
智能软件与工程学院
School of Intelligent Software and Engineering

搜索树
Search Trees

The slides are mainly adapted from the original ones shared by Chaodong Zheng and Kevin Wayne.Thanks for their supports!

钮鑫涛
Nanjing University

2024 Fall

智能软件与工程学院
School of Intelligent Software and Engineering

The Dictionary Abstract Data Type
• A Dictionary (also symbol-table, relation, map) ADT is used to represent a set of

elements with (usually distinct) key values.

‣ Each element has a key field and a data field.

• Operations the Dictionary ADT should support:

‣ Search(S,k): Find an element in S with key value k.

‣ Insert(S,x): Add x to S. (What if element with same key exists?)

‣ Remove(S,x): Remove element x from S, assuming x is in S.

‣ Remove(S,k): Remove element with key value k from S.

010025
Alice

Female

021437
Bob
Male114582

Emma
Female

Convention: the new value
replaces the old one

智能软件与工程学院
School of Intelligent Software and Engineering

The Dictionary Abstract Data Type
• In typical applications, keys are from an ordered universe (Ordered

Dictionary):

‣ Min(S) and Max(S): Find the element in S with minimum/maximum key.

‣ Successor(S,x) or Successor(S,k):

- Find smallest element in S that is larger than x.key (or key k).

‣ Predecessor(S,x) or Predecessor(S,k):

- Find largest element in S that is smaller than x.key (or key k).

智能软件与工程学院
School of Intelligent Software and Engineering

Efficient implementation of Ordered Dictionary

• Data structure implementing all these operations efficiently?

‣ Efficient means within time.O(log n)

Search(S,k) Insert(S,x) Remove(S,x)

SimpleArray

SimpleLinkedList

SortedArray

SortedLinkedList

BinaryHeap

O(n) O(n)O(1)

O(n) O(1) O(1)

O(log n) O(n) O(n)

O(n) O(n) O(1)

O(n) O(log n) O(log n)

智能软件与工程学院
School of Intelligent Software and Engineering

Binary Search Tree (BST)
• A binary search tree (BST) is a binary tree in which each node stores an

element, and satisfies the binary-search-tree property (BST property):

‣ For every node in the tree, if is in the left subtree of , then
; if is in the right subtree of , then .
x y x

y . key ≤ x . key y x y . key ≥ x . key

41

20 65

13 32 50 91

x

≤ x ≥ x

智能软件与工程学院
School of Intelligent Software and Engineering

Binary Search Tree (BST)
• Given a BST , let be the set of elements stored in , what is the

sequence of the in-order traversal of ?
T S T

T

Inorder traversal: 13, 20, 32, 41, 50, 65, 91

41

20 65

13 32 50 91

‣ Elements of in ascending order!S

智能软件与工程学院
School of Intelligent Software and Engineering

Search in BST
• Given a BST root and key , find an element with key ?

‣ If x.key = k then return and we are done!

‣ If x.key > k then recurse into the BST rooted at x.left.

‣ If x.key < k then recurse into the BST rooted at x.right.

x k k

x

BSTSearch(x,k):
if x = NULL or x.key = k
 return x
else if x.key > k
 return BSTSearch(x.left, k)
else
 return BSTSearch(x.right, k)

BSTSearchIter(x,k):
while x != NULL and x.key != k
 if x.key > k
 x = x.left

 else
 x = x.right

return x

tail recursion iterative version→

41

20 65

13 32 50 91

x

≤ x ≥ x

智能软件与工程学院
School of Intelligent Software and Engineering

Complexity of Search in BST
• Worst-case time complexity of Search operation?

‣ where is the height of the BST.

• How large can be in an -node BST?

‣ , when the BST is like a “path”.

• How small can be in an -node BST?

‣ , when the BST is “well balanced”.

Θ(h) h

h n

Θ(n)

h n

Θ(log n)

13

20

32

91

41

20 65

13 32 50 91
Height of the BST affects the efficiency of Search

智能软件与工程学院
School of Intelligent Software and Engineering

Min and Max in BST
• How to find a minimum element in a BST?

‣ Keep going left until a node without left child.

• How to find a maximum element in a BST?

‣ Keep going right until a node without right child.

• Time complexity of Min and Max operation?

‣ in the worst-case where is height.Θ(h) h

41

20 65

13 32 50 91

智能软件与工程学院
School of Intelligent Software and Engineering

Successor in BST
• BSTSuccessor(x): Find the smallest element in the BST with key value

larger than x.key.

• In-order traversal of BST lists the elements in sorted order. Where in the tree
does the element following x reside?

If the right subtree rooted at x is non-empty:
The minimum element in BST rooted at x.right is
what we want.

Otherwise:
The nearest ancestor of x whose left child is also
ancestor of x.

w
x

y

x

y

z

智能软件与工程学院
School of Intelligent Software and Engineering

Successor in BST

BSTSuccessor(x,k):
if x.right != NULL
 return BSTMin(x.right)

y := x.parent
while y != NULL and y.right = x
 x := y
 y := y.parent
return y

• BSTSuccessor(x): Find the smallest element in the BST with key value
larger than x.key.

• In-order traversal of BST lists the elements in sorted order.

• Time complexity of BSTSuccessor?

‣ in the worst-case where is the height.

• BSTPredecessor can be designed and
analyzed similarly.

Θ(h) h

智能软件与工程学院
School of Intelligent Software and Engineering

Operations change BST

• So far we’ve seen operations that do not change the BST.

‣ Search, Min/Max, Successor/Predecessor.

• How about operations that will change the BST?

‣ Insert and Remove.

智能软件与工程学院
School of Intelligent Software and Engineering

Insert in BST
• BSTInsert(T,z): Add z to BST T. Notice, insertion should not break

the BST property.

• Just like doing a search in T with key z.key. This search will fail and end at
a leaf y. Insert z as left or right child of y.

41

20 65

13 32 50 91

36

Example: Insert element with key 36

Why above procedure is correct?

智能软件与工程学院
School of Intelligent Software and Engineering

Insert in BST

• Time complexity of the Insert operation?

‣ in the worst-case where is the height of .Θ(h) h T

• BSTInsert(T,z): Add z to BST T. Notice, insertion should not break
the BST property.

• Just like doing a search in T with key z.key. This search will fail and end at
a leaf y. Insert z as left or right child of y.

智能软件与工程学院
School of Intelligent Software and Engineering

Remove in BST
• BSTRemove(T,z): Remove element z from T. Notice, removal should

not break the BST property.

• Case 1: z has no child.

‣ Easy, simply remove z from the BST tree

q

A

z

…, z, q, A, …

q

A

…, q, A, …

智能软件与工程学院
School of Intelligent Software and Engineering

Remove in BST
• BSTRemove(T,z): Remove element z from T. Notice, removal should not

break the BST property.

• Case 2: z has one single child.

‣ Elevate subtree rooted at z’s single child to take z’s position.

q

Cz

…, z, A, r, B, q, C, …

r

BA

…, A, r, B, q, C, …

q

C
r

BA

智能软件与工程学院
School of Intelligent Software and Engineering

Remove in BST
• BSTRemove(T,z): Remove element z from T. Notice, removal should not

break the BST property.

• Case 3: z has two children.

q

Ez

r

DC

l

BA

…, A, l, B, z, C, r, D, q, E …

• Which one should be here to
replace node z ?

‣ The min value node in
subtree rooted at z.right.

• That is, replace node z with

BSTSuccessor(z).

• BSTSuccessor(z) can be:

‣ r if r.left = Null

‣ BSTMin(r.left) if r.left ≠ Null

‣ Case 3a: z.right.left = Null

‣ Case 3b: z.right.left ≠ Null

智能软件与工程学院
School of Intelligent Software and Engineering

Remove in BST
• BSTRemove(T,z): Remove element z from T. Notice, removal should not

break the BST property.

• Case 3a: z has two children and z.right.left = Null

q

Ez

r

D

l

BA

…, A, l, B, z, r, D, q, E …

q

Er

Dl

BA

…, A, l, B, r, D, q, E …

智能软件与工程学院
School of Intelligent Software and Engineering

Remove in BST
• BSTRemove(T,z): Remove element z from T. Notice, removal should not

break the BST property.

• Case 3b: z has two children and z.right.left ≠ Null

q

Ez

r

D

C

l

BA

…, A, l, B, z, y, C’, C\C’, r, D, q, E …
C′￼

y

x

BSTSuccessor(z) is y,
thus y.left = Null

q

Ey

r

D

C

l

BA

…, A, l, B, y, C’, C\C’, r, D, q, E …

C′￼

x

智能软件与工程学院
School of Intelligent Software and Engineering

Remove in BST
• BSTRemove(T,z): Remove element z from T. Notice, removal should not break the BST

property.

• Case 1: z has no child.

‣ Easy, simply remove z from the BST tree

• Case 2: z has one single child.

‣ Elevate subtree rooted at z’s single child to take z’s position.

• Case 3a: z has two children and z.right.left = Null

• Case 3b: z has two children and z.right.left ≠ Null

Θ(1)

Θ(1)

Θ(1)

O(h)

Worst-case time complexity of Remove operation is .Θ(h)

智能软件与工程学院
School of Intelligent Software and Engineering

Efficient implementation of Ordered Dictionary

• BST also supports other operations of Ordered Dictionary, in time.

‣ But the height of a -node BST varies between and .

O(h)

n Θ(log n) Θ(n)

Search(S,k) Insert(S,x) Remove(S,x)

SimpleArray

SimpleLinkedList

SortedArray

SortedLinkedList

BinaryHeap

BinarySearchTree

O(n) O(n)

O(n)

O(log n)

O(n)

O(n)

O(n)

O(n)

O(1)

O(1)

O(1)

O(n)

O(1)

O(h) O(h) O(h)

O(log n) O(log n)

智能软件与工程学院
School of Intelligent Software and Engineering

Height of BST
• Consider a sequence of Insert operations given by an adversary, the

resulting BST can have height .

‣ E.g., insert the elements in increasing order.

• What is the expected height of a randomly built BST?

‣ Build the BST from an empty BST with Insert operations.

‣ Each of the insertion orders is equally likely to happen.

• The expected height of a randomly built BST is .

Θ(n)

n

n!

O(log n)

How to build it?

Why？

智能软件与工程学院
School of Intelligent Software and Engineering

Treaps

智能软件与工程学院
School of Intelligent Software and Engineering

Treap: A randomized BST structure
• A Treap (Binary-Search-Tree + Heap, 树堆) is a binary tree in

which each node has a key value, and a priority value
（usually randomly assigned）.

• The key values must satisfy the BST-property:

‣ For each node y in left sub-tree of x: y.key ≤ x.key

‣ For each node y in right sub-tree of x: y.key ≥ x.key

• The priority values must satisfy the MinHeap-property:

‣ For each descendent y of x: y.priority ≥ x.priority

42

30 54

11 36 76

A Treap is not necessarily a complete binary tree.
(Thus it is not a BinaryHeap.）

0.11

0.310.20

0.25 0.48 0.51

智能软件与工程学院
School of Intelligent Software and Engineering

Uniqueness of Treap

• Claim: Given a set of nodes with distinct key values and distinct priority
values, a unique Treap is determined.

• Proof by induction on :

‣ [Basis]: The claim clearly holds when .

‣ [Hypothesis]: The claim holds when

n

n

n = 0

n ≤ n′￼− 1

智能软件与工程学院
School of Intelligent Software and Engineering

Uniqueness of Treap
‣ [Inductive Step]:

- Given a set of nodes, let be the node with min priority. By MinHeap-
property, has to be the root of the final Treap.

- Let be set of nodes with key values less than r.key, and be set of nodes
with key values larger than r.key.

- By BST-property, in the final Treap, nodes in must in left sub-tree of ,
and nodes in must in right sub-tree of .

- By induction hypothesis, nodes in lead to a unique Treap, and nodes in
lead to a unique Treap.

n′￼ r
r

L R

L r
R r

L R

智能软件与工程学院
School of Intelligent Software and Engineering

How to build Treap
• How do we build a Treap?

‣ Starting from an empty Treap, whenever we are given a node x that
needs to be added, we assign a random priority for node x, and insert
the node into the Treap.

‣ Alternative view of an n-node Treap: a BST built with insertions, in the
order of increasing priorities. (Why?)

- Then we only need to worry about BST property if build a Treap in
this order.

n

智能软件与工程学院
School of Intelligent Software and Engineering

How to build Treap

• A Treap is like a randomly built BST, regardless of the order of the
insert operations! (Since we use random priorities!)

• A Treap has height in expectation.

‣ Therefore, all ordered dictionary operations are efficient in expectation.

‣ Even if the operations are given by an adversary!

O(log n)

智能软件与工程学院
School of Intelligent Software and Engineering

Insert in Treap
• Step 1: Assign a random priority to the node to be added.

• Step 2: Insert the node following BST-property.

• Step 3: Fix MinHeap-property (without violating BST-property).
Example: Insert element with key 33

42

30 54

11 36 76

0.11

0.310.20

0.25 0.48 0.51

33
0.18

智能软件与工程学院
School of Intelligent Software and Engineering

Insert in Treap
• Step 1: Assign a random priority to the node to be added.

• Step 2: Insert the node following BST-property.

• Step 3: Fix MinHeap-property (without violating BST-property).
Example: Insert element with key 33

42

30 54

11 36 76

0.11

0.310.20

0.25 0.48 0.51

33
0.18

智能软件与工程学院
School of Intelligent Software and Engineering

Insert in Treap
• Step 1: Assign a random priority to the node to be added.

• Step 2: Insert the node following BST-property.

• Step 3: Fix MinHeap-property (without violating BST-property).
Example: Insert element with key 33

y

x

BA

C

y

x

B

A

C

Rotation changes level of x and y, but preserves BST property.

42

30 54

11 36 76

0.11

0.310.20

0.25 0.48 0.51

33
0.18

right-rotate

left-rotate

智能软件与工程学院
School of Intelligent Software and Engineering

Insert in Treap
• Step 1: Assign a random priority to the node to be added.

• Step 2: Insert the node following BST-property.

• Step 3: Fix MinHeap-property (without violating BST-property).
Example: Insert element with key 33

y

x

BA

C

y

x

B

A

C

Rotation changes level of x and y, but preserves BST property.

42

30 54

11 36 76

0.11

0.310.20

0.25 0.48 0.51

33
0.18

right-rotate

left-rotate

智能软件与工程学院
School of Intelligent Software and Engineering

Insert in Treap
• Step 1: Assign a random priority to the node to be added.

• Step 2: Insert the node following BST-property.

• Step 3: Fix MinHeap-property (without violating BST-property).
Example: Insert element with key 33

y

x

BA

C

y

x

B

A

C

Rotation changes level of x and y, but preserves BST property.

42

30 54

11 33 76

0.11

0.310.20

0.25 0.18 0.51

36
0.48

right-rotate

left-rotate

智能软件与工程学院
School of Intelligent Software and Engineering

Insert in Treap
• Step 1: Assign a random priority to the node to be added.

• Step 2: Insert the node following BST-property.

• Step 3: Fix MinHeap-property (without violating BST-property).
Example: Insert element with key 33

y

x

BA

C

y

x

B

A

C

Rotation changes level of x and y, but preserves BST property.

42

33 54

30 36 76

0.11

0.310.18

0.20 0.48 0.51

11
0.25

right-rotate

left-rotate

智能软件与工程学院
School of Intelligent Software and Engineering

Insert in Treap
• Step 1: Assign a random priority to the node to be added.

• Step 2: Insert the node following BST-property.

• Step 3: Fix MinHeap-property (without violating BST-property).

y

x

BA

C

y

x

B

A

C

right-rotate

left-rotate

Use rotations to push-up violating nodes until MinHeap-property restored.

智能软件与工程学院
School of Intelligent Software and Engineering

Remove in Treap
• Given a pointer to a node, how to remove it? Just invert the process of insertion!

‣ Step 1: Use rotations to push-down the node till it is a leaf.

‣ Step 2: Remove the leaf.
42

33 54

30 36 76

0.11

0.310.18

0.20 0.48 0.51

11
0.25

Example: Remove
element with key 33 42

30 54

11 36 76

0.11

0.310.20

0.25 0.48 0.51

33
0.18

智能软件与工程学院
School of Intelligent Software and Engineering

Summary on Treap
• A probabilistic data structure.

• Like a randomly built BST.

‣ Expected height is even for adversarial operation sequence.

• Support ordered dictionary operations in time, in expectation.

O(log n)

O(log n)
42

30 54

11 36 76

0.11

0.310.20

0.25 0.48 0.51

Question: How to design a data structure
supporting ordered dictionary operations in

 time, even in worst-case?O(log n)

智能软件与工程学院
School of Intelligent Software and Engineering

Further reading
• [CLRS] Ch.12

• [Morin] Ch.7 (7.2)

• [Sedgewick] Ch.3

