BEERGS TEF R

School of ﬂnte[figent Soﬁ"ware and Engineering

Selection

5275
Nanjing University
2024 Fall

i -

e
The slides aze main[y ac[aptec[ﬁom the o’zigina[ones shaved by Chaoclong ZAeng and _Kevin Z ay)

4

| BEERGHSIREFxR
I,

>
Z 2 / , ,
% <§3 SCHOO[O nt@[ﬁgent SO' 'tware ancffngmeermg

Order Statistics and Selection

NEZi1T=) of it is the ith

e Given a set of n items, the ith order statistic (|
smallest element of It.

> Minimum, maximum, median, ...

 The Selection Problem: given a set A of n distinct numbers and an integer
1, find the ith order statistic of A.

3

O&abthk T ¥O =24 (=
PV.| SEREHS TiEFbr
7‘5 4@5 School of Qnt@[ﬁgent Sofrware and fngineering

Find Min/Max

FindMin(A):
min = Al 1]
for i:=2 to A.length
--1f Ali] < min
min = Alil

return min

* So easy, sequential scan and keep min/max till now...

* Make n - 1 comparisons, but is this the best we can do?

—
—
—
— wa——
— —

e Yes! Otherwise at least two elements could be the minimum.

> Initially each element could be the minimum.

> An adversary answers queries like “compare x with y”.

> Each comparison eliminates at most one element.

| meER S TR
of

> —
Z"x <§° School Qnt‘e[ﬁ'genf Soﬁ'ware and fngineering

What if we want min and max?

* Go through the list twice, one for min and another for max.

 Can we do better? Surprisingly, yes!

> Group items into pairs. (The first item becomes a “pair” if n is odd.)

> For each of [n/2] pairs, find “local” min and max.

> Among [n/2] “local” min, find global min; similarly find global max.

< 2:|n/2] comparisons

Total number of comparisons is at most 3 - |n/2]

=

0 &b fk T FL A4 e
Y. EEERGFS TiEFbx
Z”x 4@5 School (f Qnt‘e[ﬁ'gent Soﬁ'ware and Engineem’ng

What if we want min and max?

e Is3 - |n/2| the best we can do? Remarkably, yes!
> An item has + mark if it can be max, and has - mark if it can be min.
> |Initially each item has both + and -.

> An adversary answers queries like “compare x with y”.

> The adversary can find input such that: at most |n/2| comparisons each removes two marks;

> Every other comparison removes at most one mark.

» |n total need to remove 2n — 2 marks.

So >2n—2-2%|n/2| + |n/2| =2n—2 — |n/2| comparisons needed, which can be 3 - |n/2|

TEFr

General Selection Problem

* Find 1th smallest element (i.e., ith order statistic)?

* Err... Sort them then return the ith entry?

Can we be faster?

o Sure but this takes (2(nlog n) time...

RndQuickSort(A):

If A.size > 1
q .= RandomPartition(A)
RndQuickSort(A[l, ... (g - 1)])
RndQuickSort(Al(g + 1), ..., n])

TEFr

General Selection Problem

+ What if i = g?

RndQuickSort(A):

If A.size > 1
q .= RandomPartition(A)
RndQuickSort(A[l, ... (g - 1)])
RndQuickSort(Al(g + 1), ..., n])

> Alg] is what we need.

Notice A[1...(g-1)] contains the

 What if 1 < g? smallest ¢ - 1 elements in A.

> Find ith order statistic in A[1...(qg - 1)].
+ What if i > g?

Find (i - g)th order statisticin A[(g +1)...n].

This is Reduce-and-Conquer!

Randomized Selection

A Reduce-and-Conquer Algorithm

e Best-case runtime”? Choose the answer as

RndSelect(A., 1): the pivot in the first call (unlikely to happen).
if A.size=1
return A[1] > O(n)
else
g := RandomPartition(A) Worst-case runtime? Partition reduces
if i=g array size by one each time (unlikely to
return A[q] happen).
elseif i<gqg
return RndSelect(A[1 ... (g-1)], i) > >cn+cn—1)+...+c(2) = O(n?)
else

return RndSelect(A[(g + 1) ... Asize],i-g) * What is the average case?

=

OD&bkhk T 30 R4 e
Y. EEERGFS TiEFbx
Z”x 4@5 School (f Qnt‘e[ﬁ'gent Soﬁ'ware and Engineem’ng

Average performance of Randomized Selection

 What’s unlikely to happen is either get the exactly right pivot or reduces
the size just by one. Instead, what’s likely to happen is: partition process

_ find some order statistic in
reduces problem size by a constant factor.

n items.

« Call a partition good if it reduces problem size to at most 0.8*input_size. [&& SOT%GSOFF:GF statistic in
.0n Iems.

» Let the random variable C; be the cost since the last good partition to the I L sy
ith good partition. U.8n — 1 items.

find some order statistic in
0.8(0.8n — 1) items.

» At most log, ,5 n good partitions can occur.

— - o —
— —
[]

. E[C] < @(1)/-’0’.8"111 .

logy psn 1081551
« E[T(n)] < E Z C;| = Z -[C;] = O(n)

l
=1 =1

| BEERHEFS TEF b

4 School of Qnt‘e[ﬁgent Soﬁ'ware and fngmeermg

RndQuickSort vs RndSelect

RndSelect(A, 1):
RndQuickSort(A): if A.size=1

if A.size > 1 return A[1]
else

q .= RandomPartition(A) .
. q := RandomPartition(A)
RndQuickSort(A[l, ... (g - 1)])

if i=gq
RndQuickSort(Al(g + 1), ..., n]) return A[g]

elseif i<gqg

return RndSelect(A[l ... (g-1)],1)
else

return RndSelect(Al(g + 1) ... Asize],i - q)

Y U O, S P P level cost: cn
find some order statistic in n
7 BRI IR > level cost: cn
n IR p level cost: cn
find some order statistic in 0.8n
items.
gl oo /> level cost: cn find some order statistic in 0.87 -
log g n 1 items.

find some order statistic in
0.8(0.8n - 1) items.

| HeERES TiEF b
ofiln

Z 2
A &/ School

t@[ﬁgent Sofrware and fngineering

We are not done with selection...

 Can we guarantee worst-case runtime of RndSelect(A. 1):

O(n)? if A.size =1
return A[1}
« The reason that RndSelect could be else
slow Is that RandomPartition might q := RandomPartition(A)
return an unbalanced partition. if i=g
return A[g]
* Needs a partition procedure that else if i<gq
guarantees to be balanced. (without return RndSelect(A[1 ... (g-1)], i)
using too much time; O(n) time to be else
specific).

return RndSelect(A[(g + 1) ... Asize], i - g)

Median of medians

* Divide elements into n/5 groups, each containing 5 elements, call these groups G, G,,...G .

* Find the medians of these n/5 groups, let M be this set of medians.

* Find the median of M, call it m*.

‘ ‘ Bigger than m™, has ~ 0.3n items.
\Y \Y
\% V
g~ = Partition using m* as pivot is good:
| < < : :
l__‘_ P ! - _‘__ N the smaller split has > 0.3n items.
\% \%

Smaller than m*, has =~ 0.3n items.

Gl G2 G3 Gn /5

=

Dotk T FO A4 e
P9, BERGESIREF xR
7‘5 g School of Qnt@[ﬁgent Sofrware and fngineering

Finding median of medians

* Divide elements into n/5 groups, each containing 5 elements, call these
groups Gy, Gy, ... G, s.

Trivial, O(n) time

* Find the medians of these n/5 groups, let M be this set of medians.

Sort each group, then find the medians.

* Find the median of M, call it m*. Costis (n/5) - O(1) = O(n).

» |dea: Use QuickSelect, recursively.

ERNES TP
0 an(ﬁ'gent Soﬁ'ware and E g

Finding median of medians

QuickSelect(A. 1): MedianOfMedians(A):
if A.size=1 if A.size =1
elserewm N o) return A[1]
| | <Gy, Gy, ...G, s> = CreateGroups(A)
m = Med.lc.znOﬂVedl.ans(A.)..,.... T
zc . f’artztzOnWlthPlvat(A, m) Sort(G,)
1=q M := GetMediansFromSortedGroups(Gy, G,, ... G,)
return A[g]

i return QuickSelect(M, (n/5)/2)
elseif i<gq |

\

return QuickSelect(A[l...(g-1)],1) \ s

else T(O.Zn) - M iSl Of..A"'!f

return QuickSelect(A[(g+1)...A.size, i - q]) S e
1(0.7n)

T(n) < 1T(0.7n) + T(0.2n) + O(n)

3
oD&bth T FO 4 e
| BEERS IREF R

4 9 School (f Qnt‘e[ﬁ'gent Sofrware and fngineering

Time complexity

find some o0.s. In
n items.

find some o.s. in find some o.s. in 0.7cn+02cn = 0.9cn
0.7n items. 0.27n items. . . .

find some 0.S. In find some 0.S. In find some 0.S. In find some 0.S. In
0.497 items. 0.14n items. 0.14n items. 0.04n items.

7

0.81cn

7 |
/
7 | / \
d |
/
7 |

=

O&abthk T FO 4=
PV, ZeERHS ITiEF6r
Z"x @5 School of Qnt‘e[ﬁ'gent Soﬁ'ware and Engineem’ng

Time complexity

.Quicl.<Select(A, 1): MedianOfMedians(A):
if A.size=1 if A.size =1

| return A[1] return A[1]
else

<G, Gy, ...G, s> = CreateGroups(A)
for i:=1 to n/5
Sort(G;)

m .= MedianOfMedians(A)
q = PartitionWithPivot(A, m)

t lrzetqurn Al] M := GetMediansFromSortedGroups(Gy, G, . .. G, /5)
- return QuickSelect(M, (n/5)/2)
elseif i<qg
return QuickSelect(A[1...(g-1)],1)
else

return QuickSelect(A[(g+1)...A.size], i - qg])

e T(n) < T(0.7n) + 7T(0.2n) + O(n)

You can verify this by the substitution method.

(l.e., assume 1(n) < cn and then verify.)

e« T(n) = O(n)

| EEEHS IREF
I,

>
Z 2 / , ,
% <§ SCHOO[O nt@[ﬁgent SO' 'tware ancffngmeermg

Complexity of general selection

* QuickSelect uses O(n) time/comparisons.
* Solving general selection needs at least n - 1 comparisons.

> Since finding min/max needs at least n - 1 comparisons.

 So the lower and upper bounds match asymptotically.

e But if we care about constants, needs (much) more efforts.

| e S TR
9 School of an(ﬁ’gent Soﬁ'ware and Engineering

Further reading

« [CLRS] Ch.9

V THOMAS H.CORMEN

CHARLES E. LEISERSON

RONALD L. RIVEST

\ CLIFFORD STEIN

INTRODUCTION TO

ALGORITHMS

THIRD EDITION

