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Trees
• A tree is a connected, acyclic undirected graph.

‣ In CS, we often study rooted trees

Root
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Recursive definition of trees
• A tree is either empty, or has a root  that 

connects to the roots of zero or more non-empty 
(sub)trees.


‣ Root of each subtree is a child of , and  is 
the parent of each subtree’s root.


‣ Nodes with no children are leaves.


‣ Nodes with same parent are siblings.


‣ If a node  is on the path from  to , then  is 
an ancestor of , and  is a descendant of .
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More terminology on Trees
• The depth of a node  is the length of the 

path from  to the root .

• The height of a node  is the length of the 
longest path from  to one of its 
descendants.

‣ Height of a leaf node is zero.


‣ Height of a non-leaf node is the max 
height of its children plus one.
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Binary Trees
• A binary tree (二叉树) is a tree in which each node has at most two 

children.


‣ Often call these children as left child and right child.
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Full Binary Trees
• A full binary tree (满二叉树) is a binary tree where each node has either 

zero or two children.


‣ A full binary tree is either a single node, or a tree in which the two 
subtrees of the root are full binary trees.
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Complete Binary Trees
• A complete binary tree (完全二叉树) is a binary tree where every level, 

except possibly the last, is completely filled, and all nodes in the last level 
are as far left as possible.


‣ A complete binary tree can be efficiently represented using an array.
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Perfect binary tree

• A perfect binary tree (完美二叉树) is a binary tree where all non-leaf 
nodes have two children and all leaves have same depth.
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Representing Binary Trees

class Node {
Data data
Node paraent
Node left
Node right

}
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What if nodes have more children?
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Representing Binary Trees

class Node {
Data data
Node paraent
Node firstChild
Node nextSibling

}
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∅Left-child, right-sibling representation. 
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Tree Traversals
• Suppose we want to visit all nodes of a tree


‣ Recall the recursive definition of trees: a tree is either empty, or has a root connecting to 
the roots of zero or more non-empty subtrees.


• It is natural to visit the nodes in a tree recursively, but in what order?


- Preorder traversal (先序遍历): given a tree with root , first visit , then visit subtrees 
rooted at ’s children, using preorder traversal.


- Postorder traversal (后序遍历): given a tree with root , first visit subtrees rooted at ’s 
children using postorder traversal, then visit .


- Inorder traversal (中序遍历): given a binary tree with root , first visit subtree rooted at 
r.left, then visit , finally visit subtree rooted at r.right.
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Preorder traversal
• Given a tree with root , first visit 

, then visit subtrees rooted at ’s 
children, using preorder traversal.

r
r r

PreorderTrav(r):
if  r != NULL
  Visit(r)
  for each child u of r 

    PreorderTrav(u)
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Postorder traversal
• Given a tree with root , first visit 

subtrees rooted at ’s children using 
postorder traversal, then visit .

r
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PostorderTrav(r):
if  r != NULL
  for each child u of r 

    PostorderTrav(u)
Visit(r)
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Inorder traversal
• Given a binary tree with root , first 

visit subtree rooted at r.left, then visit 
, finally visit subtree rooted at r.right.

r
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InorderTrav(r):
if  r != NULL

InorderTrav(r.left)
Visit(r)
InorderTrav(r.right)
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Complexity of recursive traversal

• Time complexity for a size  tree?


‣  as processing each node takes .

n

Θ(n) Θ(1)

• Space complexity for a size  tree?


‣  as worst-case call stack depth is .

n

O(n) Θ(n)

PreorderTrav(r):
if  r != NULL
  Visit(r)
  for each child u of r 

    PreorderTrav(u)

PostorderTrav(r):
if  r != NULL
  for each child u of r 

    PostorderTrav(u)
Visit(r)

InorderTrav(r):
if  r != NULL

InorderTrav(r.left)
Visit(r)
InorderTrav(r.right)
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Sample application of preorder traversal
• Directory Listing

ListDir(obj, depth):
if  obj != NULL
  PrintName(obj, depth) 
  if  IsDirectory(obj)

  for each subobj in obj
    ListDir(subobj, depth + 1)
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Iterative tree traversal
• Basic idea: simulate the recursive process with the help of a stack.

PreorderTrav(r):
if  r != NULL
  Visit(r)
  for each child u of r 

    PreorderTrav(u)

class Frame {
    Node node
 bool visit
 Frame(Node n, bool v) {     
 node := n    
 visit := v

 }
}

PreorderTravIter(r):
Stack s
s.push(Frame(r,  false))
while  !s.empty()

 f = s.pop()
 if  f.node != NULL
    if  f.visit
      Visit(f.node)

    else
      for each child u of  f.node
        s.push(Frame(u,  false))

s.push(Frame(f.node, true))
Visit node or the subtree rooted at node. 

Exchange for postorder traversal 

What about inorder traversal?
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Iterative inorder tree traversal
• What is the time complexity?


‣ 


• What is the space complexity?


‣ 


• When do we need Θ(n) space?


• Can we have better space complexity?

Θ(n)

O(n)

InorderTravIter(r):
Stack s
s.push(Frame(r,  false))
while  !s.empty()

 f = s.pop()
 if  f.node != NULL
    if  f.visit
      Visit(f.node)

    else
s.push(Frame(f.node.right,  false))
s.push(Frame(f.node, true))
s.push(Frame(f.node.left,  false))

r

‣  *Morris inorder tree traversal 
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Level-order traversal of trees
• A special kind of traversal is breadth-first traversal. （Previous methods are all depth-first 

traversal.）


‣  In a breadth-first traversal, the nodes are visited level-by-level starting at the root and moving 
down, visiting the nodes at each level from left to right.

LevelorderTrav(r):
if  r != NULL
Queue q
q.add(r)
while  !q.empty()
  node := q.remove()
  if  node != NULL
    Visit(node)
    q.add(node.left)
    q.add(node.right)

What is the time complexity?     

What is the space complexity?

 in the worst-caseΘ(n)

Θ(n)
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Further reading
• [CLRS] Ch.10 (10.4)


• [Weiss] Ch.4 (4.1-4.2)


• [Morin] Ch.6 (6.1)


