数据流分析

理论基础

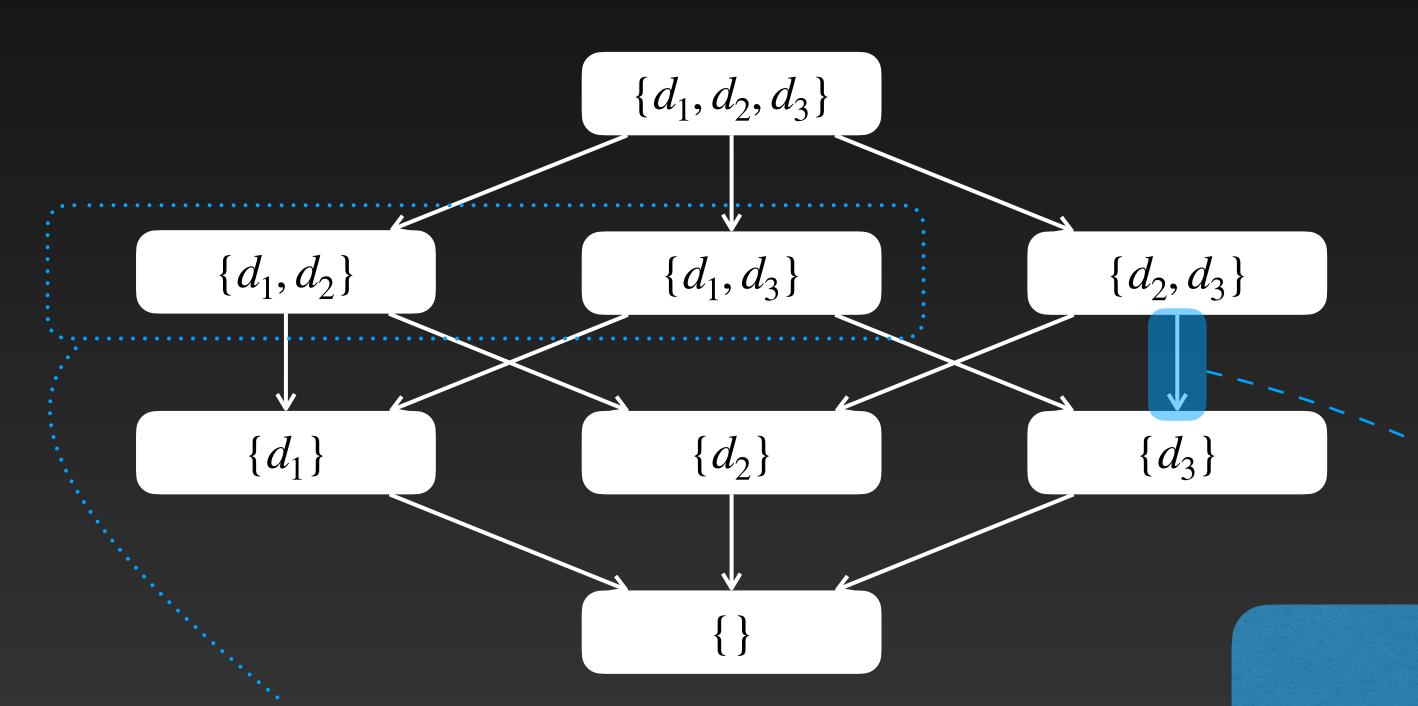
一些关于"序(Order)"的知识

偏序集 (Partial Order Set, POSET)

- 一个偏序集(P, \leq)是一个集合P和一个二元关系 \leq , 对所有的x, y, z \in P有:
 - 传递性 (Transitive) : 如果 $x \le y$ 并且 $y \le z$, 那么 $x \le z$
 - 反对称性 (Anti-symmetric): 如果 $x \leq y$ 并且 $y \leq x$, 那么x = y
 - 自反性 (Reflexive) : $x \leq x$

偏序集例子

• $\diamondsuit V = \{x \mid x \subseteq \{d_1, d_2, d_3\}\}, \le = \subseteq$, 我们有如下图的偏序集(哈斯图表示)



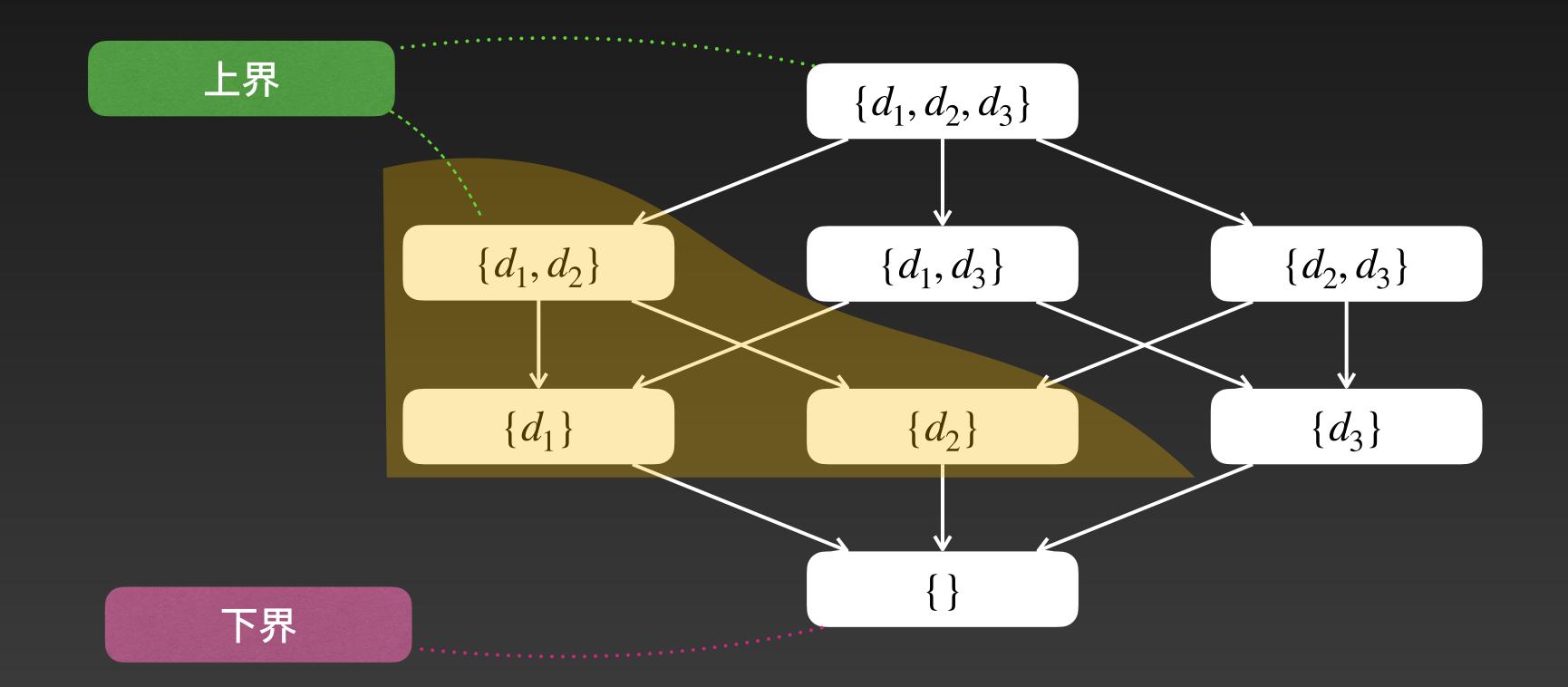
有一些元素不符合二元关系,因此不是全序

这里边表达了"覆盖"(Covers)关系:

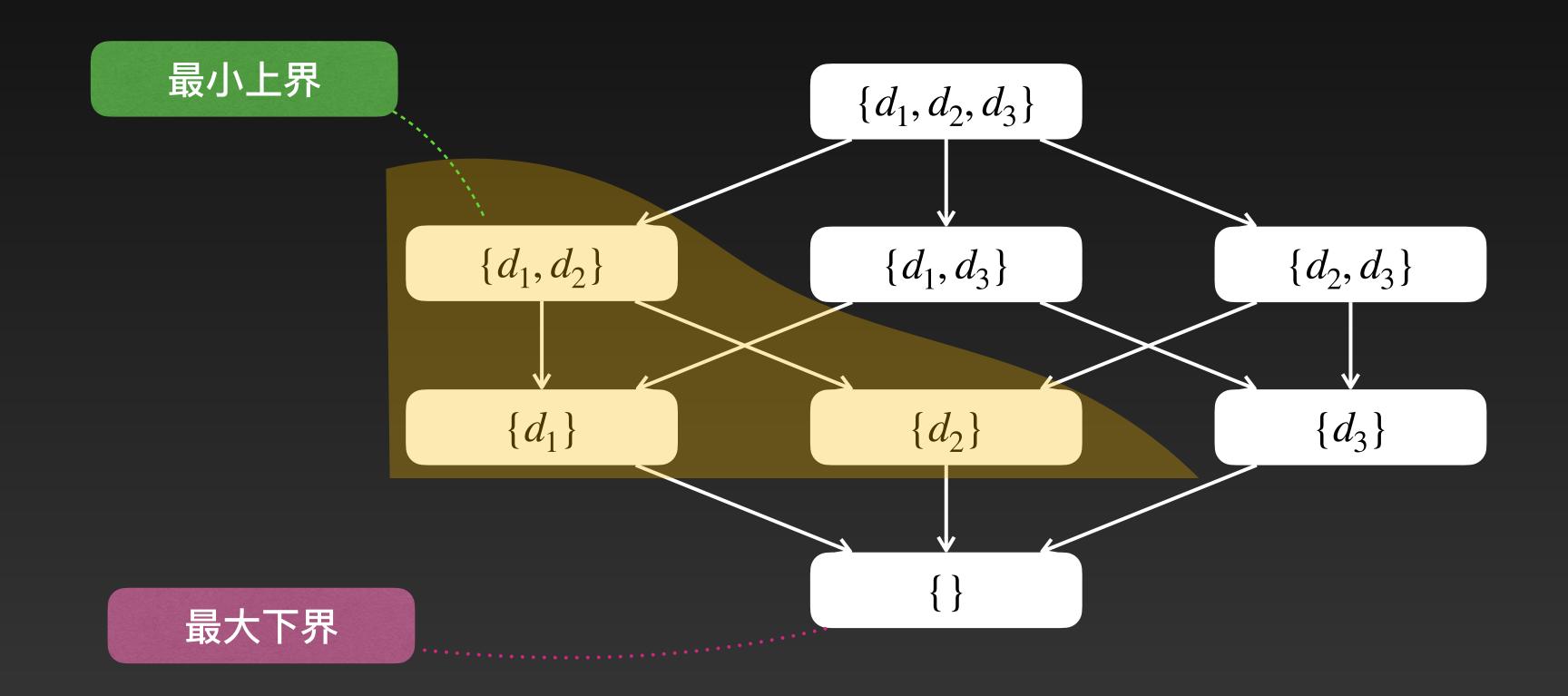
 $x \lessdot y \triangleq (x \lessdot y)$ and $\neg (\exists z. x \lessdot z \text{ and } z \lessdot y)$ 即 \triangleleft 只表达"直接"的二元关系,并且没有自指的关系

上界 (upper bound) 和下界 (lower bound)

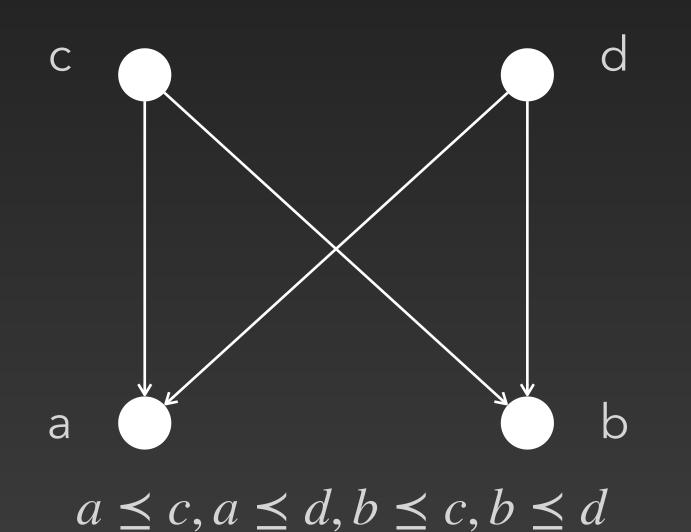
给定一个偏序集(V, ≤), 给定V的一个子集S ⊆ V, 我们有u ∈ V是S的一个上界, 当且仅当∀x ∈ S, x ≤ u. 注意: u不必在S内! 同样, 我们有l ∈ V是S的一个下界, 当且仅当∀x ∈ S, l ≤ x.



- 一个偏序集S的上界x被称为S的最小上界(least upper bound, lub)或紧上界(tight upper bound)或者上确界(supremum)当且仅当任何一个S的上界都比该上界还大(\forall upper bound y of S, $x \leq y$)
 - 可以表示为lub(S), $\vee S$ 或者sup S
- 一个偏序集S的下界x被称为S的最大下界(greatest lower bound, glb)或紧下界(tight lower bound)或者下确界(infimum)当且仅当任何一个S的下界比该下界还小(\forall lower bound y of S, $y \leq x$)
 - ▶ 可以表示为glb(S), $\land S$ 或者 $\inf S$



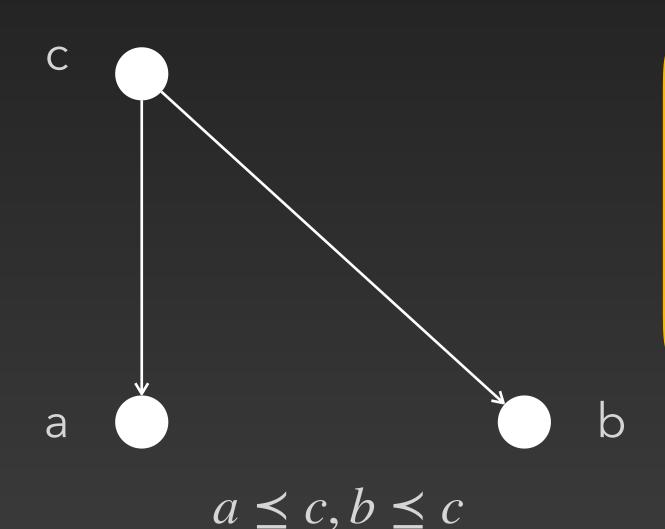
- 如果一个偏序集S存在一个最小上界lub(S),并且该元素属于S,即lub(S) $\in S$,则称lub(S)为其最大元(greatest element),记为T(top element)
 - ▶ 显然lub(S)如果存在即唯一! 否则不符合最小上界的定义
 - \rightarrow 对于一个偏序集而言,lub(S)不一定存在,如下面的例子



对于subset {c, d}而言,其甚至都没有一个 upper bound! 也就不用说least upper bound了

对于subset {a, b}而言,其有两个upper bounds, 分别为c和d, 但是没有least upper bound, 也就不存在最大元了

- 如果一个偏序集S存在一个最小上界lub(S),并且该元素属于S,即lub(S) $\in S$,则称lub(S)为其最大元(greatest element),记为T(top element)
 - ▶ 显然lub(S)如果存在即唯一! 否则不符合最小上界的定义
 - · 有最小上界,也不一定有最大元,如下面的例子



对于subset {a, b}而言,其有一个upper bound, 为c,即c是最小上界,但是c不在{a, b}中,因此{a, b}没有最大元

另一个例子:对于实数子域[0,1]而言、其有最小上界、但没有最大元

- 类似地(对偶地),如果一个偏序集S存在一个最大下界glb(S),并且该元素属于S,即lub(S) $\in S$,则称glb(S)为其最小元(least element),记为工(bottom element)
 - ightharpoonup 同样,glb(S)如果存在即唯一!否则不符合最大下界的定义
 - \rightarrow 对于一个偏序集而言,glb(S)不一定存在
 - · 有最大下界, 也不一定有最小元

极大元和极小元

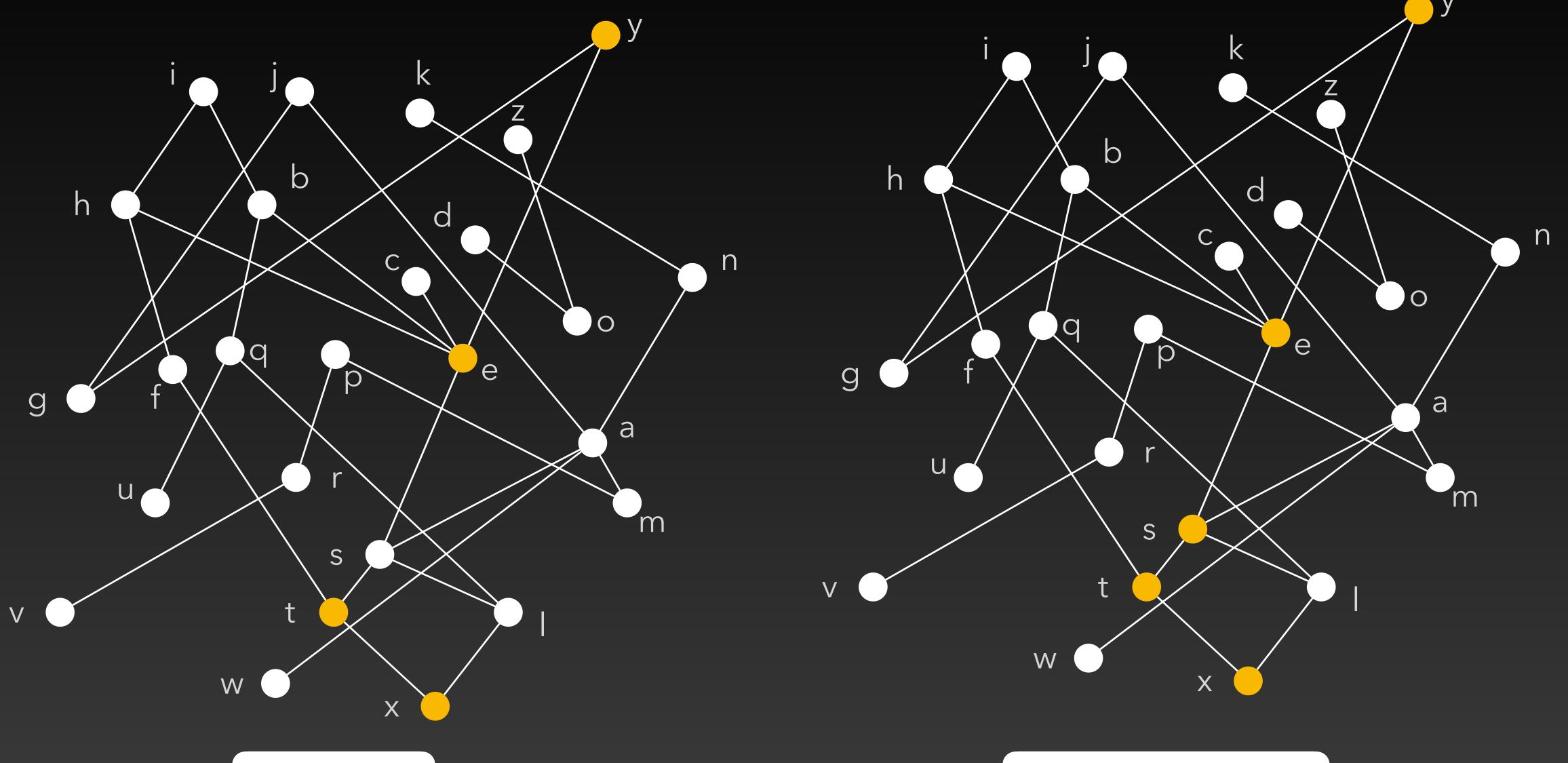
- 极大元 (Maximal element)
 - ▶ 对于一个偏序集S而言,一个元素 $m \in S$ 是极大元(maximal element) 当且仅当S中不存在比其"大"的,即 $\forall s \in S$,如果 $m \leq s$,那么必有 $s \leq m$,极大元集合记为 $\max(S)$
 - 注:m不必比任何元素都大,这是和最大元(greatest element)不同的地方!因此其也不必唯
- 极小元 (Minimal element)
 - ▶ 对于一个偏序集S而言,一个元素 $m \in S$ 是极小元(minimal element) 当且仅当S中不存在比其"小"的,即 $\forall s \in S$,如果 $s \leq m$,那么必有 $m \leq s$,极小元集合记为min(S)
 - 同样地,m不必比任何元素都小,这是和最小元(least element)不同的地方. 其也不必唯一

链 (Chain)

- 链 (Chain)
 - ▶ 一个偏序集被称为链当且仅当其中的任何连个元素都是可以比较的(comparable),即其是
 - 一个全序集(total ordered set)或线性序集(linearly ordered set)
 - 所谓的可比较即可以用 \leq 关系描述($x \leq y$,或者 $y \leq x$),因此一条链就是一个类似 $x_1 \leq x_2 \leq x_3 \ldots \leq x_s$ 的序列
 - ▶ 一个偏序集P的非空子集C是P的一个链,当(C, \leq)本身是一个链,P所包含的所有链集记为 Chn(P)
 - ▶ 一个偏序集P的链C是最大的(maximal),当且仅当不存在P的其他链C',满足 $C \subsetneq C'$
 - 一个偏序集的高度(height)就是这个偏序集中最长的链(多个maximal chain里最长的那个)所含有的元素个数(即基,cardinality)

Zorn's Lemma: 给定一个偏序集P,其所含的每一条链都有一个上界,那么P包含至少一个极大元(maximal element)

链 (Chain)



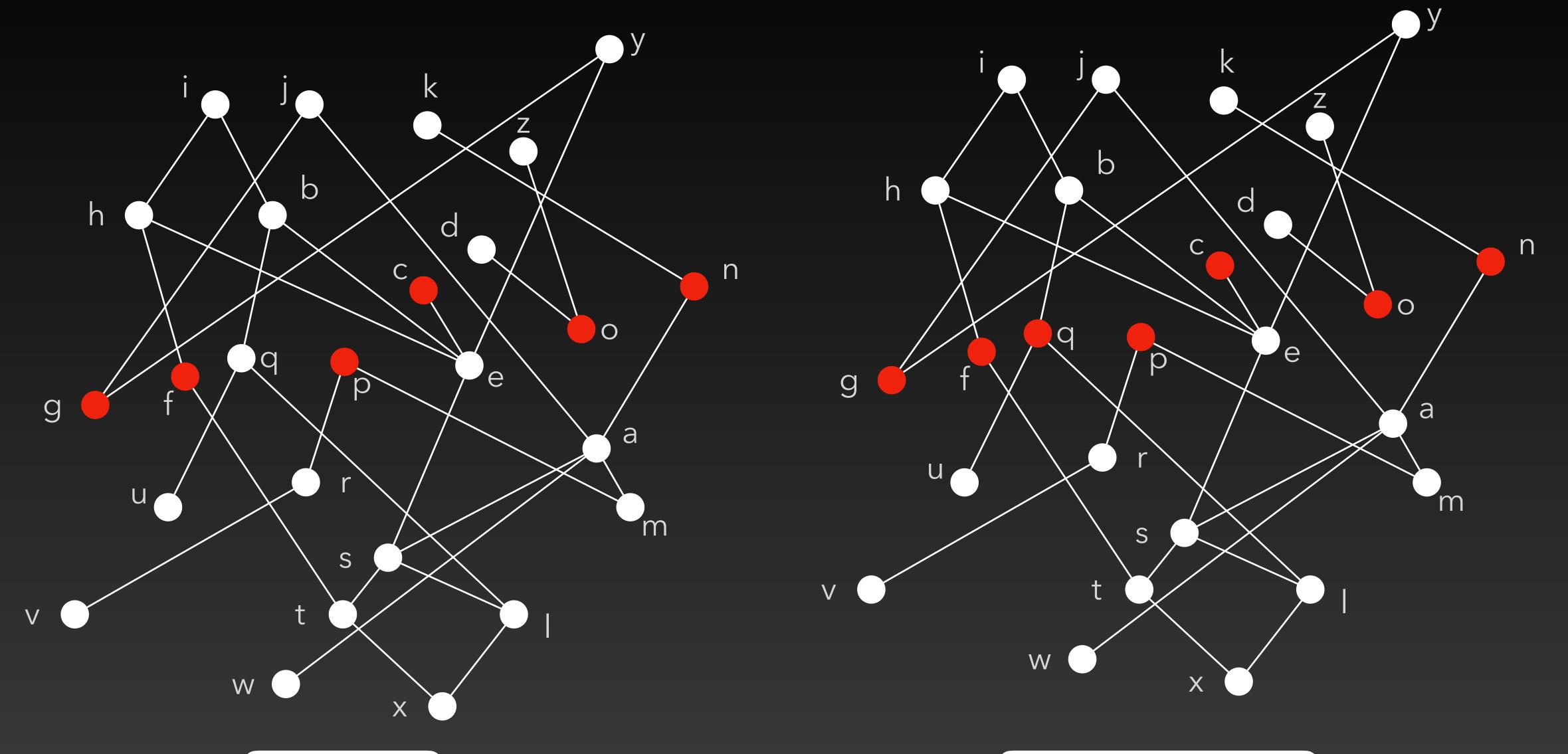
Chain

Maximal Chain

反链 (Anti-Chain)

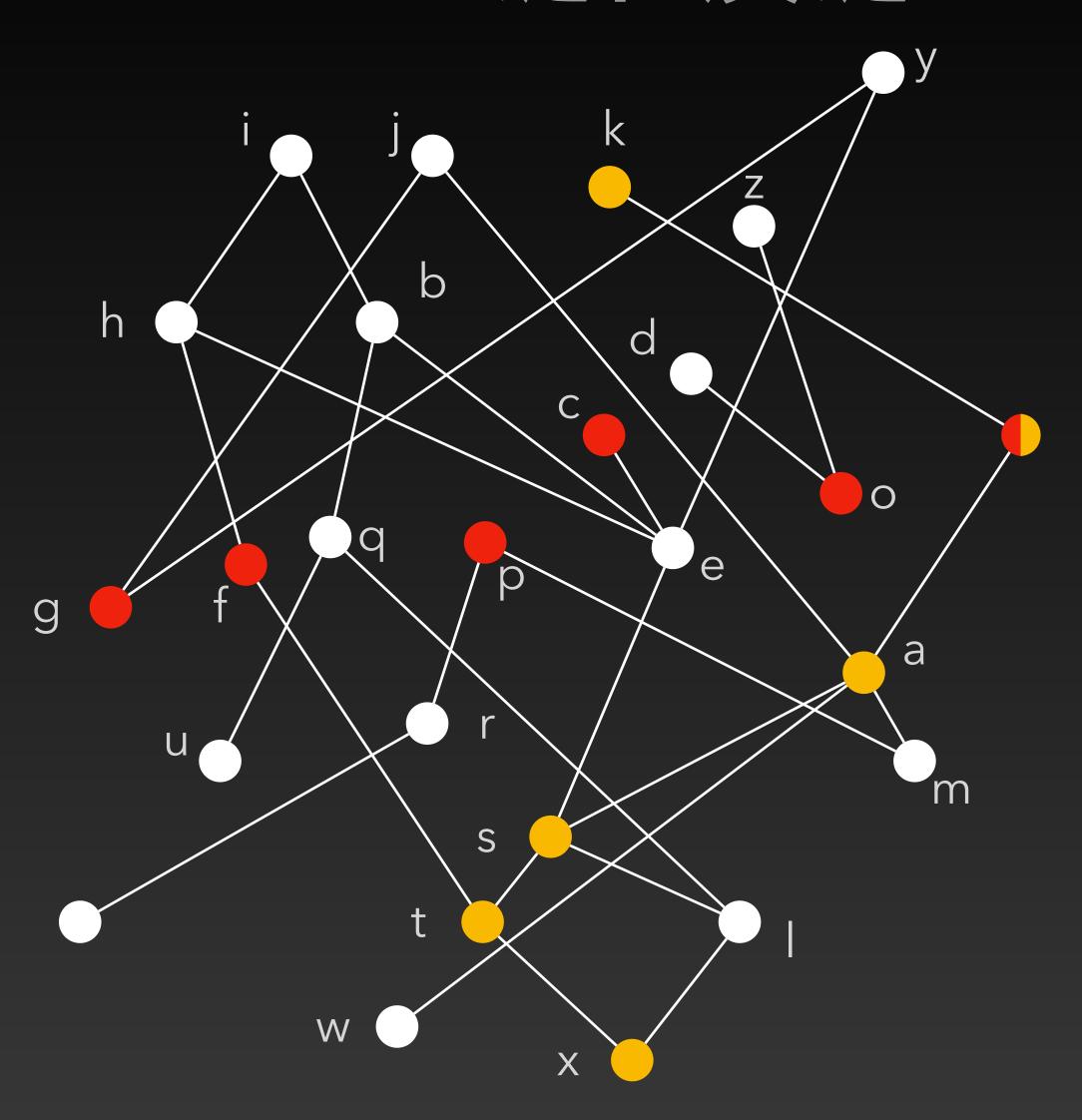
- 反链(Anti-Chain)
 - 一个偏序集P的子集A,被称为P的反链(Anti-Chain,也称为Sperner族)当且仅当对于A中的任意两个元素,他们都不可比较.
 - 一个P的所有反链形成一个P的反链集,记为Anti(P)
 - 一个偏序集P的反链C是最大的(maximal),当且仅当不存在P的其他反链 C',满足 $C \subseteq C'$
 - ▶ 一个偏序集的宽度(width)就是这个偏序集中最长的反链的基(元素个数)

反链 (Anti-Chain)

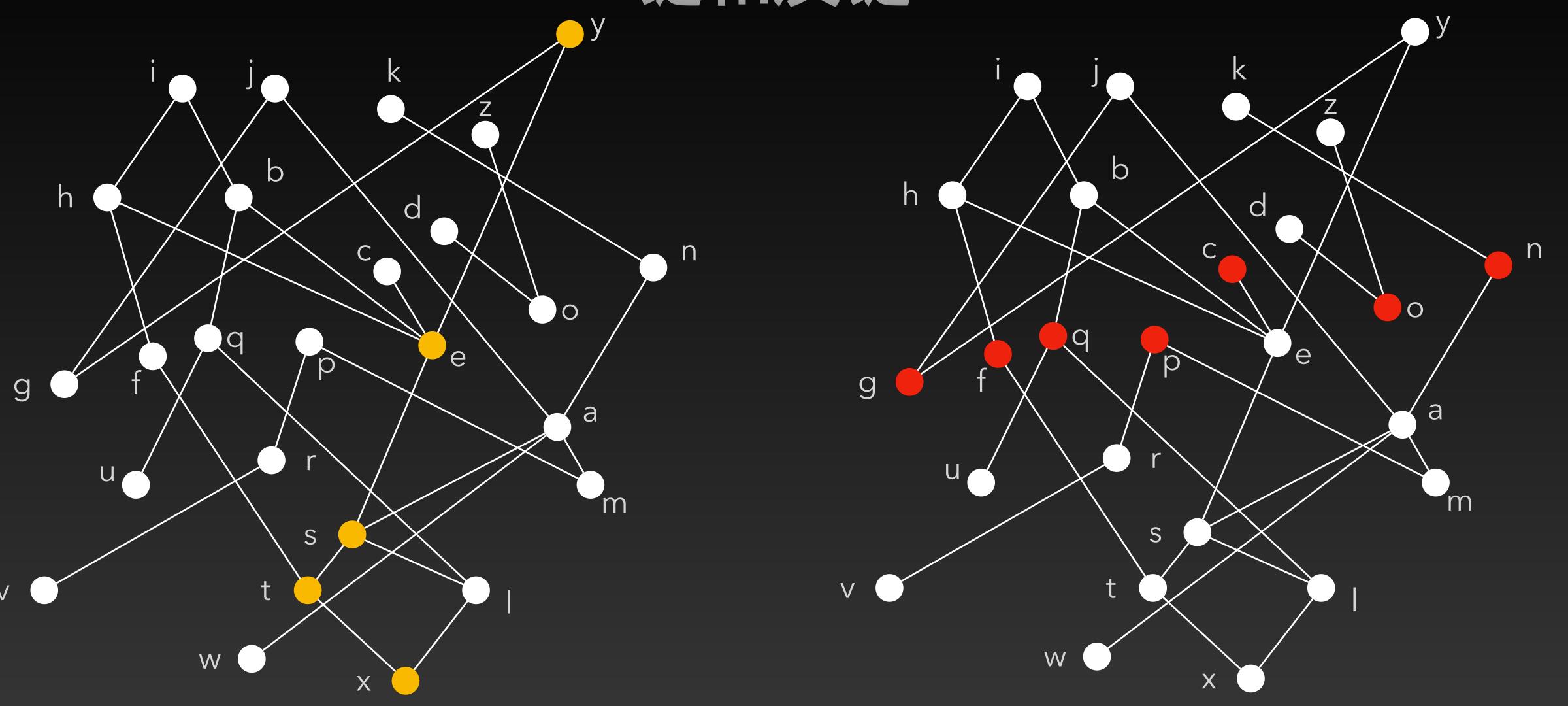


Anti-Chain

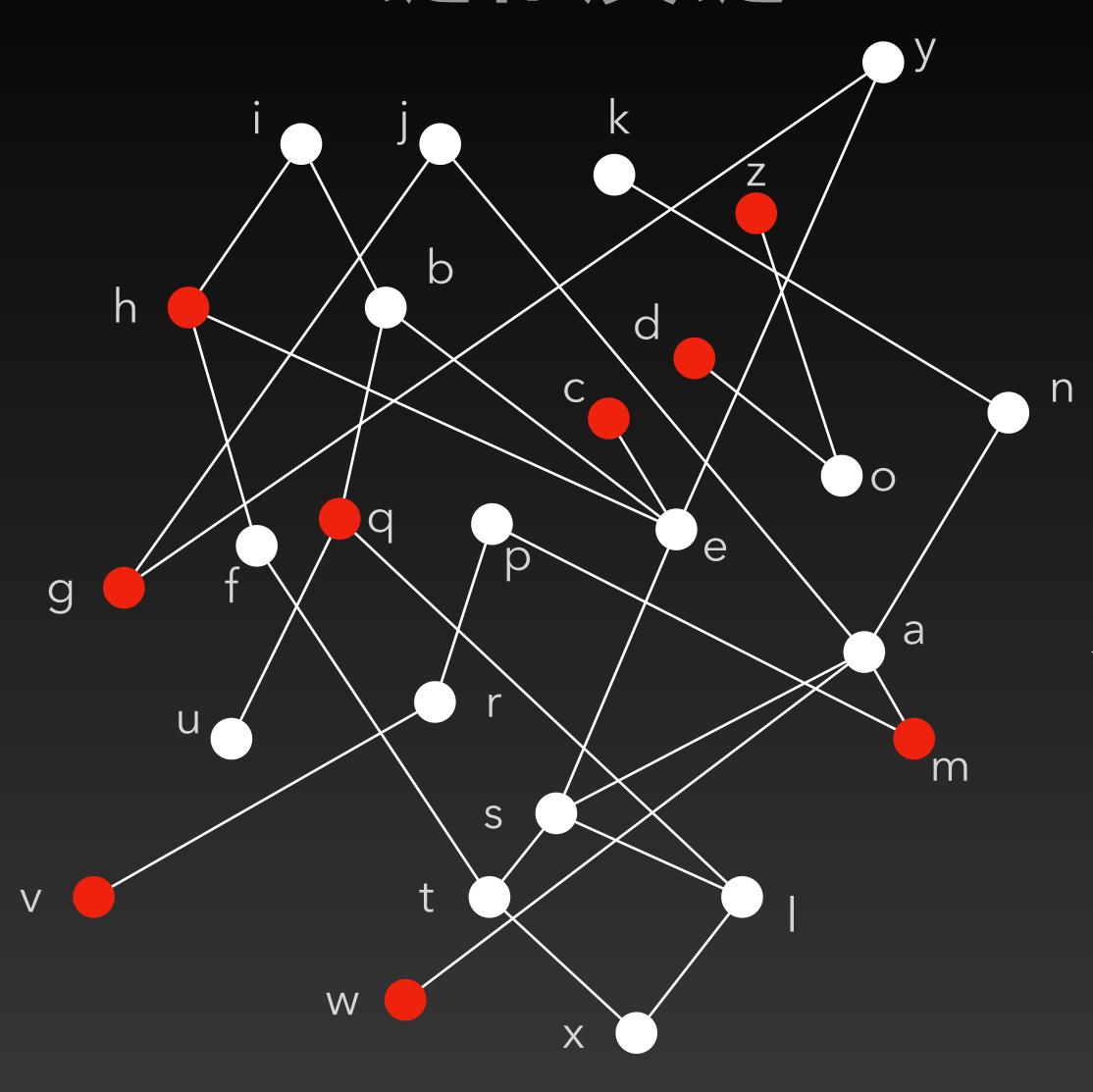
Maximal Anti-Chain



一个链和一个反链最多有一个共同的元素!



问题: 一个POSET的高度和宽度如何得到? 一个简单的回答是给出一个maximal chain/anti-chain的样例, 那么高度/宽度至少大于等于 这个样例的元素个数,但是如何能确定这个样例就是最长链/反链呢?



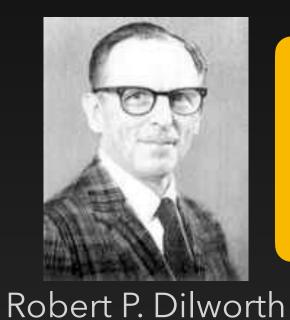
宽度为9,比刚才的大,那么这个 是最大吗?

• 观察:

- 如果一个poset P可以划分为t个anti-chains,即 \exists anti-chains $A_1, A_2, \dots A_t$ with $P = \bigcup_{i=1}^t A_i$,那么显然P的高度最多为t
 - 因为一旦某个链C长超过t,根据鸽巢原理,那么必然C和 A_i 至少有两个交集, 矛盾!
- 如果一个poset P可以划分为s个chains,即 ∃chains $C_1, C_2, \ldots C_s$ with $P = \cup_{i=1}^s C_i$,那么显然P的宽度最多为s
 - 同样,根据鸽巢原理,可以知道最大的反链也不会超过s个元素

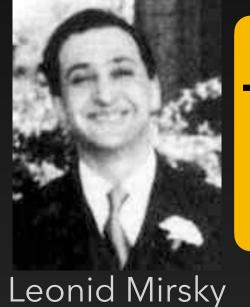
链机反链

相等!



Theorem (Dilworth, 1950). A poset of width w can be partitioned into w chains

Dilworth, Fulkerson等人早就发现了这个结论,但 觉得有些平凡,没有发表



Theorem (Mirsky's Theorem, Dual Dilworth, 1971). A poset of height h can be partitioned into h anti-chains

Fulkerson (1954) Used bipartite matching algorithm (network flows) to find minimum chain partition and maximum anti-chain simultaneously.

D. R. Fulkerson

偏序集的一些操作

- 给定两个posets P,Q:
 - cardinal sum:

$$-P+Q:=(P\cup Q,\leq_{P+Q}), \text{ s.t., } x\leq_{P+Q} y\iff x\leq_{P} y \text{ or } x\leq_{Q} y$$

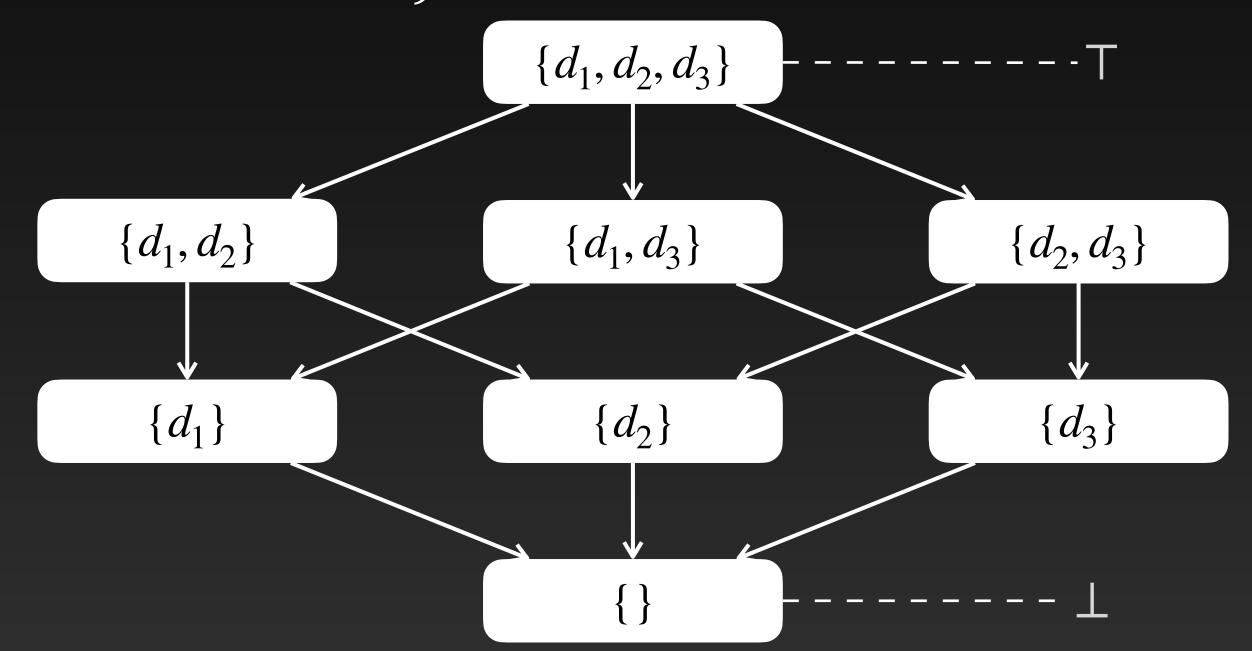
- cardinal product:
 - $-P\times Q:=(P\times Q,\leq_{P\times Q}), \text{ s.t., } (x,y)\leq_{P\times Q}(x',y')\iff x\leq_P x' \text{ and } y\leq_Q y'$
 - P乘以自己n次记为 P^n

格 (Lattice)

- 可以刻画很多计算(比如布尔代数)
 - ▶ 定义: 一个格(L, \leq , \wedge , \vee)是一个偏序集(L, \leq), 其中每一对元素都有一个最大下界 (greatest lower bound, glb) 和一个最小上界(least upper bound, lub)
 - ▶ 由于lub和glb的唯一性,二元操作符V(join)和∧(meet)可以这样定义:
 - $-a \lor b = lub(a,b)$
 - $a \wedge b = glb(a, b)$
 - ▶ 每一个拥有有限元素的格L(non-empty)都有一个最小元素(最小元, \bot)和一个最大元素(最大元, \top),使得对于一个元素 $x \in L$ 而言, $x \preceq \top$, $\bot \preceq x$ (可以通过数学归纳证明)

格的例子

• $\Rightarrow V = \{x \mid x \subseteq \{d_1, d_2, d_3\}\}, \land = \cap, \lor = \cup\}$



- 最高和最低元素
 - ▶ 最大元T, 使得对任何x, 都有x ∧ T = x, 容易看出: T = { d_1, d_2, d_3 }
 - ▶ 最小元上, 使得对于任何x, 都有 $x \land \bot = \bot$, 容易看出: $\bot = \{\}$

半格 (Semi-Lattice)

- 给定一个poset (*P*, ≤)
 - ▶ 我们称(P, \leq , \vee)为一个并半格(join semi-lattice,upper semi-lattice),当 $\forall x,y \in P$, x,y的最小上界存在,即 $x \vee y$ 存在
 - ▶ 我们称(P, \leq , \wedge)为一个交半格(meet semi-lattice,lower semi-lattice),当 $\forall x,y \in P$, x,y的最大下界存在,即 $x \wedge y$ 存在

半格

Theorem 1 A join semi-lattice (P, \leq, \vee) satisfies: $(a \vee b) \vee c = a \vee (b \vee c)$ 结合律(associativity) $a \vee b = b \vee a$ 交换律(commutativity) $a = a \vee a$ 幂等性(idempotence)

- Theorem 1.
- 结合律: let $m = (a \lor b) \lor c$, we have $a \lor b \le m, c \le m$. Therefore, $a \le m, b \le m, c \le m$. Further, $a \le m, (b \lor c) \le m$. As a result, $a \lor (b \lor c) \le m$. Similarly, we can have $(a \lor b) \lor c \le n$, where $n = a \lor (b \lor c)$. At last, m = n
- 交换律: 证法类似上述过程
- 幂等性: 注意到 $a \leq a$, 其余类似

- Theorem 2 A meet semi-lattice (P, \leq, \land) satisfies: $(a \land b) \land c = a \land (b \land c)$ 结合律(associativity) $a \land b = b \land a$ 交换律(commutativity) $a = a \land a$ 幂等性(idempotence)
- Theorem 2.
- let $m = (a \land b) \land c$, we have $m \leq (a \land b), m \leq c$. Therefore, $m \leq a, m \leq b, m \leq c$.
- 其余证法类似

半格的等价定义

并半格的另一个角度

Theorem Let X be a set with function $\vee: X \times X \to X$ satisfying:

$$(a \lor b) \lor c = a \lor (b \lor c)$$
 结合律(associativity)

$$a \lor b = b \lor a$$
 交換律(commutativity)

$$a = a \lor a$$
 幂等性(idempotence)

Let $a \leq b \triangleq (a \vee b) = b$. Then, (X, \leq, \vee) is a join semi-lattice

- 首先, (X, ≤)是偏续集:
 - ► 传递性 (Transitive) :如果 $x \le y$ 并且 $y \le z$, 那么 $x \le z$
 - $-x \lor y = y, y \lor z = z,$ 那么 $x \lor z = x \lor (y \lor z) = (x \lor y) \lor z = y \lor z = z$ (结合)
 - ▶ 反对称性 (Anti-symmetric): 如果如果 $x \le y$ 并且 $y \le x$, 那么x = y
 - $-x \wedge y = y, y \wedge x = x, 那么x = y \wedge x = x \wedge y = y (交換)$
 - ► 自反性 (Reflexive) : x < x
 - $x \lor x = x$ (幂等)

半格的等价定义

并半格的另一个角度

Theorem Let X be a set with function $\vee: X \times X \to X$ satisfying:

 $(a \lor b) \lor c = a \lor (b \lor c)$ 结合律(associativity)

 $a \lor b = b \lor a$ 交换律(commutativity)

 $a = a \lor a$ 幂等性(idempotence)

Let $a \leq b \triangleq (a \vee b) = b$. Then, (X, \leq, \vee) is a join semi-lattice

- 其次, V是lub:
 - ▶ 因为 $a \lor (a \lor b) = (a \lor a) \lor b = a \lor b$,我们有 $a \le a \lor b$,同理我们有 $b \le a \lor b$
 - 令 $a \leq x$ and $b \leq x$. 我们有 $a \vee x = x = b \vee x \implies (a \vee (b \vee x)) = x \implies ((a \vee b) \vee x) = x \implies (a \vee b) \leq x$
 - ▶ 有上述两点可知: V是lub

半格的等价定义

交半格的另一个角度

Theorem Let X be a set with function $\wedge: X \times X \to X$ satisfying:

 $(a \land b) \land c = a \land (b \land c)$ 结合律(associativity)

 $a \wedge b = b \wedge a$ 交换律(commutativity)

 $a = a \wedge a$ 幂等性(idempotence)

Let $a \leq b \triangleq (a \wedge b) = a$. Then, (X, \leq, \wedge) is a meet semi-lattice

• 证明类似

格的性质

```
Theorem A lattice (P, \leq, \vee, \wedge) satisfies:
(a \vee b) \vee c = a \vee (b \vee c) \qquad \text{结合律(associativity)}
(a \wedge b) \wedge c = a \wedge (b \wedge c)
a \vee b = b \vee a \qquad \text{交换律(commutativity)}
a \wedge b = b \wedge a
a = a \vee a \qquad \text{幂等性(idempotence)}
a = a \wedge a
a \wedge (a \vee b) = a \qquad \text{吸收律(absorption)}
b \vee (a \wedge b) = b
```

- 吸收律的证明:
- $a \leq a, a \leq (a \vee b) \Longrightarrow a \not\in -\uparrow a \land a \vee b \Leftrightarrow a \vdash \neg b \Leftrightarrow a$
- $\Diamond x \leq a$ and $x \leq a \vee b$. 我们有 $x \neq a$ 和 $a \vee b$ 的下界. 显然 $x \leq a$. 因此, a是最小下界,即 $a \wedge (a \vee b) = a$
- $a \wedge b \leq b, b \leq b \Longrightarrow b$ 是一个 $a \wedge b$ 和b的上界,同样任何 $a \wedge b$ 和b的上界都必然比b大,因此 $b \vee (a \wedge b) = b$

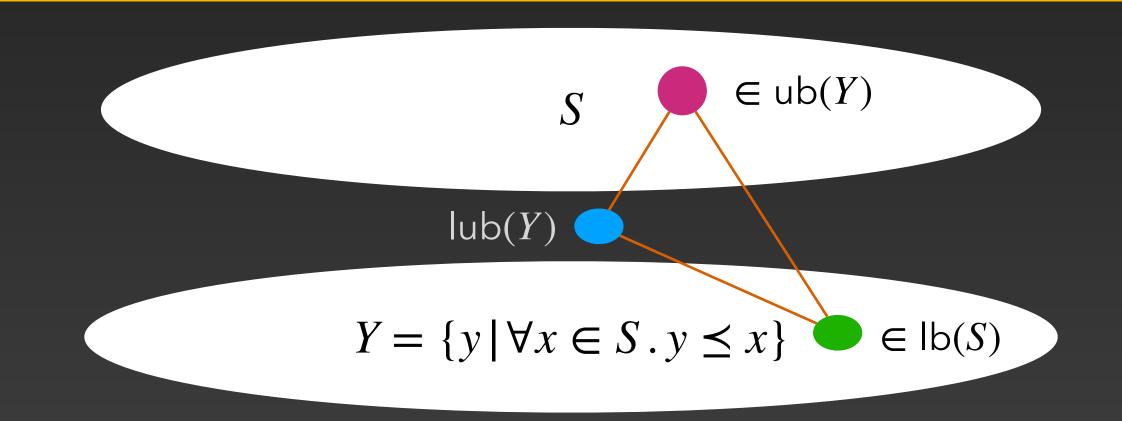
完备格(Complete Lattice)

条件比任意两个元素(格)要强,因为集合可能有无穷的元素

- 完全格(X, \leq)是一个偏序集,对于其每个子集,都有一个最小上界和最大下界,即 $\forall S \subseteq X$, $\exists lub(S) \in X$ and $\exists glb(S) \in X$
 - ▶ 实际上,对于一个偏序集 (X, \leq) 而言,lub(S)和glb(S)只需存在一个即是完备格

Theorem let (X, \leq) be a poset satisfying $\forall S \subseteq X$, $lub(S) \in X$. Then (X, \leq) is a complete lattice. Similarly, if a poset (X, \leq) satisfies $\forall S \subseteq X$, $glb(S) \in X$. Then (X, \leq) is a complete lattice.

如果 (X, \leq) 满足 $\forall S \subseteq X$, $lub(S) \in X$. 可以得出对于一个给定的子集S, 那么其最大下界glb是S所有下界的最小上界,即 $glb(S) = lub\{y \mid \forall x \in S . y \leq x\}$



完备格(Complete Lattice)

• 完备格具备的一些性质:

Theorem a complete lattice (X, \leq) satisfies

1. It has a least element \(\perp \)

2. It has a greatest element T

显然地,因为 $X \subseteq X$, 因此 $glb(X) \in X$, $lub(X) \in X$, 即其拥有最小元和最大元

完备格(Complete Lattice)

- 几个显然的完备格:
 - · 任何非空的有限格都是完备格
 - 数学归纳法(在格的大小上)
 - ▶ 任何格(X, \leq , \vee , \wedge)拥有Ascending Chain Condition (no infinite strictly ascending sequence, $a_1 \prec a_2 \prec a_3 \ldots$, where $a_i \in X$), 并且有一个最小元上, 那么其就是一个完备格
 - 哪怕是拥有无限元素的格,只要有一个最小元,并且没有无限上升链,那 么其任何子集都会有一个最小上确界

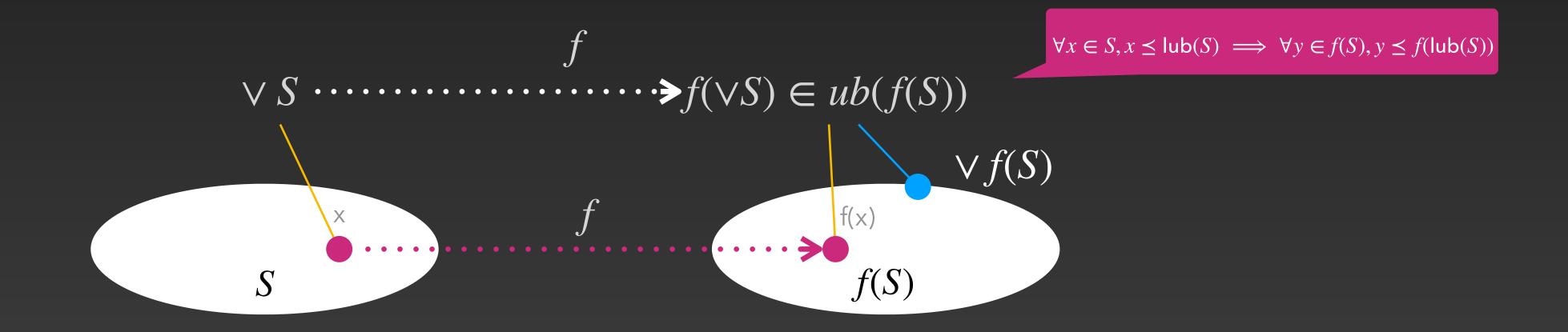
乘积格 (Product Lattice)

- 对多个格进行笛卡尔积操作,形成新的格,即:
 - ▶ 给定格 $(P_1, \leq_1), (P_2, \leq_2), \ldots, (P_n, \leq_n), \quad 那么(P_1, \leq_1) \times (P_2, \leq_2) \times \ldots \times (P_n, \leq_n)$ 也是一个格
 - 其中数据形式为 $\langle e_1, e_2, \dots, e_n \rangle$, where $e_i \in P_i$
 - $\langle e_1, e_2, \dots, e_n \rangle \leq \langle e'_1, e'_2, \dots, e'_n \rangle$ 当且仅当 $\forall e_i, e'_i, e_i \leq_i e'_i$
 - $-\langle e_1, e_2, \dots, e_n \rangle \land \langle e'_1, e'_2, \dots, e'_n \rangle = \langle e_1 \land e'_1, e_2 \land e'_2, \dots, e_n \land e'_n \rangle$
 - $-\langle e_1, e_2, \dots, e_n \rangle \vee \langle e'_1, e'_2, \dots, e'_n \rangle = \langle e_1 \vee e'_1, e_2 \vee e'_2, \dots, e_n \vee e'_n \rangle$
 - ▶ 如果对所有的 (P_i, \leq_i) 都是一个完全格,那么 $(P_1, \leq_1) \times (P_2, \leq_2) \times \ldots \times (P_n, \leq_n)$ 也是一个完全格
 - 结论显然. 可以看到新的top元素为: $< T_1, T_2, ..., T_n >$,新的bot元素为 $< \bot 1, \bot 2, ..., \bot n >$

单调映射

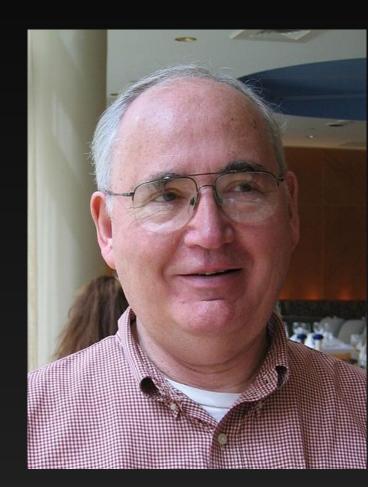
• 对于个偏续集 $(X, \leq_X), (Y, \leq_Y)$,而言 $f: X \to Y$ 是一个单调映射(monotone map, alternatively, order-preserving)当 $\forall x, y \in X. x \leq_X y \implies f(x) \leq_Y f(y)$

Theorem For posets $(X, \leq_X), (Y, \leq_Y)$, let $f: X \to Y$ be monotone map. For $S \subseteq X$, assume $\vee S$, and $\vee f(S)$ exist, then $\vee f(S) \leq_Y f(\vee S)$



连续映射

• 对于偏序集 (X, \leq_X) , (Y, \leq_Y) 而言, $f: X \to Y$ 是连续的(continuous, actually, upper-continuous, 也被称为Scott-continuous),当且仅当其保持least upper bounds性质(也称limit preserving),即对于X中的任何一个链 $C \subseteq X$, 如果 $\lor C$ 存在,那么 $\lor f(C)$ 存在,且 $f(\lor C) = \lor f(C)$. 类似地,我们可以定义lower-continuous



Dana Stewart Scott

Theorem If $x \le y$, and f is continuous then $f(y) = f(x) \lor f(y)$

 $y \text{ is } \lor \{x, y\}, f(x) \lor f(y) \text{ is } \lor (\{f(x), f(y)\})$

Theorem Continuous maps are monotonic

 $f(y) = f(x) \lor f(y) \implies f(x) \le f(y)$

Theorem Let poset (X, \leq_X) satisfies ascending chain condition(ACC), let (Y, \leq_Y) be a poset. Let $f: X \to Y$ be a monotone function. Then, f is continuous.

映射复合

Theorem Any composition of monotone function is monotone:

Given posets (X, \leq_X) , (Y, \leq_Y) , (Z, \leq_Z) , let $f: X \to Y, g: Y \to Z$ both be monotone, then $h = g \circ f: X \to Z$ is monotone.

Theorem Any composition of continuous function is monotone:

Given posets (X, \leq_X) , (Y, \leq_Y) , (Z, \leq_Z) , let $f: X \to Y, g: Y \to Z$ both be continuous, then $h = g \circ f: X \to Z$ is continuous.

不动点(fixed point)

• 给定X为一个集合,一个操作 $f: X \to X$ 的不动点即为X的一个元素x,使的f(x) = x

 $\rightarrow fp(f) = prefp(f) \cap postfp(f)$

- 令f是偏续集 (X, \leq) 上的一个操作
 - $fp(f) \triangleq \{x | f(x) = x\}$
 - $prefp(f) \triangleq \{x | f(x) \leq x\}$
 - $postfp(f) \triangleq \{x \mid x \leq f(x)\}$
 - least fixed point $lfp(p) \triangleq \min(fp(f))$
 - greatest fixed point $gfp \triangleq \max(fp(f))$

Theorem A monotonic map $f: X \to X$ on a complete lattice $(X, \leq, \top, \bot, \wedge, \vee)$ has a least fixed point and a greatest fixed point, which are:

1.
$$lfp(f) = \land prefp(f) = \land \{x \mid f(x) \leq x\}$$

2.
$$gfp(f) = \bigvee postfp(f) = \bigvee \{x \mid x \leq f(x)\}$$

3. Moreover, the fixed points form a complete lattice

Bronisław Knaster

Alfred Tarski

- 证明: 1. 令 prefp(f) 为f所有的prefixed points,令p为prefp(f)的glb,即 $p = \land prefp(f)$. 首先由于X是完备格,p必然存在。下面我们来证明p也同时是一个 a)least prefixed point和 b)least fixed point
 - ► a) 对于任何的prefixed point *x*而言:
 - 我们有 $p \leq x$,因此 $f(p) \leq f(x)$ (f是单调的)
 - 由于x是一个prefixed point,因此 $f(x) \leq x$,因此 $f(p) \leq f(x) \leq x \implies f(p) \leq x$.
 - 至此, f(p)是prefp(f)的一个下界. 由于p是prefp(f)的最大下界,我们有 $f(p) \leq p$, 意味着p本身是一个prefixed point.
 - 因此,p是一个prefixed point, 也是prefp(f)的一个下界, 我们有 p是least prefixed point, 即 \wedge (prefp(f))就是prefixed point集合 的最小元

Theorem A monotonic map $f: X \to X$ on a complete lattice $(X, \leq, \top, \bot, \wedge, \vee)$ has a least fixed point and a greatest fixed point, which are:

1.
$$lfp(f) = \land prefp(f) = \land \{x \mid f(x) \le x\}$$

2.
$$gfp(f) = \bigvee postfp(f) = \bigvee \{x \mid x \leq f(x)\}$$

3. Moreover, the fixed points form a complete lattice

Bronisław Knaster

Alfred Tarski

- 证明: b) 由于p是一个prefixed point.
 - ▶ 我们有 $f(p) \leq p$. 又f是单调的,我们有 $f(f(p)) \leq f(p)$
 - 因此f(p)也是一个prefixed point. 由于p本身是prefixed points的下界,我们有 $p \leq f(p)$
 - 至此,我们有 $p \leq f(p), f(p) \leq p$, 因此poset的反传递性,我们有p = f(p)
 - · 因此,*p*是一个不动点
 - ho 再注意到,所有的不动点本身都是prefixed points. 而p又是所有prefixed points的下界,所以p是所有不动点的下界
 - · 至此, *p*就是最小的不动点

Theorem A monotonic map $f: X \to X$ on a complete lattice $(X, \leq, \top, \bot, \wedge, \vee)$ has a least fixed point and a greatest fixed point, which are:

1.
$$lfp(f) = \land prefp(f) = \land \{x \mid f(x) \leq x\}$$

2.
$$gfp(f) = \vee postfp(f) = \vee \{x \mid x \leq f(x)\}$$

3. Moreover, the fixed points form a complete lattice

Alfred Tarski

• 证明: 2的证明和1类似(对偶), 至此省略

Theorem A monotonic map $f: X \to X$ on a complete lattice $(X, \leq, \top, \bot, \wedge, \vee)$ has a least fixed point and a greatest fixed point, which are:

1.
$$lfp(f) = \land prefp(f) = \land \{x \mid f(x) \leq x\}$$

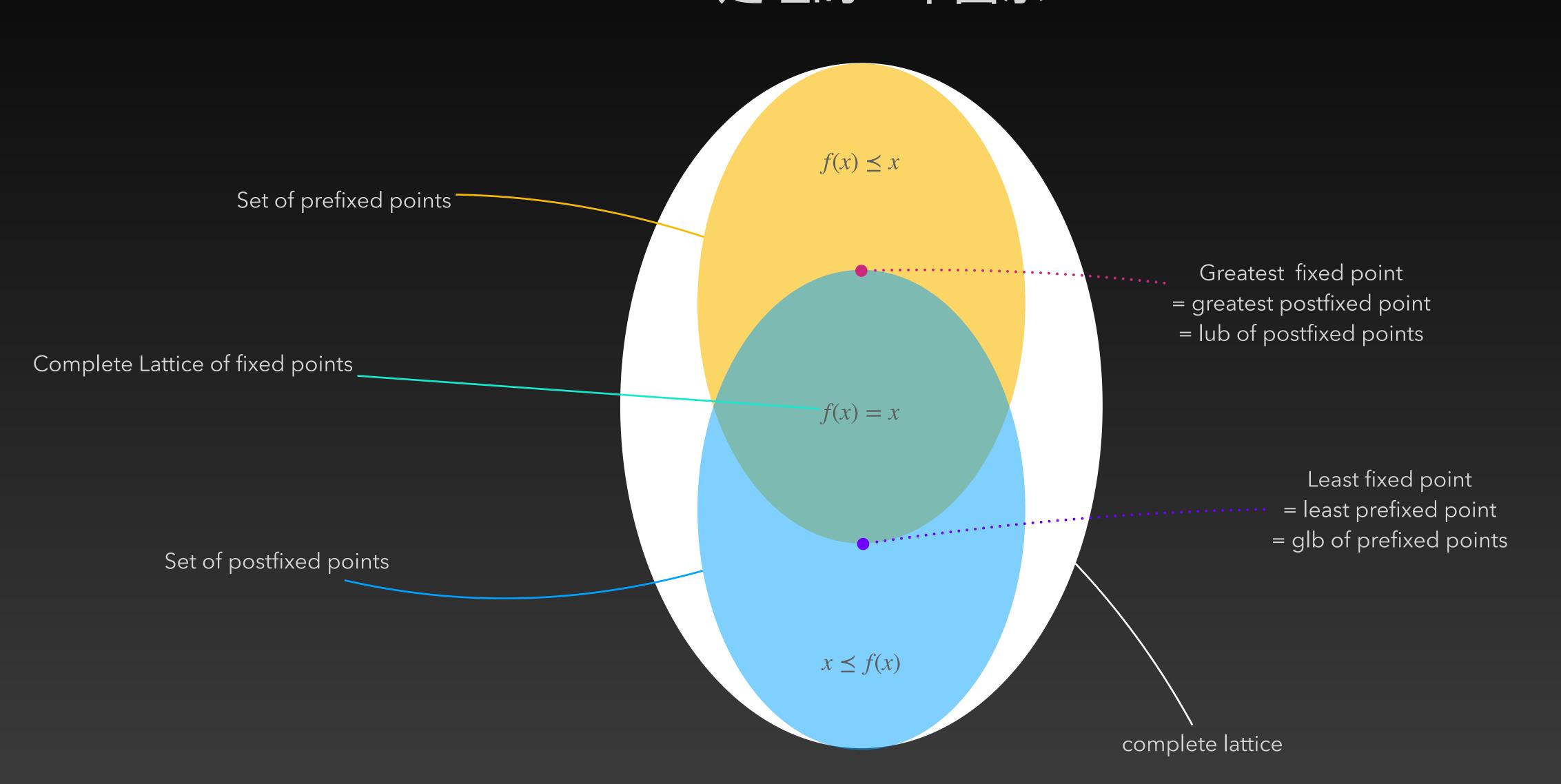
2.
$$gfp(f) = \bigvee postfp(f) = \bigvee \{x \mid x \leq f(x)\}$$

3. Moreover, the fixed points form a complete lattice

Bronisław Knaster

Alfred Tarski

- 证明:3. 令W为fixed points的一个子集,我们来证明其存在一个上确界(lub)在fixed points集中. 对偶地,如果我们能证明其还存在一个下确界(glb)就可以 证明fixed points构成了一个完备格.
 - 令q = lub(W) (注意:这是从X的角度看, $q \in X$), $\hat{W} = \{w \mid q \leq w\}$.我们有 $q \in \hat{W}, q = glb(\hat{W})$
 - ・ \hat{W} 作为一个完备格的子集,有一个lub和glb. 我们有q= glb(\hat{W}), $q\in\hat{W}$, 因此glb(\hat{W}) $\in\hat{W}$. 进一步,由于 $q\in\hat{W}$, $q\leq$ lub(\hat{W}). 因此根据 \hat{W} 的定义,lub(\hat{W}) $\in\hat{W}$. 由于glb(\hat{W}) $\in\hat{W}$, lub(\hat{W}) $\in\hat{W}$, \hat{W} 显然是一个完备格(any subset has lub and glb in it)
 - $rac{f}{K}$ 上 \hat{W} 一 \hat{W} 中 \hat{W} 中 \hat{W} 中 \hat{W} 中 \hat{W} 中 \hat{W} 中 \hat{W} 一 \hat{W} 一 \hat{W} 一 \hat{W} 中 $\hat{W$
 - W为fixed points的一个集合,因此f(w) = w, 意味着 $w \le f(x)$. 由w的任意性,lub $(W) \le f(x)$. 再因为q = lub(W), 我们有 $q \le f(x)$
 - 根据 \hat{W} 的定义, $f(x) \in \hat{W}$
 - ・基于上述两点,f是一个完备格 \hat{W} 上的一个映射(其本身是单调的). 因此,其在 \hat{W} 上含有一个最小不动点 \hat{q} (a.k.a. $f(\hat{q}) = \hat{q}$). 由于q是 \hat{W} 上的最小元,我们有 $q \leq \hat{q}$. 因此,如果我们从fixed points集合来看, \hat{q} 就是W的一个上确界



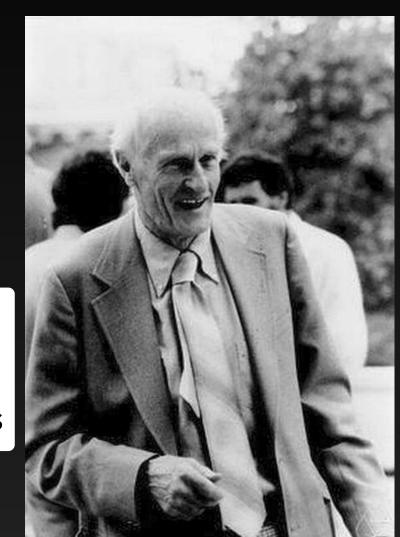
克莱尼不动点定理(Kleene's fixed point theorem)

Knaster-Tarski's theorem说明了lfp和gfp的存在(当然,也存在相应的算法,但是不那么直接). 克莱尼不动点定理则给出了一种计算(或者近似计算,在continous性质不满足的情况下)lfp和gfp.

Theorem Let a monotonic map $f: X \to X$ on a complete lattice $(X, \leq, \top, \bot, \wedge, \vee)$. Then $f^{\alpha}(\bot) \leq f^{\alpha+1}(\bot)$ for all ordinals α . That is, $\bot \leq f(\bot) \leq f^2(\bot) \dots f^i(\bot)$ is a chain

By induction.

And the base case $\bot \leq f(\bot) \text{ always holds}$



Stephen Kleene

Theorem (Kleene) Let a continuous map
$$f: X \to X$$
 on a complete lattice $(X, \leq, \top, \bot, \wedge, \vee)$. Then $\vee \{f^i(\bot) | n \in \mathbb{N}\}$ is the least fixed point of f .
$$lfp(f) = \vee_{n \in \mathbb{N}} f^i(\bot)$$

• We first prove that lfp(f) is a fixed point:

by continuity of f by def of f^n Note: we only add \bot , but $\forall x, x \lor \bot = x$ by $f(f^i(\bot)) = f(\lor_{n \in \mathbb{N}} f^i(\bot)) = \bigvee_{n \in \mathbb{N}} f(f^i(\bot)) = \bigvee_{n \in \mathbb{N}} f^{i+1}(\bot) = \bigvee_{n \in \mathbb{N}} f^i(\bot) = lfp(f)$

克莱尼不动点定理(Kleene's fixed point theorem)

Theorem (Kleene) Let a continuous map $f: X \to X$ on a complete lattice $(X, \leq, \top, \perp, \wedge, \vee)$. Then $\vee \{f^i(\perp) \mid n \in \mathbb{N}\}$ is the least fixed point of f. $lfp(f) = \vee_{n \in \mathbb{N}} f^i(\perp)$

- We then prove that lfp(f) is the least:
 - We only need to prove $\forall x \in X. f(x) \leq x \implies lfp(f) \leq x$
 - Since any fixed point is a prefixed point.

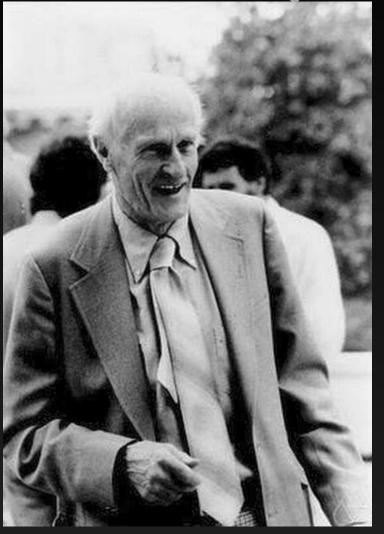
- ▶ We then only need to prove $\forall i \in \mathbb{N}$. $f^i(\bot) \leq x$, then we get x is ub of this chain (also refert to Kleene chain)
- Induction: $f^0(\bot) = \bot \le x$
- Assume $f^n(\bot) \leq x$, then

$$-f^{n+1}(\bot) = f(f^n(\bot)) \le f(x) \le x$$

克莱尼不动点定理(Kleene's fixed point theorem)

Theorem (Kleene) Let a continuous map $f: X \to X$ on a complete lattice $(X, \leq, \top, \bot, \wedge, \vee)$. Then $\vee \{f^i(\bot) \mid n \in \mathbb{N}\}$ is the least fixed point of f. $lfp(f) = \vee_{n \in \mathbb{N}} f^i(\bot)$

- 根据kleene不动点定理,我们只要从工出发,不断迭代f,就可以 找到f的不动点,而且是最小的不动点
- 此外,我们可以对偶地得到最大不动点:
 - $gfp(f) = \bigwedge_{i \in \mathbb{N}} f^i(\mathsf{T})$
 - · 即从工出发,不断迭代f,就可以找到f的最大不动点



Stephen Kleene

回到数据流分析

回顾之前的两种分析

	Reaching Definitions	Live Varaibles
Domain	Sets of definitions	Sets of variables
Direction	Forward: $OUT[b] = f_b(IN[b])$ $IN[b] = \land OUT[pred(b)]$	Backward: $IN[b] = f_b(OUT[b])$ $OUT[b] = \land IN[succ(b)]$
Transfer function	$f_b(IN[b]) = Gen(b) \cup (IN[b] - Kill(b))$	$f_b(OUT[b]) = Use(b) \cup (OUT[b] - Def(b))$
Meet operation (\land)	U	U
Boundary condition	$OUT[entry] = \emptyset$	$IN[exit] = \emptyset$
Initial interior points	$OUT[b] = \emptyset$	$IN[b] = \emptyset$

单调数据流框架(Monotone Dataflow Frameworks)

- 一个统一的数据流分析框架,由Gary A. Kildall (POPL 1973)提出 Jon B. Kam 和 Jeffery D. Ullman (Acta Info 1977)拓展,因此也被称为Kildall数据流框架
- 该框架是一个四元式 (G, \mathcal{L}, F, D)
 - G 是一个控制流图 $< N, E, n_0 >$, $N = n_0, n_1, n_2, \dots$ 是基本块, E是基本块之间的控制流边, n_0 是开始节点
 - ト \mathscr{L} 是一个高度有限的格(即为完备格,其实semi-lattice也一样,有限意味着其必然符合ACC要求),一个meet操作∧和join操作∨,有一个最高T和最低元素↓,即(L, ≤ , ∨ , ∧ , T , ↓)
 - $\mathcal{L} = L_0 \times L_1 \times L_2 \times \ldots$, 其中 L_i 代表了基本块节点 n_i 的可能的解(值的域),L是这些格的积,代表了整个程序的解。一般而言,每个格的解空间是相同的,比如都是程序中的n个变量的可达定义问题,因此整体的格就可以表达为 L^n , 每个节点都是L
 - ► F 是一个函数空间, $\forall f \in F, f: L \to L$
 - $L \to L$ continuous),那么就有不动点解了!

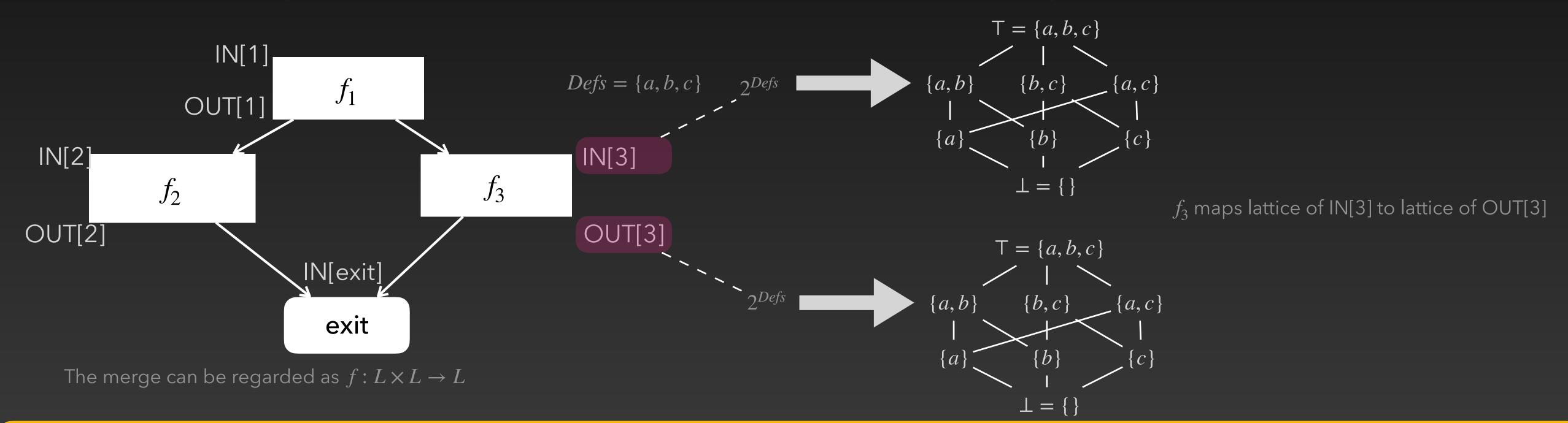
如果每个函数都monotone (前面的ACC 必然导致也是

- 存在一个全等函数f,对于所有的x,都有f(x) = x (用于对应空block)
- 对于复合闭包,如果 $f_1, f_2 \in F$,那么 $f_1 \circ f_2 \in F$ (这样多个block的transfer function就可以复合)
- · D 分析方向, 前向还是后向

• 定义可达分析:

- ・ 对于程序中的每个基本块,L为definitions的可达集合,即 2^{Defs} , T = all the varaibles, $\bot = \{\}$, $\land = \cap$, $\lor = \cup$, $\preceq = \subseteq$
 - 整体的格是笛卡尔积 $L^n = 2^{Defs} \times 2^{Defs} \times 2^{Defs}$
- ▶ 对于基本块而言 $f: L \to L$, $f(x) = \text{Gen } \cup (x \text{Kill})$
 - $x_1 \le x_2 \implies \text{Gen } \cup (x_1 \text{Kill}) \le \text{Gen } \cup (x_2 \text{Kill})$
 - Alternatively (等价的表述), Gen $\bigcup (x_1 \cup x_2 Kill) \leq Gen \cup (x_1 Kill) \bigcup Gen \cup (x_2 Kill)$
- 另一方面,对于控制流边也可以看出是一种function: $L \times L \to L$, $(x_1, x_2) \leq (x_1', x_2') \Longrightarrow x_1 \cup x_2 \leq x_1' \cup x_2'$
- · 因此,这个框架中的每个function都是单调的(由于格为有限格,因此也是连续的)
- ► 方向 D = forward

- 定义可达分析:
 - ▶ 整体的域是一个完备格*L*ⁿ
 - 所有的基本块函数、控制流函数本质上是对程序值域的一个约束方程:
 - 每一个 $f:L \to L$,都是表达了输入一个x,输出一个f(x)



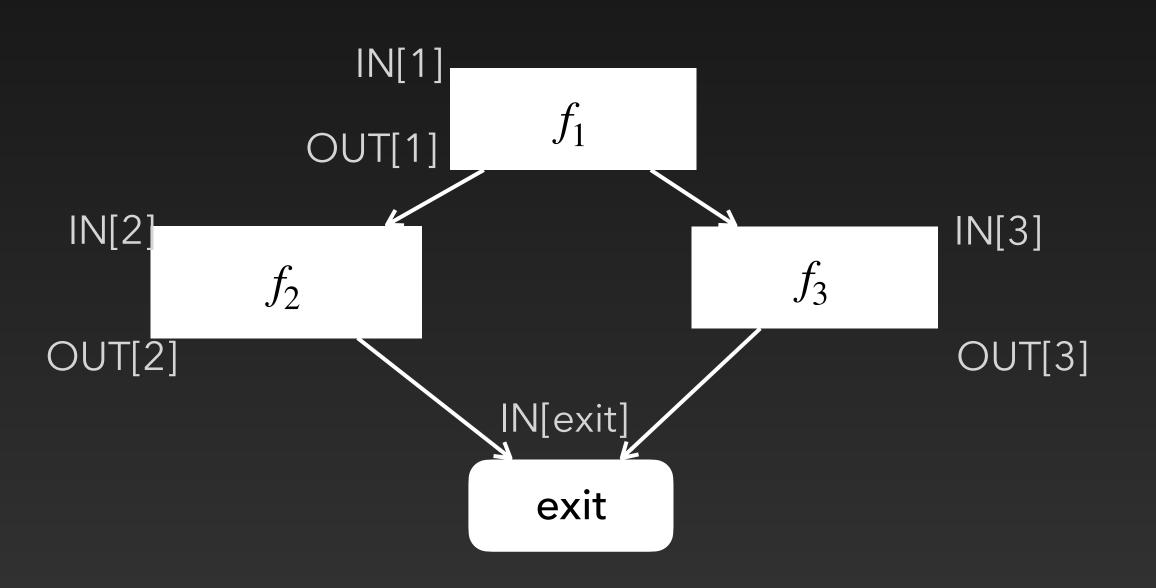
Abstract domain

Meet or join

Fixed point

- 定义可达分析:
 - · 我们想要的是:无论程序的输入是什么,沿着什么样的path,经过多少循环,我们得到的关于这个的数据信息的判定都为真
 - 因此我们需要关于复合的约束方程ƒ, 得到其不动点: 即一定为真的信息!
 - > 可以类比为循环不变式
 - 进一步,我们其实想要的是最小/最大的不动点
 - > 可以类比为有很多循环不变式(都为真),但有些是平凡的(没多大用),那些最强/最弱的不变式才能 证明我们所需要的性质
 - > 比如对于冒泡排序而言,每次迭代元素不变必然为真(但没什么用),但是每次迭代前i个元素有序则非常有用,并且 每次迭代前i个元素有序 —> 每次迭代元素不变(但反之不然),这其实和我们之前的所有不动点形成了一个完备格类似!

对定义可达而言,定义可达的越多越没用(利用哑节点来detect undefined varaibles use),但越安全(越可能为真),定义越少越有用,但越不安全(可能不为真)



(T,T,T,T,...T)必然为真,但没什么用 (工,工,工,工,工)最为激进(精确),但最可能不安全

因此,对于这个问题,我们希望找到最小不动点 Ifp!为真,而且最为精确(least!)

因此,本质上我们是对一个完备格 L^n ,上关于约束的方程f(所有基本块的transfer function,path的merge function的复合)的最小不动点. 由于 L^n 高度有限,f是单调的也是连续的,因此根据Kleene不动点定理必然能找到最小不动点!

算法的复杂度

- Kleene不动点定理的一个具体实现就是依次迭代(apply 每个节点和汇聚的f)
 - · 那么大概要迭代多少次才能找到最小不动点呢?
 - 其实就是完备格 L^n 的高度 (因为每次迭代都是在完备格上做的一次 \leq 的迁移,即Kleene chain上的移动)
 - ▶ 能够优化这个算法吗?
 - worklist算法时可以根据数据依赖图来进行迭代(因为有些点的数据改变并不 会改变另一个节点数据信息)

另一个例子:常量传播(Constant Propagation)

- 常量传播: 将表达式中能够确定每次求值都为某个常量 (evaluated to be some constant) 的表达式替换为这个常量
 - 常见的优化技术,可以减少运行时求值需要的时间
- 值域: Undef, ..., -2, -1, 0, 1, 2, ..., NAC
 - NAC: Not A Constant,对于一个变量有多个值定义点,因此不是某个常量
 - ► Undef: undefined, 对于一个变量的值没有定义

另一个例子:常量传播(Constant Propagation)

• 聚合/的作用是汇聚多个路径中的定义,在常量传播中的定义如下

一个变量在多个路径上都是相同的值,就是这个常量,否则就是一个可能随着执行不同的变量

X	y	x V y	
c1	c2	NAC	c1 != c2
c1	c2	c1	c1 = c2
undef	c1	c1	
undef	undef	undef	
undef	NAC	NAC	
NAC	c1	NAC	
NAC	undef	NAC	
NAC	NAC	NAC	

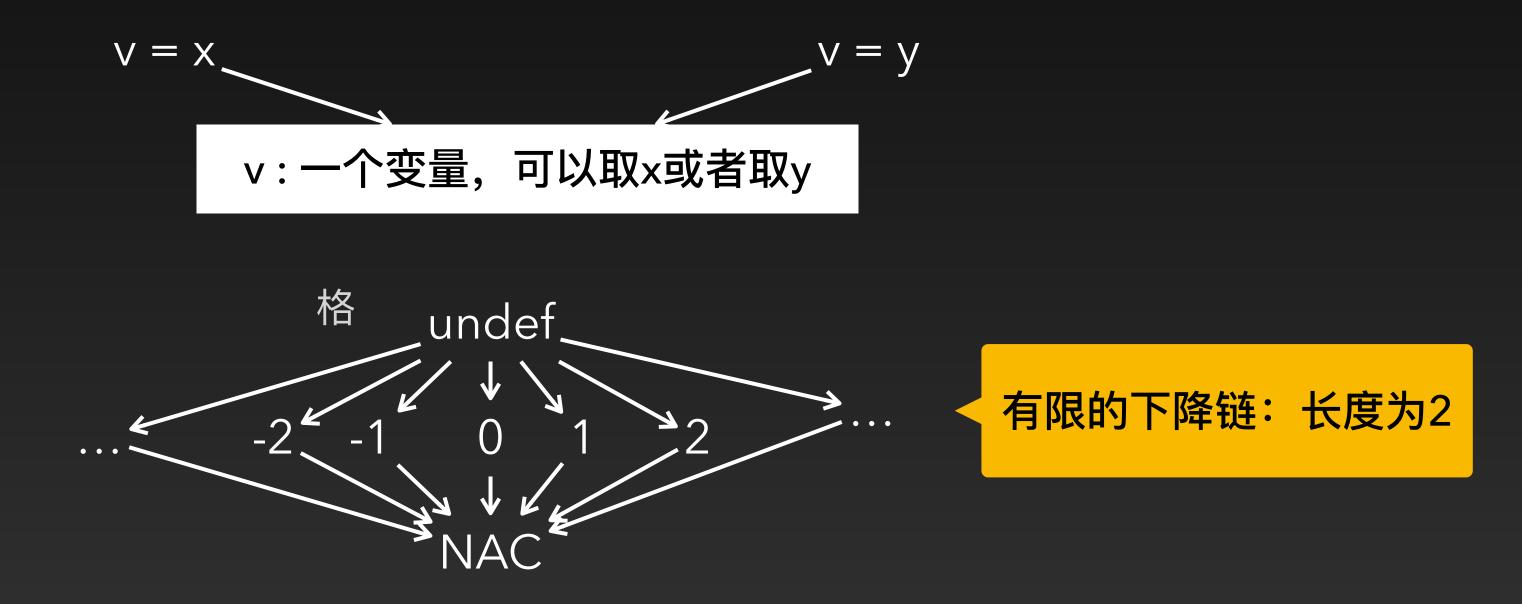
如果某条路径是未定义,说明在这个路径上,这个变量的值 is not interesting,即其可以为任何值也不会影响程序。那么如果另外一个路径上其定义为常量,对于优化而言,将其设 为这个常量是安全的。

注意:变量未定义就使用(use before define)本质上是一个未定义行为,可能会有隐患。但作为常量传播的优化而言,无需为这个未定义行为负责。此外,也可以看出,一些优化技术甚至可以消除未定义行为!

只要某个路径上不是一个常量(存在多个可能的值定义),那么汇聚后一定不是一个常量

另一个例子:常量传播

• 聚合>给出了一个如下的格

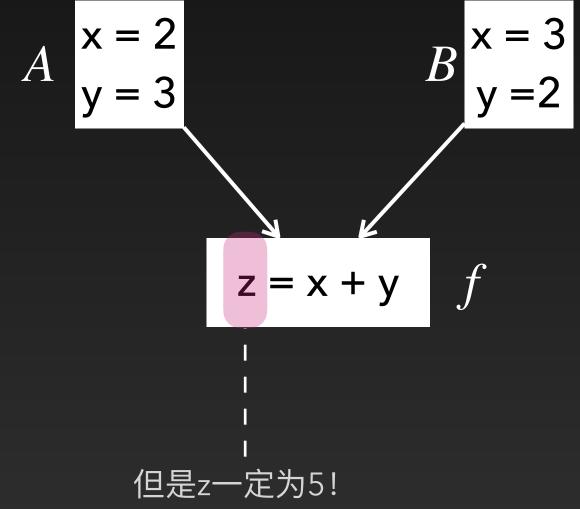


- · 虽然格是无穷,但符合ACC,即有限下降链,因此在其上的单调函数也是continuous 的,可以用kleene算法计算不动点!
- · 此外,又含有 T , L , 加上ACC, 因此也是一个完备格!

常量传播(Constant Propagation)

• 下面举一个简单的基本块内的语句: z = x + y, 其转移函数

X	у	Z
c1	NAC	NAC
	c2	c1 + c2
	undef	undef
undef	NAC	undef
	c2	undef
	undef	undef
NAC	undef	undef
		NAC



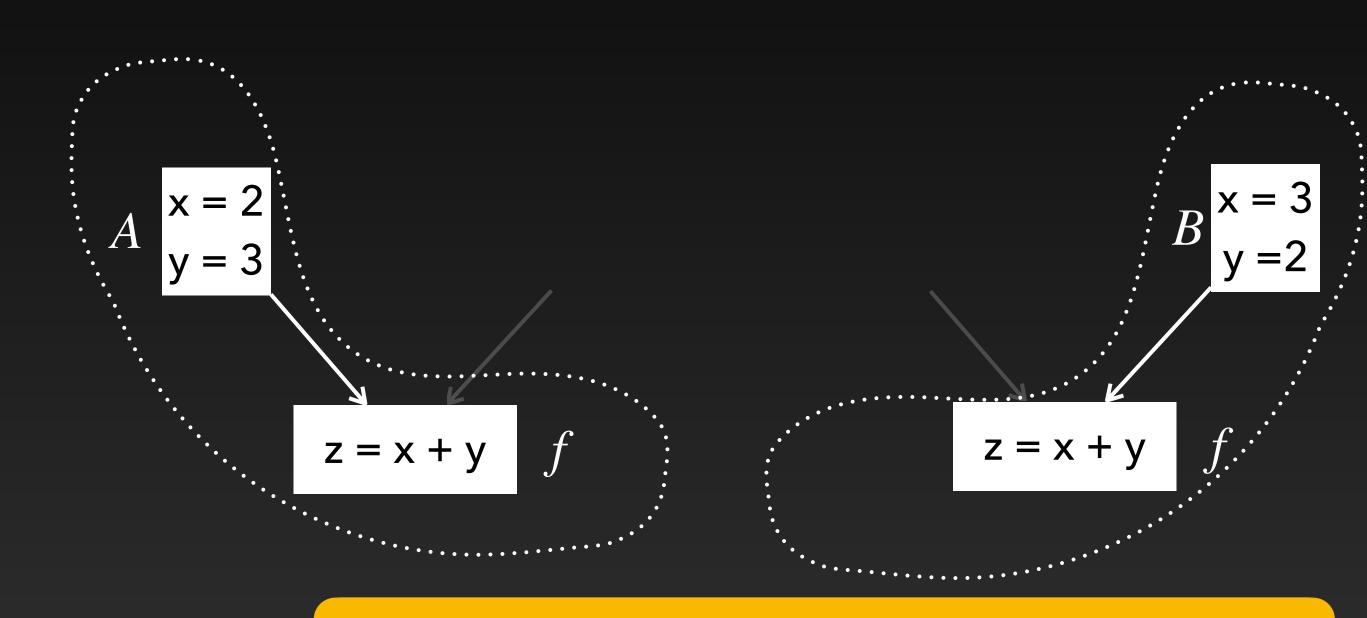
OUT[A] =
$$\{x = 2, y = 3\}$$
, OUT[B] = $\{x = 3, y = 2\}$,
 $f(OUT[A]) = \{z = 5, x = 2, y = 3\}$
 $f(OUT[B]) = \{z = 5, x = 3, y = 2\}$
 $f(OUT[A] \lor OUT[B]) = \{z = NAC, x = NAC, y = NAC\}$

Path meet operator weakens the overall precise

常量传播(Constant Propagation)

● 下面举一个简单的基本块内的语句:z=x+y, 其转移函数

X	у	Z
c1	NAC	NAC
	c2	c1 + c2
	undef	undef
undef	NAC	undef
	c2	undef
	undef	undef
NAC	undef	undef
		NAC



OUT[A] =
$$\{x = 2, y = 3\}$$
, OUT[B] = $\{x = 3, y = 2\}$,
 $f(OUT[A]) = \{z = 5, x = 2, y = 3\}$
 $f(OUT[B]) = \{z = 5, x = 3, y = 2\}$
 $f(OUT[A] \lor OUT[B]) = \{z = NAC, x = NAC, y = NAC\}$

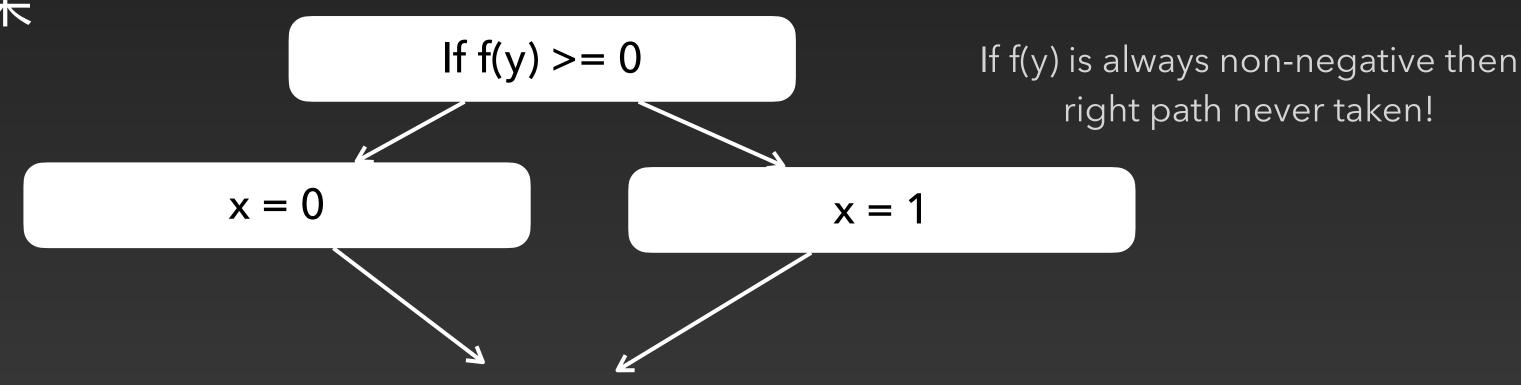
实际上一次的执行就是一条路径(path),这个信息只决定 于这个路径上的前驱节点

如果我们想要的是"无论这个程序如何执行,这个点的信息都 是某个值",那么更加精确的表达是

 $f(OUT[A]) \lor f(OUT[B]) = \{z = 5, x = NAC, y = NAC\}$

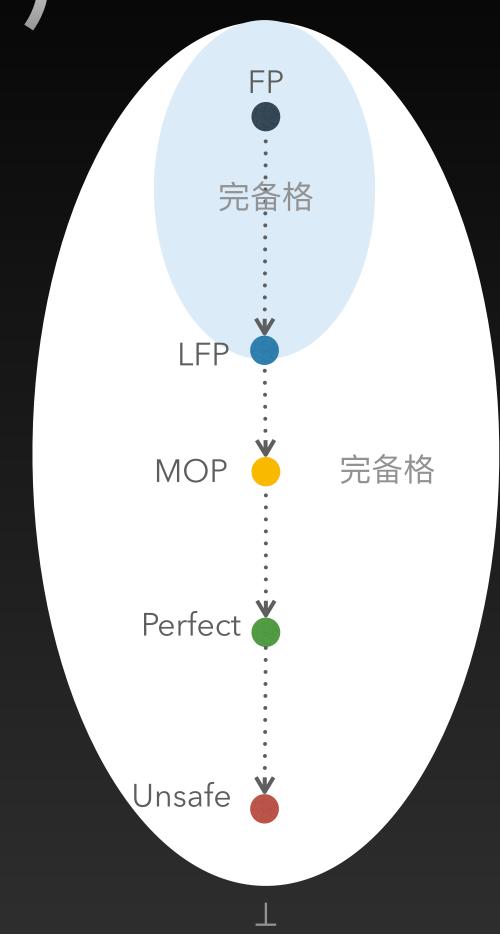
完美的数据流分析

- 定义: 给定 $f_1, \ldots, f_m \in F$, 其中 f_i 是第i个结点的转换函数
 - $f_p = f_{n_k} \cdot \ldots \cdot f_{n_1},$ 其中p是一条沿着结点 n_1, \ldots, n_k 的路径
 - 如果p是一条空的路径,那么 f_p 是一个全等函数
- 完美的数据流答案:
 - ▶ 对于每个结点n:
 - $\vee f_{p_i}(\top)$: p_i 是一条从程序开始到达点n的路径,即完美的数据流需要考虑所有可达到结点n的路径的聚合结果



路径汇聚(Meet-Over-Paths, MOP)

- Meet-Over-Paths(MOP)
 - ▶ 对于每个结点n: 对于所有可达n的路径 $p_{i'}$ $MOP(n) = ∨ f_{p_i}$ (init)
 - · 只要基本块存在边,就认为存在一条路径
 - 会过多考虑,因为有些路径是"死"路径
 - MOP = Perfect-Solution V Solution-to-Unexecuted-Paths
 - Perfect-Solution ≤ MOP ≥ 这里≤表达左边比右边精确
 - ► MOP是相比于Perfect-Solution一个更加小的但是更加安全的解
 - ullet 但,MOP本身不可计算,因为可能有潜在无穷多的path(Loop),即你无法编程写出 $ullet f_{p_i}$ (init)
- 我们有: $PERFECT \leq MOP \leq LFP \leq FP$, 策略: 尽可能和MOP接近



可分配框架(Distributive Framework)

- 一个框架(F,V,\vee)是分配的的,当且仅当
 - $f(x \lor y) = f(x) \lor f(y)$
 - ► 即输入的merge再apply函数 相等于 先各自apply函数,再merge
 - 比如定义可达分析,活跃变量分析
 - ・ 我们在迭代算法中往往是做 $f(x \lor y)$ (统一考虑所有可能输入),但实际上需要 $f(x) \lor f(y)$ (即每种输入需要单独考虑)
 - ▶ 一般情况下, $f(x \lor y) \neq f(x) \lor f(y)$,这意味着你可能得到不那么精确的信息
 - 比如常量分析中 $x \le x \lor y$, $y \le x \lor y \Longrightarrow f(x) \le f(x \lor y)$, $f(y) \le f(x \lor y) \Longrightarrow f(x) \lor f(y) \le f(x \lor y)$

正确性和准确度

- 如果一个数据流分析框架是单调的,那么算法收敛时,有 $MOP \leq LFP$
- 如果一个数据流分析框架是分配的,那么算法收敛时,MOP = LFP
 - ► meet-early (先聚合,再apply) = meet-late(先apply,再聚合,即MOP)
 - · 定义可达和活跃变量的分析都符合要求
- 如果只有单调,但不分配
 - ► 那么 $LFP \neq MOP$
 - ▶ 常量传播就是此类

抽象解释 (abstract interpretation)

- 注意: LFP给出的是约束方程f(程序基本块、path meet/join的复合)的最小不动点了,而最小不动点已经代表了这个方程f最为精确(有用)的解,但为什么还没有精确到perfect solution?
- 因为约束方程/的一种保守抽象,其不能完美的描述程序行为,而如果我们能够 给出更加精确的约束方程/的描述,那么我们得到的LFP的分析就更加精确
- 怎么描述不同约束方程的关系呢?
- 抽象解释就是系统研究这种关系的理论
 - 有机会之后来讲讲

