
智能软件与工程学院
School of Intelligent Software and Engineering

选择
Selection

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne.Thanks for their supports!

钮鑫涛
Nanjing University

2024 Fall

智能软件与工程学院
School of Intelligent Software and Engineering

Order Statistics and Selection

• Given a set of n items, the ith order statistic（顺序统计量）of it is the ith
smallest element of it.

‣ Minimum, maximum, median, …

• The Selection Problem: given a set A of n distinct numbers and an integer
i, find the ith order statistic of A.

智能软件与工程学院
School of Intelligent Software and Engineering

Find Min/Max
• So easy, sequential scan and keep min/max till now… FindMin(A):

min := A[1]
for i := 2 to A.length
 if A[i] < min
 min := A[i]

return min• Yes! Otherwise at least two elements could be the minimum.

‣ Initially each element could be the minimum.

‣ An adversary answers queries like “compare x with y”.

‣ Each comparison eliminates at most one element.

• Make n - 1 comparisons, but is this the best we can do?

智能软件与工程学院
School of Intelligent Software and Engineering

What if we want min and max?
• Go through the list twice, one for min and another for max.

 comparisons⌊n/2⌋

 comparisons≤ 2 ⋅ ⌊n/2⌋

Total number of comparisons is at most 3 ⋅ ⌊n/2⌋

• Can we do better? Surprisingly, yes!

‣ Group items into pairs. (The first item becomes a “pair” if n is odd.)

‣ For each of ⌈n∕2⌉ pairs, find “local” min and max.

‣ Among ⌈n∕2⌉ “local” min, find global min; similarly find global max.

智能软件与工程学院
School of Intelligent Software and Engineering

What if we want min and max?
• Is the best we can do? Remarkably, yes!

‣ An item has + mark if it can be max, and has - mark if it can be min.

‣ Initially each item has both + and -.

‣ An adversary answers queries like “compare x with y”.

‣ The adversary can find input such that: at most comparisons each removes two marks;

‣ Every other comparison removes at most one mark.

‣ In total need to remove marks.

3 ⋅ ⌊n/2⌋

⌊n/2⌋

2n − 2

So comparisons needed, which can be ≥ 2n − 2 − 2 * ⌊n/2⌋ + ⌊n/2⌋ = 2n − 2 − ⌊n/2⌋ 3 ⋅ ⌊n/2⌋

智能软件与工程学院
School of Intelligent Software and Engineering

General Selection Problem

• Find ith smallest element (i.e., ith order statistic)?

• Err… Sort them then return the ith entry?

• Sure but this takes time…Ω(n log n)

RndQuickSort(A):
if A.size > 1

q := RandomPartition(A)
RndQuickSort(A[1, … (q - 1)])
RndQuickSort(A[(q + 1), … , n])

 Can we be faster?

智能软件与工程学院
School of Intelligent Software and Engineering

General Selection Problem
• What if i = q?

‣ A[q] is what we need.

• What if i < q?

‣ Find ith order statistic in A[1…(q - 1)].

• What if i > q?

•
 Find (i - q)th order statistic in A[(q +1)…n].

RndQuickSort(A):
if A.size > 1

q := RandomPartition(A)
RndQuickSort(A[1, … (q - 1)])
RndQuickSort(A[(q + 1), … , n])

Notice A[1…(q-1)] contains the
smallest q - 1 elements in A.

This is Reduce-and-Conquer!

智能软件与工程学院
School of Intelligent Software and Engineering

Randomized Selection

• Best-case runtime? Choose the answer as
the pivot in the first call (unlikely to happen).

‣

• Worst-case runtime? Partition reduces
array size by one each time (unlikely to
happen).

‣

• What is the average case?

Θ(n)

≥ cn + c(n − 1) + . . . + c(2) = Θ(n2)

RndSelect(A, i):
if A.size = 1
 return A[1]
else
 q := RandomPartition(A)
 if i = q
 return A[q]

 else if i < q
 return RndSelect(A[1 … (q-1)], i)

 else
 return RndSelect(A[(q + 1) … A.size], i - q)

A Reduce-and-Conquer Algorithm

智能软件与工程学院
School of Intelligent Software and Engineering

Average performance of Randomized Selection
• What’s unlikely to happen is either get the exactly right pivot or reduces

the size just by one. Instead, what’s likely to happen is: partition process
reduces problem size by a constant factor.

• Call a partition good if it reduces problem size to at most *input_size.

• Let the random variable be the cost since the last good partition to the
ith good partition.

• At most good partitions can occur.

•

•

0.8

Ci

log1.25 n

𝔼[Ci] ≤ Θ(1) ⋅ 0.8i−1n

𝔼[T(n)] ≤ 𝔼 [
log1.25n

∑
i=1

Ci] =
log1.25n

∑
i=1

𝔼[Ci] = O(n)

find some order statistic in
 items.n

find some order statistic in
 items.0.8n

find some order statistic in
 items.0.8n − 1

find some order statistic in
 items.0.8(0.8n − 1)

we are done

……

C1

C2

Why?

智能软件与工程学院
School of Intelligent Software and Engineering

RndQuickSort vs RndSelect
RndSelect(A, i):
if A.size = 1
 return A[1]

else
 q := RandomPartition(A)
 if i = q
 return A[q]

 else if i < q
 return RndSelect(A[1 … (q-1)], i)

 else
 return RndSelect(A[(q + 1) … A.size], i - q)

RndQuickSort(A):
if A.size > 1

q := RandomPartition(A)
RndQuickSort(A[1, … (q - 1)])
RndQuickSort(A[(q + 1), … , n])

n

1
10

n

1
100

n
9

100
n

level cost: cn

level cost: cn

level cost: cn

 log10 n
9
10

n

9
100

n
81
100

n

81
1000

n
729
1000

n

1

 log10/9 n

1

level cost: cn

level cost: ≤ cn

level cost: ≤ c n

O(n log n)

find some order statistic in
items.

n

find some order statistic in
items.

0.8n

find some order statistic in -
1 items.

0.8n

find some order statistic in
0.8(- 1) items.0.8n

we are done

……

C1

C2

智能软件与工程学院
School of Intelligent Software and Engineering

We are not done with selection…
• Can we guarantee worst-case runtime of

?

• The reason that RndSelect could be
slow is that RandomPartition might
return an unbalanced partition.

• Needs a partition procedure that
guarantees to be balanced. (without
using too much time; time to be
specific).

O(n)

O(n)

RndSelect(A, i):
if A.size = 1
 return A[1]
else
 q := RandomPartition(A)
 if i = q
 return A[q]

 else if i < q
 return RndSelect(A[1 … (q-1)], i)

 else
 return RndSelect(A[(q + 1) … A.size], i - q)

智能软件与工程学院
School of Intelligent Software and Engineering

M

Smaller than , has items.m* ≈ 0.3n

Bigger than , has items.m* ≈ 0.3n

m*

Median of medians

G1 G2 G3 Gn/5

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

• Divide elements into n∕5 groups, each containing 5 elements, call these groups .

• Find the medians of these n∕5 groups, let M be this set of medians.

• Find the median of M, call it .

G1, G2, . . . Gn/5

m*

< < < < < Partition using as pivot is good:
the smaller split has items.

m*
≥ 0.3n

智能软件与工程学院
School of Intelligent Software and Engineering

Finding median of medians

• Divide elements into n∕5 groups, each containing 5 elements, call these
groups .

• Find the medians of these n∕5 groups, let M be this set of medians.

• Find the median of M, call it .

G1, G2, . . . Gn/5

m*

Trivial, timeO(n)

Sort each group, then find the medians.
Cost is .(n/5) ⋅ Θ(1) = Θ(n)

‣ Idea: Use QuickSelect, recursively.

智能软件与工程学院
School of Intelligent Software and Engineering

Finding median of medians
QuickSelect(A, i):
if A.size = 1
 return A[1]

else
 m := MedianOfMedians(A)
 q := PartitionWithPivot(A, m)
 if i = q
 return A[q]

 else if i < q
 return QuickSelect(A[1…(q-1)], i)

 else
 return QuickSelect(A[(q+1)…A.size, i - q])

MedianOfMedians(A):
if A.size =1
 return A[1]

< > := CreateGroups(A)
for i := 1 to n/5
 Sort()

M := GetMediansFromSortedGroups()
return QuickSelect(M, (n/5)/2)

G1, G2, . . . Gn/5

Gi
G1, G2, . . . Gn/5

T(0.7n)

T(0.2n)

O(n)

T(n) ≤ T(0.7n) + T(0.2n) + O(n)

M is of A !
1
5

智能软件与工程学院
School of Intelligent Software and Engineering

Time complexity
find some o.s. in

 items.n cn

find some o.s. in
 items.0.7n

find some o.s. in
 items.0.2n

0.7cn + 0.2cn = 0.9cn

find some o.s. in
 items.0.49n

find some o.s. in
 items.0.14n

find some o.s. in
 items.0.14n

find some o.s. in
 items.0.04n 0.81cn

 in totalO(n)

智能软件与工程学院
School of Intelligent Software and Engineering

Time complexity

•

•

T(n) ≤ T(0.7n) + T(0.2n) + O(n)

T(n) = O(n)

You can verify this by the substitution method.
(I.e., assume and then verify.)T(n) ≤ cn

QuickSelect(A, i):
if A.size = 1
 return A[1]

else
 m := MedianOfMedians(A)
 q := PartitionWithPivot(A, m)
 if i = q
 return A[q]

 else if i < q
 return QuickSelect(A[1…(q-1)], i)

 else
 return QuickSelect(A[(q+1)…A.size], i - q])

MedianOfMedians(A):
if A.size =1
 return A[1]

< > := CreateGroups(A)
for i := 1 to n/5
 Sort()

M := GetMediansFromSortedGroups()
return QuickSelect(M, (n/5)/2)

G1, G2, . . . Gn/5

Gi
G1, G2, . . . Gn/5

智能软件与工程学院
School of Intelligent Software and Engineering

Complexity of general selection

• QuickSelect uses O(n) time/comparisons.

• Solving general selection needs at least n - 1 comparisons.

‣ Since finding min/max needs at least n - 1 comparisons.

• So the lower and upper bounds match asymptotically.

• But if we care about constants, needs (much) more efforts.

智能软件与工程学院
School of Intelligent Software and Engineering

Further reading

• [CLRS] Ch.9

