
智能软件与工程学院
School of Intelligent Software and Engineering

树
Trees

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne.Thanks for their supports!

钮鑫涛
Nanjing University

2024 Fall

智能软件与工程学院
School of Intelligent Software and Engineering

Trees
• A tree is a connected, acyclic undirected graph.

‣ In CS, we often study rooted trees

Root

智能软件与工程学院
School of Intelligent Software and Engineering

Recursive definition of trees
• A tree is either empty, or has a root that

connects to the roots of zero or more non-empty
(sub)trees.

‣ Root of each subtree is a child of , and is
the parent of each subtree’s root.

‣ Nodes with no children are leaves.

‣ Nodes with same parent are siblings.

‣ If a node is on the path from to , then is
an ancestor of , and is a descendant of .

r

r r

v r u v
u u v

Parent

Child

leaves

Sibling

Ancestor

descendant

智能软件与工程学院
School of Intelligent Software and Engineering

More terminology on Trees
• The depth of a node is the length of the

path from to the root .

• The height of a node is the length of the
longest path from to one of its
descendants.

‣ Height of a leaf node is zero.

‣ Height of a non-leaf node is the max
height of its children plus one.

u
u r

u
u

r

d = 1

d = 3

h = 2

h = 0

智能软件与工程学院
School of Intelligent Software and Engineering

Binary Trees
• A binary tree (二叉树) is a tree in which each node has at most two

children.

‣ Often call these children as left child and right child.

智能软件与工程学院
School of Intelligent Software and Engineering

Full Binary Trees
• A full binary tree (满二叉树) is a binary tree where each node has either

zero or two children.

‣ A full binary tree is either a single node, or a tree in which the two
subtrees of the root are full binary trees.

智能软件与工程学院
School of Intelligent Software and Engineering

Complete Binary Trees
• A complete binary tree (完全二叉树) is a binary tree where every level,

except possibly the last, is completely filled, and all nodes in the last level
are as far left as possible.

‣ A complete binary tree can be efficiently represented using an array.

智能软件与工程学院
School of Intelligent Software and Engineering

Perfect binary tree

• A perfect binary tree (完美二叉树) is a binary tree where all non-leaf
nodes have two children and all leaves have same depth.

智能软件与工程学院
School of Intelligent Software and Engineering

Representing Binary Trees

class Node {
Data data
Node paraent
Node left
Node right

}

∅

∅

∅ ∅ ∅ ∅

∅ ∅

∅ ∅∅

∅ ∅
What if nodes have more children?

Root

智能软件与工程学院
School of Intelligent Software and Engineering

Representing Binary Trees

class Node {
Data data
Node paraent
Node firstChild
Node nextSibling

}

∅
∅

∅∅

∅ ∅

∅

∅

∅ ∅

∅Left-child, right-sibling representation.

Root

∅

∅ ∅

智能软件与工程学院
School of Intelligent Software and Engineering

Tree Traversals
• Suppose we want to visit all nodes of a tree

‣ Recall the recursive definition of trees: a tree is either empty, or has a root connecting to
the roots of zero or more non-empty subtrees.

• It is natural to visit the nodes in a tree recursively, but in what order?

- Preorder traversal (先序遍历): given a tree with root , first visit , then visit subtrees
rooted at ’s children, using preorder traversal.

- Postorder traversal (后序遍历): given a tree with root , first visit subtrees rooted at ’s
children using postorder traversal, then visit .

- Inorder traversal (中序遍历): given a binary tree with root , first visit subtree rooted at
r.left, then visit , finally visit subtree rooted at r.right.

r r
r

r r
r

r
r

智能软件与工程学院
School of Intelligent Software and Engineering

Preorder traversal
• Given a tree with root , first visit

, then visit subtrees rooted at ’s
children, using preorder traversal.

r
r r

PreorderTrav(r):
if r != NULL
 Visit(r)
 for each child u of r

 PreorderTrav(u)

41

20 65

11 29 50 91

32 72 99

41 20 11 29 32 65 50 91 72 99

2

3 4

5

6

7 8

9 10

1

智能软件与工程学院
School of Intelligent Software and Engineering

Postorder traversal
• Given a tree with root , first visit

subtrees rooted at ’s children using
postorder traversal, then visit .

r
r

r

PostorderTrav(r):
if r != NULL
 for each child u of r

 PostorderTrav(u)
Visit(r)

41

20 65

11 29 50 91

32 72 99

11 32 29 20 50 72 99 91 65 41

4

5

6 7

9

10

1

2

3 8

智能软件与工程学院
School of Intelligent Software and Engineering

Inorder traversal
• Given a binary tree with root , first

visit subtree rooted at r.left, then visit
, finally visit subtree rooted at r.right.

r

r

InorderTrav(r):
if r != NULL

InorderTrav(r.left)
Visit(r)
InorderTrav(r.right)

41

20 65

11 29 50 91

32 72 99

11 20 32 29 41 50 65 72 91 99

2

1 4

3

6

7

8

9

10

5

智能软件与工程学院
School of Intelligent Software and Engineering

Complexity of recursive traversal

• Time complexity for a size tree?

‣ as processing each node takes .

n

Θ(n) Θ(1)

• Space complexity for a size tree?

‣ as worst-case call stack depth is .

n

O(n) Θ(n)

PreorderTrav(r):
if r != NULL
 Visit(r)
 for each child u of r

 PreorderTrav(u)

PostorderTrav(r):
if r != NULL
 for each child u of r

 PostorderTrav(u)
Visit(r)

InorderTrav(r):
if r != NULL

InorderTrav(r.left)
Visit(r)
InorderTrav(r.right)

智能软件与工程学院
School of Intelligent Software and Engineering

Sample application of preorder traversal
• Directory Listing

ListDir(obj, depth):
if obj != NULL
 PrintName(obj, depth)
 if IsDirectory(obj)

 for each subobj in obj
 ListDir(subobj, depth + 1)

智能软件与工程学院
School of Intelligent Software and Engineering

Iterative tree traversal
• Basic idea: simulate the recursive process with the help of a stack.

PreorderTrav(r):
if r != NULL
 Visit(r)
 for each child u of r

 PreorderTrav(u)

class Frame {
 Node node
 bool visit
 Frame(Node n, bool v) {
 node := n
 visit := v

 }
}

PreorderTravIter(r):
Stack s
s.push(Frame(r, false))
while !s.empty()

 f = s.pop()
 if f.node != NULL
 if f.visit
 Visit(f.node)

 else
 for each child u of f.node
 s.push(Frame(u, false))

s.push(Frame(f.node, true))
Visit node or the subtree rooted at node.

Exchange for postorder traversal

What about inorder traversal?

智能软件与工程学院
School of Intelligent Software and Engineering

Iterative inorder tree traversal
• What is the time complexity?

‣

• What is the space complexity?

‣

• When do we need Θ(n) space?

• Can we have better space complexity?

Θ(n)

O(n)

InorderTravIter(r):
Stack s
s.push(Frame(r, false))
while !s.empty()

 f = s.pop()
 if f.node != NULL
 if f.visit
 Visit(f.node)

 else
s.push(Frame(f.node.right, false))
s.push(Frame(f.node, true))
s.push(Frame(f.node.left, false))

r

‣ *Morris inorder tree traversal

智能软件与工程学院
School of Intelligent Software and Engineering

Level-order traversal of trees
• A special kind of traversal is breadth-first traversal. （Previous methods are all depth-first

traversal.）

‣ In a breadth-first traversal, the nodes are visited level-by-level starting at the root and moving
down, visiting the nodes at each level from left to right.

LevelorderTrav(r):
if r != NULL
Queue q
q.add(r)
while !q.empty()
 node := q.remove()
 if node != NULL
 Visit(node)
 q.add(node.left)
 q.add(node.right)

What is the time complexity?

What is the space complexity?

 in the worst-caseΘ(n)

Θ(n)

智能软件与工程学院
School of Intelligent Software and Engineering

Further reading
• [CLRS] Ch.10 (10.4)

• [Weiss] Ch.4 (4.1-4.2)

• [Morin] Ch.6 (6.1)

