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Trees

’A tree Is a connected, acyclic undirected graph.

> |In CS, we often study rooted trees

Root— - -
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Recursive definition of trees

* A tree is either empty, or has a root r that

connects to the roots of zero or more non-empty
(sub)trees.

» Root of each subtree is a child of r,and r is
the parent of each subtree’s root.

> Nodes with no children are leaves.

> Nodes with same parent are siblings.

> |f a node v is on the path from r to u, then v is
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an ancestor of 1, and u iIs a descendant of v. “leaves®
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 More terminology on Trees

 The depth of a node u is the length of the
path from u to the root r.

 The height of a node u is the length of the
longest path from u to one of its
descendants.

> Height of a leaf node Is zero.

> Height of a non-leaf node is the max
height of its children plus one.




Binary lrees

e A binary tree (—X##]) is a tree in which each node has at most two
children.

> Often call these children as left child and right child.




Full Binary Trees

Sujnlls

A full binary tree (i — X %) is a binary tree where each node has either
zero or two children.

> A full binary tree is either a single node, or a tree in which the two
subtrees of the root are full binary trees.




Complete Binary Trees

» A complete binary tree (TE =X ##) is a binary tree where every level,

except possibly the last, is completely filled, and all nodes in the last level
are as far left as possible.

> A complete binary tree can be efficiently represented using an array.




Perfect binary tree

» A perfect binary tree (58 _X#) is a binary tree where all non-leaf
nodes have two children and all leaves have same depth.
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class Node {
Data data

Node paraent
Node /eft
Node right

h

What if nodes have more children?
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class Node {
Data data

Node paraent

Node firstChild
Node nextSibling

h

Left-child, right-sibling representation.



Tree Traversals

e Suppose we want to visit all nodes of a tree

> Recall the recursive definition of trees: a tree is either empty, or has a root connecting to
the roots of zero or more non-empty subtrees.

* |t is natural to visit the nodes in a tree recursively, but in what order?

- Preorder traversal (5% 1&[H): given a tree with root r, first visit r, then visit subtrees
rooted at r’s children, using preorder traversal.

- Postorder traversal (f[5&1&E[75): given a tree with root r, first visit subtrees rooted at r’s
children using postorder traversal, then visit r.

- Inorder traversal (FR|51E[7): given a binary tree with root r, first visit subtree rooted at
r.left, then visit r, finally visit subtree rooted at r.right.



Preorder traversal

1
41

 Given a tree with root r, first visit

r, then visit subtrees rooted at r’s
children, using preorder traversal.

PreorderTrav(r):
if r!=NULL
Visit(r)
for each child u of r
PreorderTrav(u)

41 20 11 29 32 65 50 01 72 99
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Postorder traversal

10

41

 Given a tree with root r, first visit
subtrees rooted at r’s children using
postorder traversal, then visit 7.

PostorderTrav(r):
if r!=NULL
for each child u of r

PostorderTrav(u)
Visit(r)

11 32 29 20 50 72 99 01 65 41



Inorder traversal

o Given a binary tree with root r, first
visit subtree rooted at r.left, then visit

r, finally visit subtree rooted at r.right.

InorderTrav(r):

if r!=NULL
InorderTrav(r.left)
Visit(r)
InorderTrav(r.right)

11 20 32 29 41 50 65 72 01 99
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Complexity of recursive traversal

PreorderTrav(r): PostorderTrav(r): InorderTrav(r):
if r!=NULL if r!=NULL if r!=NULL
Visit(r) for each child u of r InorderTrav(r.left)
for each child u of r PostorderTrav(u) Visit(r)
PreorderTrav(u) Visit(r) InorderTrav(r.right)

 Time complexity for a size n tree”?

» ®(n) as processing each node takes O(1).

o Space complexity for a size n tree?

» ((n) as worst-case call stack depth is ®(n).
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Sarﬁple application of preorder traversal

/usr

* Directory Listing mark
book
fusr® " chl.r
[T ch2.r
mark* alex* bill* ch3.r
,,,,//”””/’/’1\\\\\\\\\ ///\\\\\\\\\\\\ course
book* course* junk  junk work* course* cop3530
I~ \ | fall
chlr ch2r ch3r cop3530%* cop3212* syl.r
T~ L T spr
le* s1|)r* su|m* fall* fall . syl.r
/N /I\ 1.
sylr ~ sylr sylr  grades proglr progd.r  prog2r proglr grades junk o
alex
. . - junk
ListDir(obj, depth): bl
work
If Ob] '= NULL course
cop3212
PrintName(obj, depth) an
grades
if IsDirectory(obj) rogl
prog2.r
for each subobj in 0bj fall
prog2.r

ListDir(subobj, depth + 1) progl.r

grades



lterative tree traversal

 Basic idea: simulate the recursive process with the help of a stack.

PreorderTrav(r): PreorderTravlter(r):
if r!=NULL Stack s
Visit(r) s.push(Frame(r, false))
for each child u of r while !s.empty()
PreorderTrav(u) f=s.pop()
class Frame { if f.node |= NULL
Node node T fvisit
bool visif - - - - - - - L Visit(f.node)
Frame(Node n, bool v) {\\\\ else Exchange for postorder traversal
e = \‘ for each child u of f.node
Licit 1 I,' s.push(Frame(u, false)) ~ T
\ y s.push(Frame(f.node, true))”

1 Visit node or the subtree rooted at node. What about inorder traversal?
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Iterative inorder tree traversal
Inorder Travlter(r):  What is the time complexity?
Stack s
s.push(Frame(r, false)) ’
while !s.empty() O(n)
f=s.pop() , | |
£ frode = NULL What is the space complexity?
if fvisit
Visit(f.node) > O(n) /
else / /

 \When do we need ©O(n) space?

%

 Can we have better space complexity?

s.push(Frame(f.node.right, false))

s.push(Frame(f.node, true))
s.push(Frame(f.node.left, false))

»  *Morris Inorder tree traversal



Ti#EFkr

| evel-order traversal of trees

» A special kind of traversal is breadth-first traversal. (Previous methods are all depth-first
traversal.)

> In a breadth-first traversal, the nodes are visited level-by-level starting at the root and moving
down, visiting the nodes at each level from left to right.

LevelorderTr aV(r ) What is the time complexity?

if r'!=NULL O(n)

Queue g _ _
What is the space complexity?

q.add(r)

while 1g.empty() ®(n) in the worst-case

node = q.remove()

if node != NULL
Visit(node)
q.add(node left)
q.add(node .right)
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Further reading

 [CLRS] Ch.10 (10.4)
 [Weiss] Ch.4 (4.1-4.2)

e [Morin] Ch.6 (6.1)
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