
TA 谢润烁
2024/2/27

01 编程语言概述 补充阅读

《01 编程语⾔概述》这⼀讲中有⾮常多新概念，⽽为了更好地理解这些概念，阅读相关材料
是有必要的。由于维基百科的质量要远⾼于百度百科（百度百科有很多是直接抄维基百科
的），英⽂维基百科的词条质量也要⾼于其它语⾔维基百科的词条质量（尤其是科技类词
条）。因此，我们选⽤英⽂维基百科上的⼀些词条作为我们的补充读物。

为了⽅便⼤家的阅读，我对其中部分专有名词和可能⼤家不太熟悉的词汇加了中⽂注释（没有
形成固定中⽂翻译的词汇则没有加），也在⼀些我觉得可以解释或者拓展⼀下的地⽅做了注
解。这些材料会⾮常有利于更好地理解这些概念，也没有晦涩难懂的词汇，所以⼤家认真读的
话并不会感觉到吃⼒。在⽇后课程的学习中，我们接触到的很多书籍、⼿册和课件都会是全英
⽂的，所以我们要从现在开始养成阅读英⽂材料的习惯，培养阅读英⽂材料的能⼒。

1 通⽤编程语⾔(GPL)与领域特定语⾔(DSL)
2 编译与编译器

3 解释与解释器

4 命令式编程

4.1 过程式编程(⾯向过程编程)
4.2 ⾯向对象编程
4.3 过程式与⾯向对象的历史

5 声明式编程

5.1 逻辑式编程
5.2 函数式编程

1 通用编程语言(GPL)与领域特定语言(DSL) 1

In computer software, a general-purpose programming language (GPL) is a
programming language for building software in a wide variety of application domains.
Conversely, a domain-specific programming language (DSL) is used within a specific
area. For example, Python is a GPL, while SQL is a DSL for querying relational databases.

SQL语言应用于数据库操作，大家会在数据库课程中学习到

The distinction between general-purpose programming languages and domain-
specific programming languages is not always clear. A programming language may be
created for a specific task, but used beyond that original domain and thus be considered a
general purpose programming language. … Inversely, a language may be designed for general
use but only applied in a specific area in practice. A programming language that is well
suited for a problem, whether it be general-purpose language or DSL, should minimize the
level of detail required while still being expressive enough in the problem domain. As the
name suggests, general-purpose language is "general" in that it cannot provide support for
domain-specific notation while DSLs can be designed in diverse problem domains to handle
this problem. General-purpose languages are preferred to DSLs when an application domain
is not well understood enough to warrant its own language. In this case, a general-purpose
language with an appropriate library of data types and functions for the domain may be used
instead. While DSLs are usually smaller than GPL in that they offer a smaller range of
notations of abstractions, some DSLs actually contain an entire GPL as a sublanguage. In
these instances, the DSLs are able to offer domain-specific expressive power along with the
expressive power of GPL.

General Purpose programming languages are all Turing complete(图灵完备),
meaning that they can theoretically solve any computational problem. Domain-
specific languages are often similarly Turing complete but are not exclusively
so(不完全都是图灵完备的).

图灵完备：即语言的能力与图灵机的能力等价

2 编译与编译器 2

In computing, a compiler(编译器) is a computer program that translates computer code
written in one programming language (the source language(源语⾔)) into another language
(the target language(⽬标语⾔)). The name "compiler" is primarily used for programs that
translate source code from a high-level programming language to a low-level programming

language (e.g. assembly language(汇编语⾔), object code(⽬标语⾔), or machine
code(机器语⾔)) to create an executable program(可执⾏程序).

There are many different types of compilers which produce output in different useful forms.
A cross-compiler(交叉编译器) produces code for a different CPU or operating system than
the one on which the cross-compiler itself runs. A bootstrap(⾃举) compiler is often a
temporary compiler, used for compiling a more permanent or better optimised compiler for a
language.

Related software include decompilers(反编译器), programs that translate from low-level
languages to higher level ones; programs that translate between high-level languages, usually
called source-to-source compilers or transpilers; language rewriters, usually programs
that translate the form of expressions without a change of language; and compiler-
compilers, compilers that produce compilers (or parts of them), often in a generic and
reusable way so as to be able to produce many differing compilers.

A compiler is likely to perform some or all of the following operations, often called phases:
preprocessing, lexical analysis, parsing, semantic analysis (syntax-directed translation),
conversion of input programs to an intermediate representation, code optimization and
machine specific code generation. Compilers generally implement these phases as modular
components, promoting efficient design and correctness of transformations of source input
to target output. Program faults caused by incorrect compiler behavior can be very difficult
to track down and work around; therefore, compiler implementers invest significant effort to
ensure compiler correctness.

Compilers are not the only language processor used to transform source programs. An
interpreter(解释器) is computer software that transforms and then executes the indicated
operations.  The translation process influences the design of computer languages, which leads
to a preference of compilation or interpretation. In theory, a programming language can have
both a compiler and an interpreter. In practice, programming languages tend to be
associated with just one (a compiler or an interpreter).

3 解释与解释器 3

In computer science, an interpreter(解释器) is a computer program that directly executes
instructions written in a programming(编程语⾔/程序设计语⾔) or scripting(脚本语⾔)
language, without requiring them previously to have been compiled into a machine language
program. An interpreter generally uses one of the following strategies for program execution:

1. Parse the source code and perform its behavior directly;

2. Translate source code into some efficient intermediate representation(IR, 中间表⽰)
or object code(⽬标代码) and immediately execute that;

3. Explicitly execute stored precompiled bytecode(字节码) made by a compiler and
matched with the interpreter’s Virtual Machine.

Early versions of Lisp programming language and minicomputer and microcomputer BASIC
dialects would be examples of the first type. Perl, Raku, Python, MATLAB, and Ruby are
examples of the second, while UCSD Pascal is an example of the third type. Source programs
are compiled ahead of time and stored as machine independent code, which is then linked at
run-time and executed by an interpreter and/or compiler (for JIT systems). Some systems,
such as Smalltalk and contemporary versions of BASIC and Java, may also combine two and
three types. Interpreters of various types have also been constructed for many languages
traditionally associated with compilation, such as Algol, Fortran, Cobol, C and C++.

While interpretation and compilation are the two main means by which programming
languages are implemented, they are not mutually exclusive(互斥), as most interpreting
systems also perform some translation work, just like compilers. The terms "interpreted
language" or "compiled language" signify that the canonical implementation of
that language is an interpreter or a compiler, respectively. A high-level language
is ideally an abstraction independent of particular implementations.

4 命令式编程
In computer science, imperative programming(命令式编程) is a programming
paradigm(编程范式) of software that uses statements that change a program's state. In
much the same way that the imperative mood(语⽓) in natural languages expresses
commands, an imperative program consists of commands for the computer to perform.
Imperative programming focuses on describing how a program operates step by
step, rather than on high-level descriptions of its expected results.

The term is often used in contrast to declarative programming(声明式编程), which
focuses on what the program should accomplish without specifying all the details
of how the program should achieve the result.

4.1 过程式编程(面向过程编程)

Procedural programming(过程式编程) is a type of imperative programming in which
the program is built from one or more procedures(过程) (also termed subroutines(⼦程
序) or functions(函数)). The terms are often used as synonyms(同义词), but the use of
procedures has a dramatic effect on how imperative programs appear and how they are

constructed. Heavy procedural programming, in which state changes are localized to
procedures or restricted to explicit arguments(显式实参) and returns from procedures, is a
form of structured programming(结构化编程). Since the 1960’s, structured
programming and modular programming(模块化编程) in general have been promoted
as techniques to improve the maintainability(可维护性) and overall quality of imperative
programs. The concepts behind object-oriented programming(⾯向对象编程) attempt to
extend this approach.

Procedural programming could be considered a step toward declarative programming.
A programmer can often tell, simply by looking at the names, arguments, and return types of
procedures (and related comments), what a particular procedure is supposed to do, without
necessarily looking at the details of how it achieves its result. At the same time, a complete
program is still imperative since it fixes the statements to be executed and their order of
execution to a large extent.

这里指出了结构化编程所带来的效果其实已经有点像声明式编程——也就是说，通过
把一系列的操作封装成一个函数，然后你可以在不知道这个函数内部实现机制的情况

下调用它，你只需要知道这个函数的功能和接口（参数列表，返回值）即可。

4.2 面向对象编程 4

Object-oriented programming (OOP, ⾯向对象编程) is a programming paradigm(编
程范式) based on the concept of objects, which can contain data and code: data in the
form of fields(域) (often known as attributes or properties), and code in the form of
procedures (often known as methods(⽅法)). In OOP, computer programs are designed by
making them out of objects that interact with one another.

procedure, method, function, subroutine, … 这些词其实本质上都是同个意思

Many of the most widely used programming languages (such as C++, Java, Python, etc.) are
multi-paradigm and they support object-oriented programming to a greater or
lesser degree, typically in combination with imperative programming, procedural
programming and functional programming.

Significant object-oriented languages include Ada, ActionScript, C++, Common Lisp, C#,
Dart, Eiffel, Fortran 2003, Haxe, Java, JavaScript, Kotlin, Logo, MATLAB, Objective-C,
Object Pascal, Perl, PHP, Python, R, Raku, Ruby, Scala, SIMSCRIPT, Simula, Smalltalk,
Swift, Vala and Visual Basic.NET.

4.3 过程式与面向对象的历史

4.3 过程式与面向对象的历史

The earliest imperative languages were the machine languages of the original
computers. In these languages, instructions were very simple, which made hardware
implementation easier but hindered the creation of complex programs. FORTRAN, developed
by John Backus at International Business Machines (IBM) starting in 1954, was the first
major programming language to remove the obstacles presented by machine code in the
creation of complex programs. FORTRAN was a compiled language that allowed named
variables(命名变量), complex expressions(表达式), subprograms(⼦程序), and many
other features now common in imperative languages. The next two decades saw the
development of many other major high-level imperative programming languages. In the late
1950s and 1960s, ALGOL was developed in order to allow mathematical algorithms to be
more easily expressed and even served as the operating system's target language for some
computers. MUMPS (1966) carried the imperative paradigm to a logical extreme, by not
having any statements at all, relying purely on commands, even to the extent of making the
IF and ELSE commands independent of each other, connected only by an intrinsic variable
named $TEST. COBOL (1960) and BASIC (1964) were both attempts to make programming
syntax look more like English. In the 1970s, Pascal was developed by Niklaus Wirth, and C
was created by Dennis Ritchie while he was working at Bell Laboratories. Wirth went on to
design Modula-2 and Oberon. For the needs of the United States Department of Defense,
Jean Ichbiah and a team at Honeywell began designing Ada in 1978, after a 4-year project to
define the requirements for the language. The specification(规约/规格说明) was first
published in 1983, with revisions in 1995, 2005, and 2012.

The 1980s saw a rapid growth in interest in object-oriented programming. These
languages were imperative in style, but added features to support objects. The last two
decades of the 20th century saw the development of many such languages. Smalltalk-80,
originally conceived by Alan Kay in 1969, was released in 1980, by the Xerox Palo Alto
Research Center (PARC). Drawing from concepts in another object-oriented language—
Simula (which is considered the world's first object-oriented programming language,
developed in the 1960s)—Bjarne Stroustrup designed C++, an object-oriented language
based on C. Design of C++began in 1979 and the first implementation was completed in
1983. In the late 1980s and 1990s, the notable imperative languages drawing on object-
oriented concepts were Perl, released by Larry Wall in 1987; Python, released by Guido van
Rossum in 1990; Visual Basic and Visual C++ (which included Microsoft Foundation Class
Library (MFC) 2.0), released by Microsoft in 1991 and 1993 respectively; PHP, released by
Rasmus Lerdorf in 1994; Java, by James Gosling (Sun Microsystems) in 1995, JavaScript, by
Brendan Eich (Netscape), and Ruby, by Yukihiro "Matz" Matsumoto, both released in 1995.
Microsoft's .NET Framework (2002) is imperative at its core, as are its main target

languages, VB.NET and C# that run on it; however Microsoft's F#, a functional language,
also runs on it.

5 声明式编程
In computer science, declarative programming(声明式编程) is a programming
paradigm—a style of building the structure and elements of computer programs—that
expresses the logic of a computation without describing its control flow(控制流).

Many languages that apply this style attempt to minimize or eliminate side effects(副作⽤)
by describing what the program must accomplish in terms of the problem domain, rather
than describing how to accomplish it as a sequence of the programming language
primitives(原语) (the how being left up to the language's implementation). This is in
contrast with imperative programming, which implements algorithms in explicit steps.

函数的副作用(side effects)会在课程接下来的lambda calculus和SICP部分来学习；
原语指的是原子操作，不能再分解的操作

Declarative programming often considers programs as theories of a formal logic(形式逻辑),
and computations as deductions(演绎推理) in that logic space. Declarative programming
may greatly simplify writing parallel programs.

从某种程度上讲，人类做reasoning(推理)主要就是两种：induction(归纳)和
deduction(演绎)

Common declarative languages include those of database query languages(数据库查询)
(e.g., SQL, XQuery), regular expressions(正则表达式), logic programming (e.g. Prolog,
Datalog, answer set programming), functional programming, and configuration
management systems(配置管理系统).

正则表达式是很有用的工具，大家会在编译原理课程中接触到，主要可以用于模式匹

配等任务

The term is often used in contrast to imperative programming, which dictates(命令) the
transformation steps of its state explicitly.

5.1 逻辑式编程

5.1 逻辑式编程

由于这部分比较超纲，也比较小众，故不整理相关阅读材料

5.2 函数式编程 5

In computer science, functional programming(函数式编程) is a programming paradigm
where programs are constructed by applying and composing functions. It is a declarative
programming(声明式编程) paradigm in which function definitions are trees of expressions
that map values to other values, rather than a sequence of imperative statements which
update the running state of the program.

In functional programming, functions are treated as first-class citizens(⼀等公民), meaning
that they can be bound(被绑定) to names (including local identifiers), passed as
arguments, and returned from other functions, just as any other data type can.
This allows programs to be written in a declarative and composable style, where small
functions are combined in a modular manner.

Functional programming is sometimes treated as synonymous with purely functional
programming, a subset of functional programming which treats all functions as
deterministic mathematical functions, or pure functions. When a pure function is called
with some given arguments, it will always return the same result, and cannot be affected by
any mutable(可变) state or other side effects. This is in contrast with impure procedures,
common in imperative programming, which can have side effects (such as modifying the
program's state or taking input from a user). Proponents of purely functional programming
claim that by restricting side effects, programs can have fewer bugs, be easier to debug and
test, and be more suited to formal verification.

在课程接下来的SICP部分，我们会接触到mutable与immutable的值，也会接触到
pure function和有side effect的function

Functional programming has its roots in academia, evolving from the lambda
calculus(lambda演算), a formal system of computation based only on functions. Functional
programming has historically been less popular than imperative programming, but many
functional languages are seeing use today in industry and education, including Common Lisp,
Scheme, Clojure, Wolfram Language, Racket, Erlang, Elixir, OCaml, Haskell, and F#.
Functional programming is also key to some languages that have found success in specific
domains, like JavaScript in the Web, R in statistics, J, K and Q in financial analysis, and
XQuery/XSLT for XML. Domain-specific declarative languages like SQL and Lex/Yacc use
some elements of functional programming, such as not allowing mutable values. In addition,

many other programming languages support programming in a functional style
or have implemented features from functional programming, such as C++11, C#,
Kotlin, Perl, PHP, Python, Go, Rust, Raku, Scala, and Java (since Java 8).

1. Wikipedia contributors, "General-purpose programming language," Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/w/in
dex.php?title=General-purpose_programming_language&oldid=1206017538 (accessed February 26, 2024). ↩

2. Wikipedia contributors, "Compiler," Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/w/index.php?title=Compiler&oldid
=1202531084 (accessed February 26, 2024). ↩

3. Wikipedia contributors, "Interpreter (computing)," Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/w/index.php?title=I
nterpreter_(computing)&oldid=1209168351 (accessed February 26, 2024). ↩

4. Wikipedia contributors, "Object-oriented programming," Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/w/index.php?ti
tle=Object-oriented_programming&oldid=1209497648 (accessed February 26, 2024). ↩

5. Wikipedia contributors, "Functional programming," Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/w/index.php?title=
Functional_programming&oldid=1201599060 (accessed February 27, 2024). ↩

https://en.wikipedia.org/w/index.php?title=General-purpose_programming_language&oldid=1206017538
https://en.wikipedia.org/w/index.php?title=Compiler&oldid=1202531084
https://en.wikipedia.org/w/index.php?title=Interpreter_(computing)&oldid=1209168351
https://en.wikipedia.org/w/index.php?title=Object-oriented_programming&oldid=1209497648
https://en.wikipedia.org/w/index.php?title=Functional_programming&oldid=1201599060

	01 编程语言概述 补充阅读
	通用编程语言(GPL)与领域特定语言(DSL)
	编译与编译器
	解释与解释器
	命令式编程
	过程式编程(面向过程编程)
	面向对象编程
	过程式与面向对象的历史

	声明式编程
	逻辑式编程
	函数式编程

