BEERGS TEF R

School of Qnte[figent Soﬁ"ware and Engineering

& : | ,‘ | |
' " ‘j . ‘-, -_:i’.:.;'-c,j

, \ P g _roje VA A "t
B il S

Search Trees

gy Ld
Nanjing University AU T R e R
2024 Fall

The slides are main[y ac{aptec[f;zom the o’zigina[ones shazed by Chaoclong ZAeng and Kevin q' ayn anks g iy A G L

The Dictionary Abstract Data lype

* A Dictionary (also symbol-table, relation, map) ADT is used to represent a set of
elements with (usually distinct) key values.

010025
» Each element has a kevy field and a data field. Alice
Female Bob
. . Mal
« Operations the Dictionary ADT should support: 114582
Emma
Female

» Search (S,k): Find an element in S with key value k.
» Insert(S,x):Add x to S. (What if element with same key exists?)

» Remove (S, x): Remove element x from S, assuming x is in S. Convention: the new value

replaces the old one

» Remove (S, k): Remove element with key value k from S.

| HeERH5S TiEF
of 1

Z 2
<, &/ School

mzz(figent Software and EEngineering

The Dictionary Abstract Data lype

e |In typical applications, keys are from an ordered universe (Ordered
Dictionary):

» Min (S) and Max (S): Find the element in S with minimum/maximum key.

» Successor (S, x) or Successor (S,k):

- Find smallest element in S that is larger than x . key (or key k).

» Predecessor (S, x) or Predecessor (S,k):

- Find largest element in S that is smaller than x . key (or key k).

Eﬁigient Implementation of Ordered Dictionary

Search (S, k) Insert (S, x) Remove (S, x)

SimpleArray O(n) O(1) O(n)

SimpleLinkedlList O(n) O(1) O(1)
SortedArray O(log n) O(n) O(n)
SortedLinkedList O(n) O(n) O(1)

BinaryHeap O(n) O(log n) O(logn)

* Data structure implementing all these operations efficiently?

> Efficient means within O(log n) time.

Blnary Search Tree (BST)

* A binary search tree (BST) is a binary tree in which each node stores an
element, and satisfies the binary-search-tree property (BST property):

> For every node x in the tree, if y Is In the left subtree of x, then
y.key < x.key; if y is in the right subtree of x, then y . key > x. key.

-

Blnary Search Tree (BST)

e Given aBST 7, let S be the set of elements stored in 7, what is the
sequence of the in-order traversal of 7%

> Elements of § in ascending order!

Inorder traversal: 13, 20, 32, 41, 50, 65, 91

Search in BST

« Given a BST root x and key k, find an element with key k? /@\
> If x.key = k then return x and we are done!

> If x.key > k then recurse into the BST rooted at x./eft.

> If x.key < k then recurse into the BST rooted at x.right.
BSTSearch(x.k): BSTSearchlter(x k):
if x=NULLor x.key=k while x != NULL and x.key !=k
return x If x.key >k
else If x°key >k tail recursion — iterative version A= xjef !
return BSTSearch(x.left, k) else

else X =x.right
return BSTSearch(x.right, k) return x

=
O &btk T F2 R4
Y. EEERGFS TiEFbx
Z"x j School of Qnt‘e[ﬁ'genf Soﬁ'ware and fngineering

Complexity of Search in BST

* Worst-case time complexity of Search operation?

» ®(h) where h is the height of the BST.

Height of the BST affects the efficiency of Search

Min and Max in BST

e How to find a minimum element in a BST?
> Keep going left until a node without left child.
e How to find a maximum element in a BST?

> Keep going right until a node without right child.

 Time complexity of Min and Max operation?

» ®(h) in the worst-case where £ is height.

Successor in BST

e BSTSuccessor (x): Find the smallest element in the BST with key value
larger than x.key.

 |n-order traversal of BST lists the elements Iin sorted order. Where in the tree
does the element following x reside”?

If the right subtree rooted at x is non-empty: Otherwise:
The minimum element in BST rooted at x.right is The nearest ancestor of x whose left child is also

what we want. ancestor of x.

Successor in BST

e BSTSuccessor (x): Find the smallest element in the BST with key value
larger than x.key.

 |n-order traversal of BST lists the elements in sorted order.

BSTSuccessor(x.k):
if x.right '= NULL * Time complexity of BSTSuccessor?
return BSTMin(x.right)
y := x.parent » O(h) in the worst-case where /1 is the height.
while y !I= NULL and y.right = x
X:=Yy « BSTPredecessor can be designed and
y := y.parent analyzed similarly.

return y

TEFr

- Operations change BST

* So far we’ve seen operations that do not change the BST.
> Search, Min/Max, Successor/Predecessor.
 How about operations that will change the BST?

> Insert and Remove.

Insert in BST

e BSTInsert (T, z): Add zto BST 7. Notice, insertion should not break
the BST property.

e Just like doing a search in T with key z.key. This search will fail and end at
a leaf y. Insert z as left or right child of y.

Example: Insert element with key 36

Why above procedure is correct?

Insert in BST

e BSTInsert (T,z): Add zto BST 7. Notice, insertion should not break
the BST property.

e Just like doing a search in T with key z.key. This search will fail and end at
a leaf y. Insert 7z as left or right child of y.

 Time complexity of the Insert operation?

> ®(h) in the worst-case where /1 is the height of 7.

Remove In BST

e BSTRemove (T, z): Remove element z from 7. Notice, removal should
not break the BST property.

e Case 1: 7z has no child.

> Easy, simply remove z from the BST tree

L]

L]

Remove In BST

e BSTRemove (T, z): Remove element z from 7. Notice, removal should not
break the BST property.

 Case 2: z has one single child.

> Elevate subtree rooted at z’s single child to take z's position.

Remove In BST

e BSTRemove (T, z): Remove element z from 7. Notice, removal should not

break the BST property.
» Case 3a: z.right.left = Null
Case 3: z has two children.

> Case 3b: z.right.left # Null

Which one should be here to
replace node 7 ?

* BSTSuccessor(z) can be:
> 1 ifrleft = Null

That is, replace node Z with : -
y IR < B Erers D™, > BSTMin(r.left) if r.left # Null
BSTSuccessor(z). s . A e

Ale,C nD,q,E ...

> The min value node In
subtree rooted at z.right.

Remove In BST

e BSTRemove (T, z): Remove element z from 7. Notice, removal should not
break the BST property.

e Case 3a: 7 has two children and z.right.left = Null

.
*
*

3
--

.A LBz, 1D, q,EA LB 1rD,qgE...

--

BEeES TP

=
4‘3? School of Qnt@[ﬁgent Sofrware and iEngmeering

Remove In BST

e BSTRemove (T, z): Remove element z from 7. Notice, removal should not
break the BST property.

Case 3b: z has two children and z.right.left # Null

BSTSuccessor(z) is y,
thus y.left = Null

--

--

--

Ale,y,C’ C\C’qu,E,,, AlBy,C’ C\C’I”Dq,E...

=

O&abthk T FO 4=
PV, SERESIREFR
Z"x &5 School of ﬂnt‘e[ﬁ'gent Sofrware and Engineering

Remove in BST

e BSTRemove (T, z): Remove element z from 7. Notice, removal should not break the BST
property.

« Case 1: zhasnochild. (1)

> Easy, simply remove z from the BST tree
« Case 2: z has one single child. ©O(1)

> Elevate subtree rooted at 7’s single child to take z’s position.
 Case 3a: z has two children and z.right.left = Null O(1)

 Case 3b: 7 has two children and z.right.left # Null O(h)

Worst-case time complexity of Remove operation is ®(/).

SEEE S TREF M
ftw d gineering

Eﬁingient Implementation of Ordered Dictionary

_ Search (S, k) Insert (S, x) Remove (S, x)

SortedLinkedList O(n) O(n) O(1)

BinarySearchTree O(h) O(h) O(h)

« BST also supports other operations of Ordered Dictionary, in O(/) time.

> But the height of a n-node BST varies between ®(log n) and ®(n).

3
O&abthk T ¥O =24 (=

PV.| SEREHS TiEFbr

7‘5 4@5 School of Qnt@[ﬁgent Sofrware and fngineering

Height of BST

e Consider a sequence of Insert operations given by an adversary, the
resulting BST can have height O(n).

> E.g., Insert the elements In increasing order. s How to build it?

 What is the expected height of a randomly btjiit BST?

> Build the BST from an empty BST with 7 Insert operations.

» Each of the n! insertion orders is equally likely to happen.
- T Why*?

 The expected height of a randomly built BST is O(log ;fz).

O&abthk T FO 4=
BEE TGS TP
School (f ﬂnt‘e[ﬁ'gent Soﬁ'ware and fngineering

Treap A randomized BST structure

* A Treap (Binary-Search-Tree + Heap, $J1f) is a binary tree in
which each node has a key value, and a priority value
(usually randomly assigned) .

* The key values must satisfy the BST-property:

> For each node y In left sub-tree of x: y.key < x.key

> For each node y in right sub-tree of x: y.key = x.key

* The priority values must satisty the MinHeap-property:

> For each descendent y of x: y.priority = x.priority

A Treap is not necessarily a complete binary tree.

(Thus it is not a BinaryHeap.)

Unigueness of Treap

e Claim: Given a set of n nodes with distinct key values and distinct priority
values, a unique Treap Is determined.

* Proof by induction on n:
> [Basis]: The claim clearly holds when n = O.

» [Hypothesis]: The claim holds whenn < n’'— 1

Unigueness of Treap

> [Inductive Step]:

- Given a set of n’ nodes, let r be the node with min priority. By MinHeap-
property, r has to be the root of the final Treap.

- Let L be set of nodes with key values less than r.key, and R be set of nodes
with key values larger than r.key.

- By BST-property, in the final Treap, nodes in L must in left sub-tree of r,
and nodes in R must in right sub-tree of r.

- By induction hypothesis, nodes in L lead to a unique Treap, and nodes in R
lead to a unigue Treap.

How to build Treap

 How do we build a Treap?

> Starting from an empty Treap, whenever we are given a node x that

needs to be added, we assign a random priority for node x, and insert
the node into the Treap.

> Alternative view of an n-node Treap: a BST built with »n insertions, in the
order of increasing priorities. (Why?)

- Then we only need to worry about BST property if build a Treap in
this order.

How to build Treap

A Treap is like a randomly built BST, regardless of the order of the
insert operations! (Since we use random priorities!)

» A Treap has height O(log n) in expectation.
> Therefore, all ordered dictionary operations are efficient in expectation.

> Even if the operations are given by an adversary!

Insert In Treap

e Step 1: Assign a random priority to the node to be added.
e Step 2: Insert the node following BST-property.
o Step 3: Fix MinHeap-property (without violating BST-property).

Example: Insert element with key 33

Insert In Treap

e Step 1: Assign a random priority to the node to be added.
e Step 2: Insert the node following BST-property.
o Step 3: Fix MinHeap-property (without violating BST-property).

Example: Insert element with key 33

=
O&abthk T FO 4=
| BEERS IREF R
4‘55 School (f Qnt‘e[ﬁ'genf Soﬁ'ware and Engineem’ng

Insert In Treap

e Step 1: Assign a random priority to the node to be added.
e Step 2: Insert the node following BST-property.
e Step 3: Fix MinHeap-property (without violating BST-property).

Example: Insert element with key 33

right-rotate

D e

eft-rotate

. .
..

Rotation changes level of X and Y, but preserves BST property.

=
O&abthk T FO 4=
| BEERS IREF R
4‘35 School (f Qnt‘e[ﬁ'gent Soﬁ'ware and Engineem’ng

Insert In Treap

e Step 1: Assign a random priority to the node to be added.
e Step 2: Insert the node following BST-property.
e Step 3: Fix MinHeap-property (without violating BST-property).

Example: Insert element with key 33

right-rotate

D e

eft-rotate

. .
..

Rotation changes level of X and Y, but preserves BST property.

=
O&abthk T FO 4=
| BEERS IREF R
4‘35 School (f Qnt‘e[ﬁ'gent Soﬁ'ware and Engineem’ng

Insert In Treap

e Step 1: Assign a random priority to the node to be added.
e Step 2: Insert the node following BST-property.
e Step 3: Fix MinHeap-property (without violating BST-property).

Example: Insert element with key 33

right-rotate

D e

eft-rotate

. .
..

Rotation changes level of X and Y, but preserves BST property.

=
O&abthk T FO 4=
| BEERS IREF R
4‘55 School (f Qnt‘e[ﬁ'genf Soﬁ'ware and Engineem’ng

Insert In Treap

e Step 1: Assign a random priority to the node to be added.
e Step 2: Insert the node following BST-property.
e Step 3: Fix MinHeap-property (without violating BST-property).

Example: Insert element with key 33

right-rotate

D e

eft-rotate

. .
..

Rotation changes level of X and Y, but preserves BST property.

=
OD&bkhk T 30 R4 e
| BEERHS TEF6x
Qg School of an(ﬁ'gent Soﬁ'ware and angineering

Insert In Treap

e Step 1: Assign a random priority to the node to be added.
e Step 2: Insert the node following BST-property.
o Step 3: Fix MinHeap-property (without violating BST-property).

right-rotate

D e

eft-rotate

L] .
..

Use rotations to push-up violating nodes until MinHeap-property restored.

=

OD&bkhk T 30 R4 e
Y. EEERGFS TiEFbx
Z"x 455 School of Qnt‘e[ﬁ'genf Soﬁ'ware and fngineering

Remove In Ireap

e Given a pointer to a node, how to remove it? Just invert the process of insertion!
» Step 1: Use rotations to push-down the node till it is a leaf.

> Step 2: Remove the leaf.

Example: Remove
element with key 33

Summary on Treap

* A probabillistic data structure.
* Like a randomly built BST.

> Expected height is O(log n) even for adversarial operation sequence.

 Support ordered dictionary operations in O(log n) time, in expectation.

0.11
42

Question: How to design a data structure

supporting ordered dictionary operations in
O(log n) time, even in worst-case?

 [CLRS] Ch.12
e [Morin] Ch.7 (7.2)

e [Sedgewick] Ch.3

Open

Data L S

Structures <FR M/ \Jk
"?}\,t‘ . l‘ V

4

& OY
\ \ o ::,fg =
U/
. AN

INTRODUCTIO O

A L G O R_IIH—MS Introduction

PAT
MORIN

IIIIIIIIIIII

