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Order Statistics and Selection

• Given a set of n items, the ith order statistic（顺序统计量）of it is the ith 
smallest element of it.


‣ Minimum, maximum, median, …


• The Selection Problem: given a set A of n distinct numbers and an integer 
i, find the ith order statistic of A.
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Find Min/Max
• So easy, sequential scan and keep min/max till now… FindMin(A):

min := A[1]
for  i := 2 to A.length
  if  A[i] < min
    min := A[i]

return min• Yes! Otherwise at least two elements could be the minimum.


‣ Initially each element could be the minimum.


‣ An adversary answers queries like “compare x with y”.


‣ Each comparison eliminates at most one element.

• Make n - 1 comparisons, but is this the best we can do?
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What if we want min and max?
• Go through the list twice, one for min and another for max.

 comparisons⌊n/2⌋

 comparisons≤ 2 ⋅ ⌊n/2⌋

Total number of comparisons is at most 3 ⋅ ⌊n/2⌋

• Can we do better? Surprisingly, yes!

‣ Group items into pairs. (The first item becomes a “pair” if n is odd.)


‣ For each of ⌈n∕2⌉ pairs, find “local” min and max.


‣ Among ⌈n∕2⌉ “local” min, find global min; similarly find global max.
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What if we want min and max?
• Is  the best we can do? Remarkably, yes!


‣ An item has + mark if it can be max, and has - mark if it can be min.


‣ Initially each item has both + and -.


‣ An adversary answers queries like “compare x with y”.


‣ The adversary can find input such that:  at most  comparisons each removes two marks;


‣ Every other comparison removes at most one mark.


‣ In total need to remove  marks.

3 ⋅ ⌊n/2⌋

⌊n/2⌋

2n − 2

So  comparisons needed, which can be  ≥ 2n − 2 − 2 * ⌊n/2⌋ + ⌊n/2⌋ = 2n − 2 − ⌊n/2⌋ 3 ⋅ ⌊n/2⌋
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General Selection Problem

• Find ith smallest element (i.e., ith order statistic)?


• Err… Sort them then return the ith entry?


• Sure but this takes  time…Ω(n log n)

RndQuickSort(A):
if  A.size > 1

q := RandomPartition(A)
RndQuickSort(A[1, … (q - 1)])
RndQuickSort(A[(q + 1), … , n])

 Can we be faster? 
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General Selection Problem
• What if i = q?


‣ A[q] is what we need.


• What if i < q?


‣ Find ith order statistic in A[1…(q - 1)]. 

• What if i > q? 

•
 Find (i - q)th order statistic in  A[(q +1)…n].

RndQuickSort(A):
if  A.size > 1

q := RandomPartition(A)
RndQuickSort(A[1, … (q - 1)])
RndQuickSort(A[(q + 1), … , n])

Notice A[1…(q-1)] contains the  
smallest q - 1 elements in A.

This is Reduce-and-Conquer!
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Randomized Selection

• Best-case runtime? Choose the answer as 
the pivot in the first call (unlikely to happen).


‣  


• Worst-case runtime? Partition reduces 
array size by one each time (unlikely to 
happen). 


‣ 


• What is the average case?

Θ(n)

≥ cn + c(n − 1) + . . . + c(2) = Θ(n2)

RndSelect(A, i):
if  A.size = 1
  return A[1]
else 
  q := RandomPartition(A)
  if  i = q
    return A[q]

  else if  i < q
    return RndSelect(A[1 … (q-1)], i)

  else
    return RndSelect(A[(q + 1) … A.size], i - q)

A Reduce-and-Conquer Algorithm
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Average performance of Randomized Selection
• What’s unlikely to happen is either get the exactly right pivot or reduces 

the size just by one. Instead, what’s likely to happen is: partition process 
reduces problem size by a constant factor.


• Call a partition good if it reduces problem size to at most *input_size.


• Let the random variable  be the cost since the last good partition to the 
ith good partition.


• At most  good partitions can occur.


• 


•

0.8

Ci

log1.25 n

𝔼[Ci] ≤ Θ(1) ⋅ 0.8i−1n

𝔼[T(n)] ≤ 𝔼 [
log1.25n

∑
i=1

Ci] =
log1.25n

∑
i=1

𝔼[Ci] = O(n)

find some order statistic in 
 items.n

find some order statistic in 
 items.0.8n

find some order statistic in
 items.0.8n − 1

find some order statistic in 
 items.0.8(0.8n − 1)

we are done

……

C1

C2

Why?
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RndQuickSort vs RndSelect
RndSelect(A, i):
if  A.size = 1
  return A[1]

else 
  q := RandomPartition(A)
  if  i = q
    return A[q]

  else if  i < q
    return RndSelect(A[1 … (q-1)], i)

  else
    return RndSelect(A[(q + 1) … A.size], i - q)

RndQuickSort(A):
if  A.size > 1

q := RandomPartition(A)
RndQuickSort(A[1, … (q - 1)])
RndQuickSort(A[(q + 1), … , n])
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find some order statistic in  
items.

n

find some order statistic in  
items.

0.8n

find some order statistic in  - 
1 items.

0.8n

find some order statistic in 
0.8(  - 1) items.0.8n

we are done

……

C1

C2
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We are not done with selection…
• Can we guarantee worst-case runtime of 

?

• The reason that RndSelect could be 
slow is that RandomPartition might 
return an unbalanced partition.

• Needs a partition procedure that 
guarantees to be balanced. (without 
using too much time;  time to be 
specific).

O(n)

O(n)

RndSelect(A, i):
if  A.size = 1
  return A[1]
else 
  q := RandomPartition(A)
  if  i = q
    return A[q]

  else if  i < q
    return RndSelect(A[1 … (q-1)], i)

  else
    return RndSelect(A[(q + 1) … A.size], i - q)
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M

Smaller than , has  items.m* ≈ 0.3n

Bigger than , has  items.m* ≈ 0.3n

m*

Median of medians

G1 G2 G3 . . . . . . Gn/5

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

• Divide elements into n∕5 groups, each containing 5 elements, call these groups .


• Find the medians of these n∕5 groups, let M be this set of medians.


• Find the median of M, call it .

G1, G2, . . . Gn/5

m*

< < < < <  Partition using  as pivot is good:  
the smaller split has  items. 

m*
≥ 0.3n
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Finding median of medians

• Divide elements into n∕5 groups, each containing 5 elements, call these 
groups .


• Find the medians of these n∕5 groups, let M be this set of medians.


• Find the median of M, call it .

G1, G2, . . . Gn/5

m*

Trivial,  timeO(n)

Sort each group, then find the medians. 
Cost is .(n/5) ⋅ Θ(1) = Θ(n)

‣ Idea: Use QuickSelect, recursively.
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Finding median of medians
QuickSelect(A, i):
if  A.size = 1 
  return A[1]

else 
  m := MedianOfMedians(A)
  q := PartitionWithPivot(A, m)
  if  i = q
    return A[q]

  else if  i < q
    return QuickSelect(A[1…(q-1)], i)

  else
    return QuickSelect(A[(q+1)…A.size, i - q])

MedianOfMedians(A):
if  A.size =1 
  return A[1]

< > := CreateGroups(A)
for  i := 1 to n/5
  Sort( )

M := GetMediansFromSortedGroups( )
return QuickSelect(M, (n/5)/2)

G1, G2, . . . Gn/5

Gi
G1, G2, . . . Gn/5

T(0.7n)

T(0.2n)

O(n)

T(n) ≤ T(0.7n) + T(0.2n) + O(n)

M is  of A !
1
5
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Time complexity
find some o.s. in 

 items.n cn

find some o.s. in 
 items.0.7n

find some o.s. in 
 items.0.2n

0.7cn + 0.2cn = 0.9cn

find some o.s. in 
 items.0.49n

find some o.s. in 
 items.0.14n

find some o.s. in 
 items.0.14n

find some o.s. in 
 items.0.04n 0.81cn

 in totalO(n)
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Time complexity

• 


•

T(n) ≤ T(0.7n) + T(0.2n) + O(n)

T(n) = O(n)

You can verify this by the substitution method.  
(I.e., assume   and then verify.)T(n) ≤ cn

QuickSelect(A, i):
if  A.size = 1 
  return A[1]

else 
  m := MedianOfMedians(A)
  q  := PartitionWithPivot(A, m)
  if  i = q
    return A[q]

  else if  i < q
    return QuickSelect(A[1…(q-1)], i)

  else
    return QuickSelect(A[(q+1)…A.size], i - q])

MedianOfMedians(A):
if  A.size =1 
  return A[1]

< > := CreateGroups(A)
for  i := 1 to n/5
  Sort( )

M := GetMediansFromSortedGroups( )
return QuickSelect(M, (n/5)/2)

G1, G2, . . . Gn/5

Gi
G1, G2, . . . Gn/5
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Complexity of general selection

• QuickSelect uses O(n) time/comparisons.


• Solving general selection needs at least n - 1 comparisons.


‣ Since finding min/max needs at least n - 1 comparisons.


• So the lower and upper bounds match asymptotically.


• But if we care about constants, needs (much) more efforts.



智能软件与⼯程学院 
School of Intelligent Software and Engineering 

Further reading

• [CLRS] Ch.9


