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Order Statistics and Selection

NEZi1T=) of it is the ith

e Given a set of n items, the ith order statistic (|
smallest element of It.

> Minimum, maximum, median, ...

 The Selection Problem: given a set A of n distinct numbers and an integer
1, find the ith order statistic of A.
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Find Min/Max

FindMin(A):
min = Al 1]
for i:=2 to A.length
--1f Ali] < min
min = Alil

return min

* So easy, sequential scan and keep min/max till now...

* Make n - 1 comparisons, but is this the best we can do?

—
—
—
— wa——
— —

e Yes! Otherwise at least two elements could be the minimum.

> Initially each element could be the minimum.

> An adversary answers queries like “compare x with y”.

> Each comparison eliminates at most one element.
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What if we want min and max?

* Go through the list twice, one for min and another for max.

 Can we do better? Surprisingly, yes!

> Group items into pairs. (The first item becomes a “pair” if n is odd.)

> For each of [n/2] pairs, find “local” min and max.

> Among [n/2] “local” min, find global min; similarly find global max.

< 2:|n/2] comparisons

Total number of comparisons is at most 3 - |n/2]
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What if we want min and max?

e Is3 - |n/2| the best we can do? Remarkably, yes!
> An item has + mark if it can be max, and has - mark if it can be min.
> |Initially each item has both + and -.

> An adversary answers queries like “compare x with y”.

> The adversary can find input such that: at most |n/2| comparisons each removes two marks;

> Every other comparison removes at most one mark.

» |n total need to remove 2n — 2 marks.

So >2n—2-2%|n/2| + |n/2| =2n—2 — |n/2| comparisons needed, which can be 3 - |n/2|
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General Selection Problem

* Find 1th smallest element (i.e., ith order statistic)?

* Err... Sort them then return the ith entry?

Can we be faster?

o Sure but this takes (2(nlog n) time...

RndQuickSort(A):

If A.size > 1
q .= RandomPartition(A)
RndQuickSort(A[l, ... (g - 1)])
RndQuickSort(Al(g + 1), ..., n])
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General Selection Problem

+ What if i = g?

RndQuickSort(A):

If A.size > 1
q .= RandomPartition(A)
RndQuickSort(A[l, ... (g - 1)])
RndQuickSort(Al(g + 1), ..., n])

> Alg] is what we need.

Notice A[1...(g-1)] contains the

 What if 1 < g? smallest ¢ - 1 elements in A.

> Find ith order statistic in A[1...(qg - 1)].
+ What if i > g?

Find (i - g)th order statisticin A[(g +1)...n].

This is Reduce-and-Conquer!




Randomized Selection

A Reduce-and-Conquer Algorithm

e Best-case runtime”? Choose the answer as

RndSelect(A., 1): the pivot in the first call (unlikely to happen).
if A.size=1
return A[1] > O(n)
else
g := RandomPartition(A)  Worst-case runtime? Partition reduces
if i=g array size by one each time (unlikely to
return A[q] happen).
elseif i<gqg
return RndSelect(A[1 ... (g-1)], i) > >cn+cn—1)+...+c(2) = O(n?)
else

return RndSelect(A[(g + 1) ... Asize],i-g) * What is the average case?
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Average performance of Randomized Selection

 What’s unlikely to happen is either get the exactly right pivot or reduces
the size just by one. Instead, what’s likely to happen is: partition process

_ find some order statistic in
reduces problem size by a constant factor.

n items.

« Call a partition good if it reduces problem size to at most 0.8*input_size. [&& SOT%GSOFF:GF statistic in
.0n Iems.

» Let the random variable C; be the cost since the last good partition to the I L sy
ith good partition. U.8n — 1 items.

find some order statistic in
0.8(0.8n — 1) items.

» At most log, ,5 n good partitions can occur.

— - o —
— —
[ ]

. E[C] < @(1)/-’0’.8"111 .

logy psn 1081551
« E[T(n)] < E Z C;| = Z -[C;] = O(n)

l
=1 =1
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RndQuickSort vs RndSelect

RndSelect(A, 1):
RndQuickSort(A): if A.size=1

if A.size > 1 return A[1]
else

q .= RandomPartition(A) .
. q := RandomPartition(A)
RndQuickSort(A[l, ... (g - 1)])

if i=gq
RndQuickSort(Al(g + 1), ..., n]) return A[g]

elseif i<gqg

return RndSelect(A[l ... (g-1)],1)
else

return RndSelect(Al(g + 1) ... Asize],i - q)

Y U O, S P P level cost: cn
find some order statistic in n
7 BRI IR > level cost: cn
n IR p level cost: cn
find some order statistic in 0.8n
items.
gl oo /> level cost: cn find some order statistic in 0.87 -
log g n 1 items.

find some order statistic in
0.8(0.8n - 1) items.
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We are not done with selection...

 Can we guarantee worst-case runtime of RndSelect(A. 1):

O(n)? if A.size =1
return A[1}
« The reason that RndSelect could be else
slow Is that RandomPartition might q := RandomPartition(A)
return an unbalanced partition. if i=g
return A[g]
* Needs a partition procedure that else if i<gq
guarantees to be balanced. (without return RndSelect(A[1 ... (g-1)], i)
using too much time; O(n) time to be else
specific).

return RndSelect(A[(g + 1) ... Asize], i - g)



Median of medians

* Divide elements into n/5 groups, each containing 5 elements, call these groups G, G,,...G .

* Find the medians of these n/5 groups, let M be this set of medians.

* Find the median of M, call it m*.

‘ ‘ Bigger than m™, has ~ 0.3n items.
\Y \Y
\% V
g~ = Partition using m* as pivot is good:
| < < : :
l__‘_ P ! - _‘__ N the smaller split has > 0.3n items.
\% \%

Smaller than m*, has =~ 0.3n items.

Gl G2 G3 ...... Gn /5
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Finding median of medians

* Divide elements into n/5 groups, each containing 5 elements, call these
groups Gy, Gy, ... G, s.

Trivial, O(n) time

* Find the medians of these n/5 groups, let M be this set of medians.

Sort each group, then find the medians.

* Find the median of M, call it m*. Costis (n/5) - O(1) = O(n).

» |dea: Use QuickSelect, recursively.
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Finding median of medians

QuickSelect(A. 1): MedianOfMedians(A):
if A.size=1 if A.size =1
elserewm N o) return A[1]
| | <Gy, Gy, ...G, s> = CreateGroups(A)
m = Med.lc.znOﬂVedl.ans(A.)..,.... T
zc . f’artztzOnWlthPlvat(A, m) Sort(G,)
1=q M := GetMediansFromSortedGroups(Gy, G,, ... G, )
return A[g]

i return QuickSelect(M, (n/5)/2)
elseif i<gq |

\

return QuickSelect(A[l...(g-1)],1) \ s

else T(O.Zn) - M iSl Of..A"'!f

return QuickSelect(A[(g+1)...A.size, i - q]) S e
1(0.7n)

T(n) < 1T(0.7n) + T(0.2n) + O(n)
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Time complexity

find some o0.s. In
n items.

find some o.s. in find some o.s. in 0.7cn+02cn = 0.9cn
0.7n items. 0.27n items. . . .

find some 0.S. In find some 0.S. In find some 0.S. In find some 0.S. In
0.497 items. 0.14n items. 0.14n items. 0.04n items.

7

0.81cn

7 |
/
7 | / \
d |
/
7 |
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Time complexity

.Quicl.<Select(A, 1): MedianOfMedians(A):
if A.size=1 if A.size =1

| return A[1] return A[1]
else

<G, Gy, ...G, s> = CreateGroups(A)
for i:=1 to n/5
Sort(G;)

m .= MedianOfMedians(A)
q = PartitionWithPivot(A, m)

t lrzetqurn Al] M := GetMediansFromSortedGroups(Gy, G, . .. G, /5)
- return QuickSelect(M, (n/5)/2)
elseif i<qg
return QuickSelect(A[1...(g-1)],1)
else

return QuickSelect(A[(g+1)...A.size], i - qg])

e T(n) < T(0.7n) + 7T(0.2n) + O(n)

You can verify this by the substitution method.

(l.e., assume 1(n) < cn and then verify.)

e« T(n) = O(n)
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Complexity of general selection

* QuickSelect uses O(n) time/comparisons.
* Solving general selection needs at least n - 1 comparisons.

> Since finding min/max needs at least n - 1 comparisons.

 So the lower and upper bounds match asymptotically.

e But if we care about constants, needs (much) more efforts.
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Further reading

« [CLRS] Ch.9

V THOMAS H.CORMEN

CHARLES E. LEISERSON

RONALD L. RIVEST

\ CLIFFORD STEIN

INTRODUCTION TO

ALGORITHMS

THIRD EDITION



