

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne. Thanks for their supports!

选择 Selection

钮鑫涛 Nanjing University 2024 Fall

Order Statistics and Selection

• Given a set of *n* items, the *i*th **order statistic**(顺序统计量)of it is the *i*th

- smallest element of it.
	- ‣ Minimum, maximum, median, …
- *i*, find the *i*th order statistic of *A*.

• The Selection Problem: given a set *A* of *n* distinct numbers and an integer

Find **Min**/**Max**

- *min* := $A[1]$ **for** $i := 2$ **to** $A.length$ $min := A[i]$ **return** *min*
- So easy, sequential scan and keep min/max till now... FindMin(A): • Make $n - 1$ comparisons, but is this the best we can do?₋₋₋₋₋₋------if $A[i] < min$
- Yes! Otherwise at least two elements could be the minimum.
	- ‣ Initially each element could be the minimum.
	- ‣ An adversary answers queries like "compare *x* with *y*".
	- ‣ Each comparison eliminates at most one element.

What if we want min *and* max?

⌊*n*/2⌋ comparisons

- Go through the list twice, one for *min* and another for *max*.
- Can we do better? Surprisingly, yes!
	- ‣ Group items into pairs. (The first item becomes a "pair" if *n* is odd.)
	- ‣ For each of ⌈*n*∕2⌉ pairs, find "local" *min* and *max*.
	- ‣ Among ⌈*n*∕2⌉ "local" *min*, find global *min*; similarly find global *max*.

Total number of comparisons is at most 3 ⋅ $n/2$

What if we want min *and* max?

- Is $3 \cdot \lfloor n/2 \rfloor$ the best we can do? Remarkably, yes!
	- ‣ An item has *+* mark if it can be *max*, and has *-* mark if it can be *min*.
	- ‣ Initially each item has both *+* and *-*.
	- ‣ An adversary answers queries like "compare *x* with *y*".
	-
	- ‣ Every other comparison removes at most one mark.
	- In total need to remove $2n 2$ marks.

 $S_0 \geq 2n - 2 - 2 * \lfloor n/2 \rfloor + \lfloor n/2 \rfloor = 2n - 2 - \lfloor n/2 \rfloor$ comparisons needed, which can be $3 \cdot \lfloor n/2 \rfloor$

▸ The adversary can find input such that: at most $\lfloor n/2 \rfloor$ comparisons each removes two marks;

- Find *i*th smallest element (i.e., *i*th order statistic)?
- Err… Sort them then return the *i*th entry?
- Sure but this takes $\Omega(n \log n)$ time...

General Selection Problem

q := *RandomPartition*(*A*) *RndQuickSort*(*A*[1, … (*q* - 1)]) $RndQuickSort(A[(q + 1), ..., n])$ Can we be faster?

RndQuickSort(A):

if $A.size > 1$

General Selection Problem

- What if $i = q$?
	- ‣ *A*[*q*] is what we need.
- What if $i < q$?

- ‣ Find *i*th order statistic in *A*[1*…*(*q* 1)].
- What if $i > q$?

Find $(i - q)$ th order statistic in $A[(q + 1)]$.

if $A.size > 1$ *q* := *RandomPartition*(*A*) *RndQuickSort*(*A*[1, … (*q* - 1)]) $RndQuickSort(A[(q + 1), ..., n])$

RndQuickSort(A):

$$
) \ldots n].
$$

Notice *A*[1…(*q*-1)] contains the smallest *q -* 1 elements in *A*.

This is Reduce-and-Conquer!

Randomized Selection

- **Best-case** runtime? Choose the answer as the pivot in the first call (unlikely to happen).
	- \blacktriangleright Θ(*n*)
- **Worst-case** runtime? Partition reduces array size by one each time (unlikely to happen).

$$
\rightarrow \geq cn + c(n-1) + \ldots + c(2) = \Theta(n^2)
$$

• What is the **average case**? **return** *RndSelect*(*A*[(*q* + 1) … *A.size*], *i* - *q*)

RndSelect(A, i): **if** $A.size = 1$ **return** *A*[1] **else** *q* := *RandomPartition*(*A*) **if** $i = q$ **return** *A*[*q*] **else if** *i* < *q* **return** *RndSelect*(*A*[1 … (*q*-1)], *i*) **else**

A Reduce-and-Conquer Algorithm

- What's unlikely to happen is either get the exactly right pivot or reduces the size just by one. Instead, what's likely to happen is: partition process reduces problem size by a **constant** factor.
- Call a partition good if it reduces problem size to at most 0.8^* input_size.
- Let the random variable C_i be the cost since the last good partition to the *i*th good partition.
- At most $\log_{1.25} n$ good partitions can occur.
- $\mathbb{E}[C_i] \leq \Theta(1) \cdot 0.8^{i-1}n$

Average performance of Randomized Selection

Why?

RndQuickSort vs RndSelect

RndSelect(A, i):

```
if A.size = 1return A[1]
else 
    q := RandomPartition(A)if i = q    return A[q]
    else if i < q    return RndSelect(A[1 … (q-1)], i)
    else
```
return $RndSelect(A[(q + 1)... A.size], i - q)$

q := *RandomPartition*(*A*) *RndQuickSort*(*A*[1, … (*q* - 1)]) $RndQuickSort(A[(q + 1), ..., n])$

RndQuickSort(A):

if $A.size > 1$

We are not done with selection…

- Can we guarantee **worst-case** runtime of ? *O*(*n*)
- The reason that RndSelect could be slow is that RandomPartition might return an **unbalanced** partition.
- Needs a partition procedure that guarantees to be **balanced**. (without using too much time; $O(n)$ time to be specific).

```
RndSelect(A, i):
if A.size = 1return A[1]
else 
   q := RandomPartition(A)
   if i = q    return A[q]
   else if i < q    return RndSelect(A[1 … (q-1)], i)
   else
          return RndSelect(A[(q + 1) … A.size], i - q)
```


Median of medians

- Divide elements into $n/5$ groups, each containing 5 elements, call these groups $G_1, G_2, \ldots G_{n/5}$. $G_1, G_2, \ldots G_{n/5}$
- Find the medians of these *n*∕5 groups, let *M* be this set of medians.
- Find the median of M , call it m^* .

Finding median of medians

• Divide elements into *n*∕5 groups, each containing 5 elements, call these

Sort each group, then find the medians. Cost is $(n/5) \cdot \Theta(1) = \Theta(n)$.

- groups $G_1, G_2, \ldots G_{n/5}$.
- Find the medians of these *n*∕5 groups, let *M* be this set of medians.
- Find the median of M , call it m^* .
	- ‣ Idea: Use QuickSelect, recursively.

Trivial, *O*(*n*) time

Finding median of medians

 $O(n)$

QuickSelect(A, i):

if $A.size = 1$

return *A*[1]

else

 $m := MedianOfMedians(A)$... *q* := *PartitionWithPivot*(*A*, *m*) if $i = q$ **return** *A*[*q*] **else if** $i < q$ **return** *QuickSelect*(*A*[1…(*q*-1)], i) **else return** *QuickSelect*(*A*[(*q*+1)…*A.size*, *i - q*]) *T*(0.7*n*)

 M is $\frac{1}{2}$ of A ! 1 5

 $T(n) \leq T(0.7n) + T(0.2n) + O(n)$

MedianOfMedians(A):

if $A.size = 1$

return *A*[1]

 $\langle G_1, G_2, \ldots, G_{n/5} \rangle := \text{CreateGroups}(A)$

for $i := 1$ **to** $n/5$

 $Sort(G_i)$

 $M := GetMediansFromSorted Groups(G_1, G_2, \ldots G_{n/5})$

return *QuickSelect*(*M*, (*n*/5)/2)

T(0.2*n*)

Time complexity

$O(n)$ in total

You can verify this by the substitution method. (I.e., assume $T(n) \le cn$ and then verify.)

Time complexity

- *m* := *MedianOfMedians*(*A*) $q :=$ *PartitionWithPivot*(*A*, *m*) **if** $i = q$ **return** *A*[*q*] **else if** $i < q$ **return** *QuickSelect*(*A*[1…(*q*-1)], i) **else return** *QuickSelect*(*A*[(*q*+1)…*A.size*], *i - q*])
- $T(n) \leq T(0.7n) + T(0.2n) + O(n)$

QuickSelect(A, i):

if $A.size = 1$

return *A*[1]

else

MedianOfMedians(A): **if** $A.size = 1$ **return** *A*[1] $\langle G_1, G_2, \ldots, G_{n/5} \rangle := \text{CreateGroups}(A)$ **for** $i := 1$ **to** $n/5$ $Sort(G_i)$ $M := GetMediansFromSorted Groups(G_1, G_2, \ldots G_{n/5})$ **return** *QuickSelect*(*M*, (*n*/5)/2)

Complexity of general selection

- QuickSelect uses *O*(*n*) time/comparisons.
- Solving general selection needs at least *n* 1 comparisons.
	- ‣ Since finding min/max needs at least *n* 1 comparisons.
- So the lower and upper bounds match asymptotically.
- But if we care about constants, needs (much) more efforts.

Further reading

• [CLRS] Ch.9

