

 Then, before the last pass, no pair (a,, aj) where 1 and j are of different
parity is ever compared!

« In the last pass, ®(n?) work has to be done!
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Choice of distances matters, a lot!

Author and
Worst-case
General term (k= 1) Concrete gaps ) i year of
time complexity o
publication
2
N N A N R O (N7) [e.g.when | o\ 1950l
N N N s Frank &
2 e +1 1,3,..., 2 3 +1, 2 7 +1 ©(N: Lazarus,
2 196018]
3 Hibbard,
ok _ 1 1,3,7,15,31,63, ... (N -
19637
; Papernov &
2% + 1, prefixed with 1 1,3,5,9,17,33,65,... © (N3> Stasevich,
1965!1°]
Successive numbers of the form 2P 39 (3-smooth numbers) 1,2,3,4,6,8,9,12, ... © (N log? N) Pratt, 1971[1]
Knuth,
33— 1] N 3 1973,3!
, not greater than [——‘ 1,4,13,40,121,... ® (Nz )
2 3 based on
Pratt, 1971[1]
H a,, where
I
ag — 3
5 g+1 Incerpi &
a, = min{<n € Nin > | = ,Vp:0 < p < q= gcd(ay,n) =1 14, [ 2262 Sedgewick
q { _<2> p:0 <p < q= gcd(ay,n) } 1.3,7.21,48,112. . .. O<N+ - edgewick,
1985,[11]
( 1
I:<O§q<r\q7é§(r2—|—r)—k} Knutht!
r = \/Qk + 4/ ZkJ
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uick Sort
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A unified view of many sorting algorithms

Divide problem into subproblems. Conquer subproblems recursively. Combine solutions of subproblems.

* Divide the input into size 1 and size n - 1.

» InsertionSort, easy to divide, combine needs efforts.
» SelectionSort, divide needs efforts, easy to combine.

* Divide the input into two parts each of same size.

» MergeSort, easy to divide, combine needs efforts.

* Divide the input into two parts of approximately same size.

» QuickSort, divide needs efforts, easy to combine.
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' The QuickSort Algorithm

 Basic idea: QuickSortAbs(A):
x := GetPivot(A)
> Given an array A of n items. <B, C> := Partition(A, x)
QuickSortAbs(B)
- Choose one item x in A as the pivot. QuickSortAbs(C)

return Concatenate(B, x, C)

- Use the pivot to partition the input into B and
C, so that items in B are < x, and items in C
are > x.

- Recursively sort B and C.

- Output (B, x, C).

Tony Hoare



Choosing the pivot

» |deally the pivot should partition the input into two parts of roughly the
same size (we’ll see why later).

» Select the “middle"” element, the “first” element, or the “last” element?

> Or using “Median-of-three” technique, e.g., A[1], A[n], A[n/2], median of
{A[l],Aln], Al[n/2]}?

* For every simple deterministic method of choosing pivot, we can
construct corresponding “bad input”.

 For now just use the last item as the pivot.
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The Partition Procedure

* Allocate array B of size n.

e Sequentially go through A[1... (n-1)], put small items at the left side of B,

and large items at the right side of B. Partition(A):

x:=Aln], l:=1,r:=n

* Finally put the pivot in the (only) remaining position. for i=1ton-1

................ if A[i] <=x
e O(n) time, ®(n) space,:unstable; BIIl = Al
[++

+ Can we do better, and how? T else

----------------

ldl = Al

Bll] :=x
return < B, [ >
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In-place Partition Procedure

L J_p
- . VoW /
* Basic idea: sequentially go through A[j] < A[r]
A, use swap operations to move N N A L O R L A ey swap(A[i], A[j])
small items to the left part of A; thus i<j p
the right part of A naturally contains \L VA
large items. >l 8! 7111315 |6/ 4

InplacePartition(A, p, 1):

l p J
i=p-1 NN /

for j:=ptor-1 2 | 8|7 | 1|3 |5 ]| 6|4 A[j] > Alr]
if A[j] <= A]r]
i=i+1 l p j
Swap(Ali]. ALj]) N : y
Swap(A[i+1], A[r]) 2 | 8| 7| 1|3 |5 ]| 6| 4 A[j] > A[r]

returni; + 1



3

0 &btk T £O R4 1S
PV.| SEREHS TiEFbr
7‘5 435 School of Qnt@[ﬁgent Sofrware and fngineering

In-place Partition Procedure

] p j
- . \Jr v v
 Basic idea: sequentially go through A[7] < A[r]
A, use swap operations to move N I A L O T R R ey swap(A[i], A[j])
small items to the left part of A; thus p i j
the right part of A naturally contains v v v
large items. 5 1 1171 8l 3|5 6| 4
InplacePartition(A, p, 1): p F
ii=p-1 v v v v
for j:=ptor-1 >l 11 71 8!l3l5 614 Alj] < Alr]
if A[j] <= A[r] . ++, swap(Alil, Alj])
=1+ 1 4 l J
Swap(Ali], Al[j]) v W N v
Swap(Ali+1], Alr]) 2 1 3 8 7 5 6 4

returni; + 1
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In-place Partition Procedure

p J
- . v v v
* Basic idea: sequentially go through
A, use swap operations to move 2 °S | 6| 4
small items to the left part of A; thus p J
the right part of A naturally contains v v ¥
large items. 5 5 | 6 | 4
InplacePartition(A, p, 1):
1.=p-1 :
for j:=ptor-1 p J
if A[j] <= A]r] v \M
=i+ 1 2 > | 6|8
Swap(Ali], Alj])
Swap(Ali+1], Alr])

returni; + 1

Alj] > Alr]

Alj] > Alr]

break loop

Swap(Ali+1], A[r])
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Analysis of In-place Partition Procedure

Correctness
 Claim: at the beginning of any iteration, for any index «: InplacePartition(A., p, 1):
. Ifk € [p. i], then A[k] < A[r]; t=p-d
for j.=ptor-1
» Ifke i+ 1, — 1], then Alk] > x; it Alj] <= Alr]
=1+ 1
» If k = r, then Alk] = Alr]. Swap(Ali], A[j])
p i j - Swap(Ali+1], A[r])
v ¥ Ay i return i + 1
X
—— N
<X > X unrestricted
* Proof: we use induction. L J P r
W V

- [Basis] Trivially holds. x
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AnaIyS|s of In-place Partition Procedure

Correctness
, —p‘ TTRTTTTTTTTI ]; ““““““ N InplacePartition(A., p, 1):
* Proof: we use induction. e
| ¢ ¢ % ¢ : L.=P - 1
| for j:i=ptor-1
> [Basis] Trivially holds. '\ X if A[j] <= A[r]
/ ______________________________ =1+ 1
> [Inductive step] Assume at the beginning of some iteration we Swap(A[il, A[j])
have 1 = 1 and j = j, and the stated properties hold. In this Swap(A[i+1], A[r])
iteration: return i + 1
p | = ; ]=]A r | p 1 = ; ]=j\ I
v \ v : v ¥ N ¢
y a X or y Z X
pm_ul;) /] " i P"“é;\\) ; z > X 1(‘/] "
a y X i y Z X
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Analysis of In-place Partition Procedure

Correctness

InplacePartition(A., p, 1):

* Proof. we use induction. i=p-1
for j.=ptor-1
> [Basis] Trivially holds. if A[j] <= A[r]
=1+ 1

> [Inductive step] Assume at the beginning of some iteration we Swap(A[i], A[j])
have 1 = 1 andj = J, and the stated properties hold. Then they  Swap(A[i+1], A[r])
hold after this iteration. p& /’ J \, f return i + 1
- eventually, when j = r: Y x|

. ] r

- Swap Ali + 1] and A[r] X y

During execution, we only swap items, no addition /deletion.

So InplacePartition correctly partitions the input array.
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The QuickSort Algorithm

InplacePartition(A., p, 1):

1.=p-1
for j.=ptor-1
if A[j] <=A[r]
=1+ 1

Swap(Ali], Alj])
Swap(Ali+1], Alr])
return i + 1

e Performance of InplacePartition:

» O(|r—p]|) time (i.e., linear time);

» (1) space; unstable.

e Performance of QuickSort?

QuickSort(A., p, r):
if p<r

q .= InplacePartition(A, p, r)
QuickSort(A, p, g - 1)
QuickSort(A, g + 1, r)

Note: Although quicksort sorts in-place, the amount of
memory it use aside from the array being sorted is not

constant.
Since each recursive call requires additional amount of
space on the runtime stack. How many of them?
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Performance of QuickSort

» Cost at each level is: ¢y(n — m), where m is number of pivots removed in lower
level Partition.

> |f the partition is “balanced”, then there will be few levels.

> |f the partition is “balanced”, then m will increase rapidly.

» level cost ~ cyn

» level cost ~ cyn




RS T7S

Performance of QuickSort

Worst case Best case

n
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Performance of QuickSort

* Recurrence for the worse-case runtime of QuickSort: QuickSort(A, p.r):

if p<r
> T(n) = 0<m<aX 1 (1(q) + T(n — g — 1)) + ¢yn g := InplacePartition(A, p, r)
4= QuickSort(A, p, g - 1)
. Guess T, < cn?, and we now verify: QuickSort(A, g + 1, 1)

> T(n) £ max (cqg*+c(n—gq—1)%)+cyn
0<g<n—1

wheng=0o0or g=n-1

=C -+ max (q2+(n—q—1)2)+con
0<g<n—1

<cn—1)7+ Coll = cn®—cn—1)+ Coll

< cn? — T(n) = O(n?)
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 Performance of QuickSort

QuickSort(A., p, r):

* “Balanced” partition gives best case performance.

if p<r
q .= InplacePartition(A, p, 1)
» T(n) < T(n/2) + T(n/2) + @(n) implies QuickSort(A, p, g - 1)
I(n) =0 lOg n). QuickSort(A, g + 1, r)

e Partition does not need to be perfectly balanced,

we only need each split to be constant
proportionality.

» T(n) < T(dn)+ T((1 — d)n) + B(n) where
d = 0O(1).
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Performance of QuickSort

» The performance of the best is O(n log ), while the worst is O(n?)

> What about the performance in general®?

 Average-case analysis: the expected time of algorithm over all inputs of

sizen (i.e., X,) : Am)= ) Tx)- Pr(x)

xel,

> |In order to perform a probabilistic analysis, we must use knowledge of, or
make assumptions about, the distribution of (something about) the
INputs.
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Performance of QuickSort

 For QuickSort, particular values in the array are not important, instead,

the relative ordering of the values is what matters (since QuickSort IS
comparison-based).

 Therefore, it is important to focus on the permutation of input numbers. A

readable assumption is that all permutations of the input numbers are
equally likely.

> Jo make the analysis simple, we also assume that the elements are
distinct (duplicate values will be discussed later).
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Performance of QuickSort

* Before making rigorous analysis, we can first gain some intuition about the
average performance.

» When QuickSort runs on a random input array, we expect that some

of the splits will be reasonably well balanced and that some will be fairly
unbalanced.

» |n the average case, Partition produces a mix of “good” and “bad”

splits. That is, in a recursion tree, the good and bad splits are distributed
randomly throughout the tree.
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Performance of QuickSort

Mixed Balanced

2 om

_ O(n) _ / |

* Further, for the sake of intuition, suppose that the good and bad splits alternate levels in the tree,
and that the good splits are best case splits and the bad splits are worst-case splits.

» As an example in the above, the “mixed” Partition produces two “(n-1)/2” subarrays at the
cost of O(n) + O(n — 1) = O(n), while the “balanced” partition does so at the cost of @(n).

» The cost of “bad” Partition can be absorbed by recent “good” Partition, without affecting

time complexity asymptotically —> “mixed” Partition Is at most constant factor worse than
“balanced” Partition.

> Therefore, the average runtime of QuickSort is O(nlogn) (rigorously proved later).
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" Randomized QuickSort

* Picking “good” pivot is important for the performance? but how do we do it?

> On choosing pivot: first, middle, last, median of three, ...?

* Any simple deterministic mechanism could fail! (If the input is given by an

“adversary” that knows the algorithm.)

 Choose pivot (uniformly) at random!

> Since the choice is randomly made, there is a good chance
(constant probability) that we choose a “good” pivot.

 The above claim holds even if the input is given by an
“adversary” that knows the algorithm (but not the random bits

the algorithm uses).

RandQuickSort(A, p, r):

if p<r
i .= Random(p, r)
Swap (Alr], Ali])
q .= InplacePartition(A, p, 1)
RandQuickSort(A, p, g - 1)
RandQuickSort(A, g + 1, r)




RandQuickSort(A, p, r):

if p<r

--

______
-a=="
-
-
-
-
-
PR
-

Constant time

( .= Random(p, r)
Swap (A[r], Ali]) o

gi— InplacePartitiéh(A, DL
RandQuickSort(A, p, g - 1)

RandQuickSort(A, g + 1, r)

Two calls

InplacePartition(A. p, 1):

1.=p-1
for j.=ptor-1
if A[j] <= A][r]
=1+ 1
Swap(Ali], Alj])
Swap(Ali+1], Alr])
return + 1

O(number of comparsions)
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Randomized QuickSort

 Cost of a call to RndQuickSort: » Total cost of RndQuickSort:

» Choose a pivot in @(1) time:; > Time for choosing pivots O(n), since each
node can be pivot at most once!

» Run InplacePartition, the cost » All callsto InplacePartition,

is O(number of comparsions). O(total number of comparions).

» Need to call RndQuickSort twice,

» Total time for call RndQuickSort O(2n),
the calling process (not the subroutines

since each time a pivot is chosen, two
themselves) needs ®(1) time. RndQuickSort calls are made.

In an execution of RndQuickSort, the cost is O(n) + O(total number of comparions)
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Randomized QuickSort

Cost of RndQuickSort is O(n + X), where X is a random variable denoting the

number of comparisons happened in ITnplacePartition throughout entire execution.

 Each of pair of items is compared at most once! (ltems only compare with pivots, and each item can be the
pivot at most once.)

* For ease of analysis, we let’s index the elements of the array A by their position in the sorted output, rather
than their position in the input.

> For all the elements, we refer them to be 7;,2,,...2,, withz; <z, <... < Z,.

| | o | 1 H happens
 LetX;;=1{z is ever compared to z;}, here I is an indicator random variable I(H) =
] J 0O H not happen

n—1 n n—1 n n—1 n
e |8 505 5 e85 po-
i=1 j=i+1 i=1 j=it+1 i=1 j=it+1



- Randomized QuickSort

. letZ,;={z|z€A,z; <7<z}, wherei < j, let Z;; be the first item in Z;; that is
chosen as a pivot. Then z; are z; compared iff Z;; = z; or Z;; = z;. (Items from Z;; stay in

same split until some pivot is chosen from Z;)).

2

+ PriX; = 1)=Pr(ZAiJ'=Zi)+Pr(ZAii:Zj)=j—lT

n—1 n—i o n—1 n o

: —[X]_ZZ — etk =j—i EIX] = k+1<ZZZ

i=1 j= z+1] i=1 k=1 i=1 k=1
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Randomized QuickSort

Harmonic series
Lo
r H — _
=2
k=1
> J —dx<2—<1+J
1A k=1 k 2

A
> lnn<2—<1+lnn
k=1k

1

x—1

dx

s
~
..
~
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" Randomized QuickSort

e Harmonic series

CO |
> Hn=;;~lnn

n—1 n
2
e Hence, E|X] < Z ZZ <2nH, < 2n(l +1nn) = O(nlgn)
i=1 k=1

« Combined the fact that in the best case (balanced partition each time)
randomized quick sort is O(n 1g n), the expected running time is O(nlg n).

e In fact, runtime of RndQuickSort is O(n log n) with high probability!



A bit more on QuickSort

 What if there are many duplicates?

> Maintain four regions as we go through the array

< pivot = pivot > pivot

> End up with three regions (“< , and “>”), and only recurse into two of
them (“<” and “>"): the more the dupllcates the less to recurse, and the
better the algorithm!



e Stop recursion once the array is too small.

> Recursion has overhead, QuickSort Is slow on small arrays.

» Usually using InsertionSort for = 10 elements, resulting in fewer
swaps, comparisons or other operations on such small arrays.

- The ideal 'threshold’ will vary based on the detalls of the specific
Implementation.
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A bit more on QuickSort

e “Random pivot selection” and “Median of three” can be combined!

> The expected number of comparisons needed to sort n elements with

. L 2
random pivot selection is 2ninn = l - log,n ~ 1.386nlog, n.
0g-He

> Combining “Median-of-three pivoting” (i.e., randomly selecting three
elements and let the median of them to be the pivot) brings this down to

about 1.188n10g, n, but at the expense of a three-percent increase in the
expected number of swaps.

> According to Bentley, Jon L.; Mcllroy, M. Douglas (1993). "Engineering a
sort function". Software: Practice and Experience. 23 (11): 1249-1265.
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'A bit more on QuickSort

 Multiple pivots?

> Early studies do not give promising results, until Dual-Pivot variant
proposed by Yaroslavskiy in 2009 seems slightly faster.

< pivoty pivoti <. <pivot > pivots

> This variant is used in Java for sorting. (Since Java 7.)

> According to “Average Case Analysis of Java 7's Dual Pivot Quicksort”.
(Best Paper of ESA 2012)
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" Summary on QuickSort

* A widely-used efficient sorting algorithm

 Easy to understand! (divide-and-conquer...)
 Moderately hard to implement correctly. (partition...)
 Harder to analyze. (randomization...)

* Challenging to optimize. (theory and practice...)
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The n lg n sorting algorithms

e QuickSort, MergeSort and HeapSort are all with O(nlg n), which is better?

» HeapSort is non-recursive, minimal auxiliary storage requirement (good for

embedded system), but with poor locality of reference, the access of elements is not
linear, resulting many caches being missed! It is the slowest among three algorithms

» |n most (not all) tests, QuickSort turns out to be faster than MergeSort. Thisis
because although QuickSort performs 39% more comparisons than MergeSort,
but much less movement (copies) of array elements.

» MergeSort Is a stable sorting, and can take advantage of partially pre-sorted input.
Further, MergeSort is more efficient at handling slow-to-access sequential media.
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xternal sortin



*External Sorting

* External sorting is required when the data being sorted do not fit into the
main memory of a computing device and instead they must reside in the
slower external memory, usually a disk drive.

e Since |I/0O is rather expensive (at the order of 1-10 milliseconds), the overall
execution cost may be far dominated by the I/O, the target of algorithm
design is to reduce 1/0Os.

* One challenge to previous internal sorting algorithms is that how to merge
big files with small memory!
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-~ External merge problem

e Input: 2 sorted lists (with M and N pages)
e Output: 1 merged sorted list (with M+N pages)

» Can we efficiently (in terms of I/O) merge the two lists using a memory
buffer of size at least 37

> Yes, and by using only 2(M+N) I/0Os !



Key (Simple) ldea

* To find an element that is no larger than all elements in two lists, one only
needs to compare minimum elements from each list

If:

A A L...ZA
B,<B,<...L<B,
Then:
min(A;,B) <A,for1 <i<n

min(A;, B)) < B, for | <j<m

 Each time put the current minimum elements back to disk
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List 1

One page

_—— e —————————

—" e - . . . . . . . .

_—— o —————————

—" e - . . . . . . - .

_—— e —————————

—— s - - . . . . . . .

External merge algorithm
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External merge algorithm

List 1

_—— e —————————
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External merge algorithm

merge from the 2 pages
until a new page is filled

List 1
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External merge algorithm

Write this page to disk
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External merge algorithm

keep merging until one
frame becomes empty
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External merge algorithm

Since 5 <19, we know we
should read from the first list
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External merge algorithm
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External merge algorithm

_—— e —————————
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External merge algorithm

_____________
I
I
I
I
I
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External merge algorithm

_—— o —————————

List 1

—" e - . . . . . . . .

_—— o —————————

—" e - . . . . . . - .

_—— e —————————

—— s - - . . . . . . .

N
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External merge cost

 \We can merge 2 lists of arbitrary length with only 3 buffer pages.

> |/O cost=2(M + N)

 When we have B+1 buffer pages, we can merge B lists with the same 1/O
cost



External merge sort

 How to deal with unsorted large files”?
» 1. Split into chunks small enough to sort in memory (“runs’)
> 2. Merge pairs (or groups) of runs using the external merge algorithm

> 3. Keep merging the resulting runs (each time = a “pass”) until left with
one sorted file!
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Unsorted
file

— s s s . S S e e S S T o




[EF R

Split into chunks that
fit In memory
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2-Way Sort

read each chunk in memory
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write back to disk

_—— o —————————

—" e - . . . . . . . .

_—— o —————————

—" e - . . . . . . - .

_—— e —————————

each sorted sub-file is called a run

—" e - . . . . . . O
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same for the other chunk

____________________________ \____________/
Now we have 2 runs S \

. I

| l

| l

I\ |
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—" e - . . . . . . - .

_—— e —————————

final step: use the external
sort merge algorithm to
merge the 2 runs

—— s - - . . . . . . .




Calculating the 1/0 cost

* |n our example there are 3 buffer pages, and 6 pages
* Pass 0: creating the runs
> 1 read + 1 write for every page

» totalcost=6+«(1+1)=121/Os

 Pass 1: external merge sort

» totalcost=2 « (3+3)=121/Os

e S024 1/0s In total
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/0 Cost: Simplified Version

 Assume for now that we initially create N runs, each run consisting of a

single page
[\ [\ (0 (0
'\ ,I '\_ _,I '\_ _,I '\_ _,I pass 0: N runs, each 1 page
\_ ] _\_ / pass 1: merge into N/2 runs, each two pages
| O | | pass 2: merge into N/4 runs, each with 4 pages
| | | |
L QI
I I

» We need [log, N| + 1 passes to sort the whole file, each pass needs 2N 1/Os

« Total I/O cost = 2N([log, N| + 1)



Can we do better?

 The 2-way merge algorithm only uses 3 buffer pages
 What if we have more available memory?
> Use as much of the available memory as possible in every pass

> Reducing the number of passes reduces |/O



External sort: I/0 cost

« Suppose we have B > 3 buffer pages available

1. Increase length of initial runs

> At the beginning, we can split the NV pages into runs of
length B and sort these in memory

» |O cost:

N
2N([log, N| + 1) — 2N([log, E] + 1)

Starting with runs Starting with runs
of length 1 of length B
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External sort: I/0 cost

« Suppose we have B > 3 buffer pages available

2. Perform a (B — 1)—way merge.

> On each pass, we can merge groups of (B — 1) runs at a time,
instead of merging pairs of runs!

» |O cost:

N N
IN(logy NT+1) —  2N(logy -1+ 1) 2N([logg_ ] + 1)

e

Starting with runs Starting with runs

of length 1 of length B Performing (B — 1)—way merge
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Further reading

 [CLRS] Ch.7, Appendix C on probability theory
e [Weiss] Ch. 7 (7.4, 7.12)
 [Deng] Ch.12 (12.3)

» [TAOCP] Ch.5 (5.2.1 in vol. 3)
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