
智能软件与⼯程学院
School of Intelligent Software and Engineering

树
Trees

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne.Thanks for their supports!

钮鑫涛
Nanjing University

2024 Fall

智能软件与⼯程学院
School of Intelligent Software and Engineering

Trees
• A tree is a connected, acyclic undirected graph.

‣ In CS, we often study rooted trees

Root

智能软件与⼯程学院
School of Intelligent Software and Engineering

Recursive definition of trees
• A tree is either empty, or has a root that

connects to the roots of zero or more non-empty
(sub)trees.

‣ Root of each subtree is a child of , and is
the parent of each subtree’s root.

‣ Nodes with no children are leaves.

‣ Nodes with same parent are siblings.

‣ If a node is on the path from to , then is
an ancestor of , and is a descendant of .

r

r r

v r u v
u u v

Parent

Child

leaves

Sibling

Ancestor

descendant

智能软件与⼯程学院
School of Intelligent Software and Engineering

More terminology on Trees
• The depth of a node is the length of the

path from to the root .

• The height of a node is the length of the
longest path from to one of its
descendants.

‣ Height of a leaf node is zero.

‣ Height of a non-leaf node is the max
height of its children plus one.

u
u r

u
u

r

d = 1

d = 3

h = 2

h = 0

智能软件与⼯程学院
School of Intelligent Software and Engineering

Binary Trees
• A binary tree (⼆叉树) is a tree in which each node has at most two

children.

‣ Often call these children as left child and right child.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Full Binary Trees
• A full binary tree (满⼆叉树) is a binary tree where each node has either

zero or two children.

‣ A full binary tree is either a single node, or a tree in which the two
subtrees of the root are full binary trees.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Complete Binary Trees
• A complete binary tree (完全⼆叉树) is a binary tree where every level,

except possibly the last, is completely filled, and all nodes in the last level
are as far left as possible.

‣ A complete binary tree can be efficiently represented using an array.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Perfect binary tree

• A perfect binary tree (完美⼆叉树) is a binary tree where all non-leaf
nodes have two children and all leaves have same depth.

智能软件与⼯程学院
School of Intelligent Software and Engineering

Representing Binary Trees

class Node {
Data data
Node paraent
Node left
Node right

}

∅

∅

∅ ∅ ∅ ∅

∅ ∅

∅ ∅∅

∅ ∅
What if nodes have more children?

Root

智能软件与⼯程学院
School of Intelligent Software and Engineering

Representing Binary Trees

class Node {
Data data
Node paraent
Node firstChild
Node nextSibling

}

∅
∅

∅∅

∅ ∅

∅

∅

∅ ∅

∅Left-child, right-sibling representation.

Root

∅

∅ ∅

智能软件与⼯程学院
School of Intelligent Software and Engineering

Tree Traversals
• Suppose we want to visit all nodes of a tree

‣ Recall the recursive definition of trees: a tree is either empty, or has a root connecting to
the roots of zero or more non-empty subtrees.

• It is natural to visit the nodes in a tree recursively, but in what order?

- Preorder traversal (先序遍历): given a tree with root , first visit , then visit subtrees
rooted at ’s children, using preorder traversal.

- Postorder traversal (后序遍历): given a tree with root , first visit subtrees rooted at ’s
children using postorder traversal, then visit .

- Inorder traversal (中序遍历): given a binary tree with root , first visit subtree rooted at
r.left, then visit , finally visit subtree rooted at r.right.

r r
r

r r
r

r
r

智能软件与⼯程学院
School of Intelligent Software and Engineering

Preorder traversal
• Given a tree with root , first visit

, then visit subtrees rooted at ’s
children, using preorder traversal.

r
r r

PreorderTrav(r):
if r != NULL
 Visit(r)
 for each child u of r

 PreorderTrav(u)

41

20 65

11 29 50 91

32 72 99

41 20 11 29 32 65 50 91 72 99

2

3 4

5

6

7 8

9 10

1

智能软件与⼯程学院
School of Intelligent Software and Engineering

Postorder traversal
• Given a tree with root , first visit

subtrees rooted at ’s children using
postorder traversal, then visit .

r
r

r

PostorderTrav(r):
if r != NULL
 for each child u of r

 PostorderTrav(u)
Visit(r)

41

20 65

11 29 50 91

32 72 99

11 32 29 20 50 72 99 91 65 41

4

5

6 7

9

10

1

2

3 8

智能软件与⼯程学院
School of Intelligent Software and Engineering

Inorder traversal
• Given a binary tree with root , first

visit subtree rooted at r.left, then visit
, finally visit subtree rooted at r.right.

r

r

InorderTrav(r):
if r != NULL

InorderTrav(r.left)
Visit(r)
InorderTrav(r.right)

41

20 65

11 29 50 91

32 72 99

11 20 32 29 41 50 65 72 91 99

2

1 4

3

6

7

8

9

10

5

智能软件与⼯程学院
School of Intelligent Software and Engineering

Complexity of recursive traversal

• Time complexity for a size tree?

‣ as processing each node takes .

n

Θ(n) Θ(1)

• Space complexity for a size tree?

‣ as worst-case call stack depth is .

n

O(n) Θ(n)

PreorderTrav(r):
if r != NULL
 Visit(r)
 for each child u of r

 PreorderTrav(u)

PostorderTrav(r):
if r != NULL
 for each child u of r

 PostorderTrav(u)
Visit(r)

InorderTrav(r):
if r != NULL

InorderTrav(r.left)
Visit(r)
InorderTrav(r.right)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Sample application of preorder traversal
• Directory Listing

ListDir(obj, depth):
if obj != NULL
 PrintName(obj, depth)
 if IsDirectory(obj)

 for each subobj in obj
 ListDir(subobj, depth + 1)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Iterative tree traversal
• Basic idea: simulate the recursive process with the help of a stack.

PreorderTrav(r):
if r != NULL
 Visit(r)
 for each child u of r

 PreorderTrav(u)

class Frame {
 Node node
 bool visit
 Frame(Node n, bool v) {
 node := n
 visit := v

 }
}

PreorderTravIter(r):
Stack s
s.push(Frame(r, false))
while !s.empty()

 f = s.pop()
 if f.node != NULL
 if f.visit
 Visit(f.node)

 else
 for each child u of f.node
 s.push(Frame(u, false))

s.push(Frame(f.node, true))
Visit node or the subtree rooted at node.

Exchange for postorder traversal

What about inorder traversal?

智能软件与⼯程学院
School of Intelligent Software and Engineering

Iterative inorder tree traversal
• What is the time complexity?

‣

• What is the space complexity?

‣

• When do we need Θ(n) space?

• Can we have better space complexity?

Θ(n)

O(n)

InorderTravIter(r):
Stack s
s.push(Frame(r, false))
while !s.empty()

 f = s.pop()
 if f.node != NULL
 if f.visit
 Visit(f.node)

 else
s.push(Frame(f.node.right, false))
s.push(Frame(f.node, true))
s.push(Frame(f.node.left, false))

r

‣ *Morris inorder tree traversal

智能软件与⼯程学院
School of Intelligent Software and Engineering

Level-order traversal of trees
• A special kind of traversal is breadth-first traversal. （Previous methods are all depth-first

traversal.）

‣ In a breadth-first traversal, the nodes are visited level-by-level starting at the root and moving
down, visiting the nodes at each level from left to right.

LevelorderTrav(r):
if r != NULL
Queue q
q.add(r)
while !q.empty()
 node := q.remove()
 if node != NULL
 Visit(node)
 q.add(node.left)
 q.add(node.right)

What is the time complexity?

What is the space complexity?

 in the worst-caseΘ(n)

Θ(n)

智能软件与⼯程学院
School of Intelligent Software and Engineering

Further reading
• [CLRS] Ch.10 (10.4)

• [Weiss] Ch.4 (4.1-4.2)

• [Morin] Ch.6 (6.1)

