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A strikingly modern thought

“ As soon as an Analytic Engine exists, it will necessarily guide the future course
of the science. Whenever any result is sought by its aid, the question will arise —
By what course of calculation can these results be arrived at by the machine in
the shortest time? ”

— Charles Babbage (1864)

how many times do you have to turn the crank?

Analytic Engine
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A strikingly modern thought

“ As soon as an Analytic Engine exists, it will necessarily guide the future course
of the science. Whenever any result is sought by its aid, the question will arise —
By what course of calculation can these results be arrived at by the machine in
the shortest time? ”

— Charles Babbage (1864)

Diagram for the computation by the Engine of the Numbers of Bernoulli. See Note G. (page 722 et seq.
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Ada Lovelace’s algorithm to compute Bernoulli numbers on Analytic
Engine (1843)

Analytic Engine



Algorithm evaluation

* There are many algorithms to solve one specific problem
> Which are better?
 Experimental studies?
> The implementation matters! (Language, Complier, experienced programmer)

> Even the same implementation, different architecture of the computer makes
difference (CPU, memory, operating systems)

* We need an ideal computation model

> Which is independent of previous factors



We can evaluate:
> Running time: Number of steps.

> Memory: Number of tape cells utilized.

 Disadvantage: No random access of memory.

> More steps when solving problems than a normal computer
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Random-Access-Machine (RAM)

« Random-Access-Machine (RAM, FEFLZEX4L): relatively simple, yet generic and representative.

> One processor which executes instructions one by one.

> Memory cells supporting random access, each of limited size.

> RAM model supports common instructions. Arithmetic, logic, data movement, control, ...
> RAM model supports common data types. Integers, floating point numbers, ...

> RAM model does not support complex instructions or data types (directly). Vector operations, graphs, ...

input memory

We can evaluate:

alil
program > Running time: Number of primitive operations.

> Memory: Number of memory cells utilized.

output
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Correctness of algorithms

 When we talk about the correctness of an algorithm, we actually mean the
correctness with respect to its specification.

o Specification expresses the task to be done by the algorithm, which consists of:
> (optional) name of algorithm and list of its arguments

> Precondition (or initial condition) — it specifies what is correct input data to
the problem

» Postcondition (or final condition) — it specifies what is the desired result of
the algorithm)



e Specification Example:

> name: Sort(A)
> Input: (pre-condition)

- An array A of n integers
> output: (post-condition)

- A permutation of that array A that is sorted (monotonic).

A reordering, yet retaining all of the original elements
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Correctness of algorithms

Definition (Total correctness, ST IE1f|%) An algorithm is called totally correct
for the given specification if and only if for any correct input data it:

1) terminates

2) returns correct output

» Correct input data is the data which satisfies the initial condition of the
specification.

» Correct output data is the data which satisfies the final condition of the
specification.
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Correctness of algorithms

» Usually, while checking the correctness of an algorithm it is easier to separately:
> Check whether the algorithm stops

> Then checking the remaining part — This remaining part of correctness is
called “Partial Correctness” of algorithm

Definition (Partial correctness, &85 IEffiT%) An algorithm is partially correct if
satisfies the following condition:

If the algorithm receiving correct input data stops then its result is correct

Note: Partial correctness does not make the algorithm stop.
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Examples

precondition: x =1

precondition: x =1 precondition: x =1 algorithm:
algorithm: y :=x algorithm: y :=x while (true)
postcondition: y =1 postcondition: y = 2 Xx:=0

postcondition: y =1

Total correctness Neither partial nor total correctness

Actually, they are Hoare triples!

Partial correctness

More details of hoare logic: https://en.wikipedia.org/wiki/Hoare_logic



A quick quiz

 What does the implementation have to fulfill if the client violates the
precondition (i.e., the algorithm receives incorrect input data)?

> Nothing. It can do anything at all!

» Consider the C language case: return x/0, what will output?

- For this input, the Compilers are not required to provide any
guarantees, which is the so-called “Undefined behavior”!
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Correctness of algorithms

Robert W. Floyd

Robert W. Floyd

ASSIGNING MEANINGS TO PROGRAMS:!

Introduction. This paper attempts to provide an adequate basis for
formal definitions of the meanings of programs in appropriately defined
programming languages, in such a way that a rigorous standard is established
for proofs about computer programs, including proofs of correctness,
equivalence, and termination. The basis of our approach is the notion of
an interpretation of a program: that is, an association of a proposition
with each connection in the flow of control through a program, where the
proposition is asserted to hold whenever that connection is taken. To prevent
an interpretation from being chosen arbitrarily, a condition is imposed on
each command of the program. This condition guarantees that whenever
a command is reached by way of a connection whose associated proposition
is then true, it will be left (if at all) by a connection whose associated
proposition will be true at that time. Then by induction on the number of
commands executed, one sees that if a program is entered by a connection
whose associated proposition is then true, it will be left (if at all) by a
connection whose associated proposition will be true at that time. By this
means, we may prove certain properties of programs, particularly properties
of the form: “If the initial values of the program variables satisfy the
relation R,, the final values on completion will satisfy the relation R,.”
Proofs of termination are dealt with by showing that each step of a program
decreases some entity which cannot decrease indefinitely.

These modes of proof of correctness and termination are not original;
they are based on ideas of Perlis and Gorn, and may have made their
earliest appearance in an unpublished paper by Gorn. The establishment
of formal standards for proofs about programs in languages which admit
assignments, transfer of control, etc., and the proposal that the semantics
of a programming language may be defined independently of all processors
for that language, by establishing standards of rigor for proofs about

' This work was supported by the Advanced Research Projects Agency of the Office of
the Secretary of Defense (SD-146).

19

Tony Hoare

An Axiomatic Basis for
Computer Programming

C. A. R. HoAgre
The Queen’s Unwversity of Belfast,* N orthern Ireland

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and
a formal proof of a simple theorem is displayed. Finally, it is
argued that important advantages, both theoretical and prac-
tical, may follow from a pursuance of these topics.

KEY WORDS AND PHRASES: axiomatic method, theory of programming?’
proofs of programs, formal language definition, programming language

design, machine-independent programming, program documentation
CR CATEGORY: 4.0, 4.21, 4.22, 5.20, 5.21, 5.23, 5.24

Invented mathematical proof systems (a.k.a. Floyd-Hoare logic) to formally prove that programs satisfy their specification
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The proof of total correctness

* A proof of total correctness of an algorithm usually assumes 2 separate
steps

> 1. (to prove that) the algorithm always terminate for correct input data

> 2. (to prove that) the algorithm is partially correct.

* Different proof methods for them, typically

e Variants (#Fzs:—ct) for “termination” “Termination” is often much easier to prove

e Invariants (4~£1,) for “partial correctness”



Algorithm design strategy 0: wisdom from daily life

Procedure Insertion-Sort(A)
In: An array A of 71 integers.

Out: A permutation of that array A that is sorted (monotonic).

fori:=2to A.length
key = Ali]
// Insert A[i] into the sorted subarray A[1 :i - 1]
Ji=1-1
while j > 0 and A[j] > key
Alj + 1] :=A[j]
J=j-1
Alj + 1] = key we omit the “end” keyword
return A here to make it simpler
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Example: Insertion Sort

* Applies algorithm Insertion-Sort to [5, 2,4, 6,1, 3]

1st iteration _ _ _ _
2nd iteration 3rd iteration

: : : ¢

o

4th iteration 5th iteration

sorted



e Proof the correctness of Insertion-Sort

> Step1: The algorithm outputs correct result on every instance
(partially correct).

> Step2: The algorithm terminates within finite steps on every instance
(termination).
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Step1: Using loop invariant for partial correctness

General rules for loop invariant proofs

Initialization: It is true prior to the first iteration of the loop.

Maintenance: If it is true before an iteration of the loop, it remains true before
the next iteration.

Iy Termination: When the loop terminates, the invariant gives us a useful
property that helps show that the algorithm iIs correct
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Partial correctness of Insertion Sort

Loop invariant: By the end of ithiteration of outer for loop,
the elements in subarray A[1,---,1] are in sorted order.

[Initialization] prior the first iteration( = 2): A[1] is in
sorted order.

[Maintenance] Assume by the end of the ithiteration, the
elements in subarray A[1,---, 1] are in sorted order; then by

the end of the (i+ 1)t iteration, the elements in subarray
A[1,---,i+1] are in sorted order.

[Termination] After the iteration 1 = n, the loop invariant
states that A is sorted

Procedure Insertion-Sort(A)
In: An array A of 71 integers.

Out: A permutation of that array A that is sorted (monotonic).

fori:=2to A.length
key = Ali]
// Insert A[i] into the sorted subarray A[1 : i - 1]
J=i-1
while j >0 and A[j] > key
Alj+ 1]:=A[j]
j=i-1
Alj + 1] :=key
return A

Requires another loop invariant for the inner

while loop
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How to find the loop invariant?

* |s there only one loop invariant?

> Another loop invariant: By the end of the ithiteration of outer for loop, subarray
A[1,---,1] retains all of the original elements in A[1,---,1] in previous iteration.

 Let this invariant be V>, and the previous invariant be /V;. What is their relationship?

» [V, is weaker than IV}, since there are more possible A[1,---,17] that satisfy /V>, but
not satisfy /V/.

* A good (strong) loop invariant must satisfy these three properties [Initialization],
[Maintenance] and [Termination]. Note that /V> does not satisfy [Termination]

property.
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How to find the loop invariant?

 How to find a good loop invariant?

e Generally, the answer is:

> We don’t know

- For simple ones, e.g., integer ranges, like O < x < 1024, there exists
effective techniques — e.q., abstract interpretation

- However, for sophisticated invariants, there is no general method, and
sometimes we need to provide them manually!

- Very hot research topic!



Using loop variant for termination

o Wait!!l Program termination is formally undecidable!!

> |t just means that there is no general algorithm exists that solves the
halting problem for all possible programs.

> |In fact, the partial correctness of all possible programs is also
undecidable. — can you prove it?

* Using loop variant to prove the termination
> show that some quantity strictly decreases.

> It cannot decrease indefinitely (Bounded!)



Well-ordered set

* An ordered set is well-ordered if each and every nonempty subset has a
smallest or least element.

> E.g., every nonempty subset of the non-negative integers has a least
element

» Set of integers and the positive real number are not well-ordered sets

* A well-ordered set has no infinite descending sequences, which can be used
to ensure the termination of algorithm
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Termination of Insertion Sort

Procedure Insertion-Sort(A)

 Loop Variant: for the inner loop: j n: An array A of 11 integers

Out: A permutation of that array A that is sorted (monotonic).

> For each iteration, j strictly decreases.
fori:=2to A.length

' key = Ali]

1S bounded to be Iarger than O /I Insert Ali] into the sorted subarray A[1 : 7 - 1]
j=1-1
while j >0 and A[j] > key

Alj + 1] :=A][j]
o Loop Variant: for the outer loop: A.length - i j=j-1
Alj + 1] :=key
return A

» For each iteration, A.length - i strictly
decreases.

> Al.length - i 1s bounded to be larger or equal to O
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- How to find the loop variant

* Again, generally, the answer is:
> We don’t know
> But generally speaking, it is very easy to identity!

- For example, the induction variable of the loop (or some linear
transformation of it).
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~ Other strategies of correctness proof

 Some methods and strategies: proof by cases, proof by contraposition,
proof by contradiction, etc.

 \When loops and/or recursions are involved: often (if not always) use
mathematical induction.

* Review your discrete math book if you feel unfamiliar with above terms...

> [Rosen] Ch.1 (1.7, 1.8) and Ch.5 (5.1, 5.2)
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- Efficiency of
Algorithms |
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Complexity

 Time complexity: how much time is needed before halting

 Space complexity: how much memory (usually excluding input) is
required for successful executed

* Other performance measures, e.g., communication bandwidth, or energy
consumption...

 Time complexity is typically more important than others in analysis.



Complexity

* Observation: larger inputs often demands more time.
> Cost of an algorithm should be a function of input size, say, T(n).

* Given an algorithm and an input, when counting the cost with respect to the RAM
model:

> Each memory access takes constant time.
> Each “primitive” operation takes constant time.
> Compound operations should be decomposed.

> At last, Counting up the number of time units.
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Time complexity of Insertion Sort

Procedure Insertion-Sort(A) Cost

In: An array A of 71 integers.

Out: A permutation of that array A that is sorted (monotonic).

L A (o 4 7 1 >
key i= AlT] >
// Insert A[i] into the sorted subarray A[1 : i - 1]

Ji=0-1 T > Oy

while j>0and A[j] > key -----------m-mmmmmmremmmm e > Cs

AlJ + 1] = AfJ] --oommmmmmmmmmrr  Ce

J = g = b >

AlJ + L] = key e >
return A

Times

Add themup: T(n) = cjn+ cy(n— D+ cn—1)+cs ) 1, +¢6 ) (4= 1) +¢; ) ;= 1) +cgln—1)

=2 =2 1=

2
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Time complexity of Insertion Sort

 The time cost of insert sort is:
Tn)=cn+c,(n—D+cn—D+cs )t +c6 ) G—1) +¢; ) (—1) +cgln—1)
= . =2 i=2 ¢

Depends on which input of size n
* The time cost of insert sort varies among inputs

> How to fairly evaluate a algorithm — enumerate the cost of all the possible
inputs? Not possible, since the input space is infinite!

> We can check the representative inputs, but, what are they?
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Worst, best, and average

Given one problem and an algorithm, let &', be the set of all the possible inputs of size n, and
T(n) be the time cost of the algorithm under one input with size n.

e \Worst

> W/(n) = maximum time of algorithm on any input of size n, i.e., W(n) = max 7(x)
xel,

e Best

» B(n) = minimum time of algorithm on any input of size n, i.e., B(n) = min 7(x)
xel,

* Average

» A(n) = expected time of algorithm over all inputs of size n, i.e., A(n) = Z 1(x) - Pr(x)
xeX
> Note: need assumption of statistics distribution of inputs.
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Mainly focus on worst-case analysis

 Worst case — Running time guarantee for any input of size n.
> Generally captures efficiency in practice.
> Draconian view, but hard to find effective alternative.

 Exceptions. Some exponential-time algorithms are used widely in practice
because the worst-case instances don’t arise.

Optimal
solution

simplex algorithm

k-means algorithm
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Procedure Insertion-Sort(A) Cost Times
In: An array A of 71 integers.
Out: A permutation of that array A that is sorted (monotonic).
fori:=2toA.llength ~===- " " " T > Cp  ttttTtTtTmTmmomeness > n
key i:= A[T] 4 QBORERLRLELELELELELEL > 11— |
// Insert Ali] into the sorted subarray A[1 : 7 - 1]
Ji=i-1  rrmmemmmmemmmmmmmmomssomsoosoosoooooonoosoosesooeoonn g (5 e > n—1
while j>0and A[j] > key ---------mmmmmmmmmmmmmmmm oo > Q5 rommemmmmmmmmemesees > 2t
A + 1152 A[[] --rerenrermrmmamere e re e ettt S — > 30 (t—1)
J = = L > Qg mmmmmmmemmmmmemeesss > Z”z(t—l)
AlJ + L] = key e g (20 AERLCELELEREESEREREL > 1 — |
return A

What is the best case?

Each time t; is 1, which means that each time the while loop condition is false at the beginning! —> A[j] > key is
false every time —> the array is already sorted at the beginning!
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Time complexity of Insertion Sort

Cost Times

Procedure Insertion-Sort(A)
In: An array A of 7 integers.

Out: A permutation of that array A that is sorted (monotonic).

fori:=2toA.llength """ T >RGNy e > N
key i= AlT] e MGy Froemeemeeeemeeneees > 11— 1
// Insert Ali] into the sorted subarray A[1 : 7 - 1]
Al 2 e d /| JREEERhEhhhhhhhhh bl > n— 1
while j>0and A[j] > key -----------mmmmmmmmmmmm oo > Q5 ommmmmmmemmemeeeees > 2o
A[J + T2 AJ] -oeoeereeesreosmsmsm s (g e > 31— 1)
J=T =1 i >0y s > 31 (1 — 1)
AERESKEYR . ... gy rrreeeeeneeeeeeenees > n— 1
return A

B(n):cln+cz(n—1)+c4(n—1)+6521 +c62(1—1) -I-C7Z(1—1) +cgsn—1)=(ci+cy+cy+c5+cgdn— (¢, + ¢4 + 5 + Cg)
i=2 i=2 i=2



. %ﬁbﬂ#'ﬁ_&%ﬁm
g ool of Intelligent cffg

Procedure Insertion-Sort(A) Cost Times
In: An array A of 71 integers.
Out: A permutation of that array A that is sorted (monotonic).
fori:=2toA.llength ~===- " " " T > Cp  ttttTtTtTmTmmomeness > n
key i:= A[T] 4 QBORERLRLELELELELELEL > 11— |
// Insert Ali] into the sorted subarray A[1 : 7 - 1]
Ji=i-1  rrmmemmmmemmmmmmmmomssomsoosoosoooooonoosoosesooeoonn g (5 e > n—1
while j>0and A[j] > key ---------mmmmmmmmmmmmmmmm oo > Q5 rommemmmmmmmmemesees > 2t
A + 1152 A[[] --rerenrermrmmamere e re e ettt S — > 30 (t—1)
J =g - L > Cq  rommmmmmemmmeeseeed > 2 (= 1)
AlJ + L] = key e g (20 AERLCELELEREESEREREL > 1 — |
return A

What is the worst case?
Each time ¢, is the largest it can be, which means that each time the while loop condition is true until j is equal

to 0 —> A[j] > key is true every time —> the array is reversely sorted at the beginning! —> ¢, =1
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Time complexity of Insertion Sort

Cost Times

Procedure Insertion-Sort(A)
In: An array A of 7 integers.

Out: A permutation of that array A that is sorted (monotonic).

fori:=2toA.llength """ T >RGNy e > N
key i= AlT] e MGy Froemeemeeeemeeneees > 11— 1
// Insert Ali] into the sorted subarray A[1 : 7 - 1]
Al 2 e d /| JREEERhEhhhhhhhhh bl > n— 1
while j>0and A[j] > key -----------mmmmmmmmmmmm oo > Q5 ommmmmmmemmemeeeees > 2o
A[J + T2 AJ] -oeoeereeesreosmsmsm s (g e > 31— 1)
J=T =1 i >0y s > 31 (1 — 1)
AERESKEYR . ... gy rrreeeeeneeeeeeenees > n— 1
return A

W(n) = c;n+ c,(n — 1) + cy(n — 1)+c521 +c62(z— 1) +c72(z— 1) +cg(n—1)
=cn+cmn—-1)+cm—1)+ (35(n + 2)(n — 1)/2 + cgn(n — 1)/2 +cnn—1)/2 +cg(n—1)

= ((cs+cg+c)/2)n*+ (c;+ ¢y + e+ cg— (cs+ cg + ¢)/2) n— (¢, + ¢4 + €5+ )
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Procedure Insertion-Sort(A) Cost Times
In: An array A of 71 integers.
Out: A permutation of that array A that is sorted (monotonic).
fori:=2toA.llength ~===- " " " T > Cp  ttttTtTtTmTmmomeness > n
key i:= A[T] 4 QBORERLRLELELELELELEL > 11— |
// Insert Ali] into the sorted subarray A[1 : 7 - 1]
Ji=i-1  rrmmemmmmemmmmmmmmomssomsoosoosoooooonoosoosesooeoonn g (5 e > n—1
while j>0and A[j] > key ---------mmmmmmmmmmmmmmmm oo > Q5 rommemmmmmmmmemesees > 2t
A + 1152 A[[] --rerenrermrmmamere e re e ettt S — > 30 (t—1)
J =g - L > Cq  rommmmmmemmmeeseeed > 2 (= 1)
AlJ + L] = key e g (20 AERLCELELEREESEREREL > 1 — |
return A

What about the average case? —> the elements in the input array are randomly ordered

Hint: the number of swaps equals the humber of inversions!



https://stackoverflow.com/questions/17055341/why-is-insertion-sort-%CE%98n2-in-the-average-case/17055342#17055342

One more thing

 \What the space complexity of insertion sort”?

Procedure Insertion-Sort(A)
In: An array A of 7 integers.

Out: A permutation of that array A that is sorted (monotonic).

fori:=2to A.length
key = Ali]
// Insert A[i] into the sorted subarray A[1 :i - 1]
ji=i-1
while (j > 0 and A[/] > key)
Alj + 1] := A[/]
ji=j-
Alj + 1] :=key
return A

We only need three additional
memory cells to store the
variable key, i, and ;.
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Asymptotic order
of growth |
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Donald E. Knuth

Asymptotic order of growth

SIGACT News Apr.=June 1976

BIG OMICRON AND BIG OMEGA AND BIG THETA

Donald E. Knuth
Camputer Science Department
Stanford University
Stanford, California 9L305

Most of us have gotten accustomed to the idea of using the notation
0(f(n)) to stand for any function whose magnitude is upper-bounded by a
constant times f(n) , for all large n . Sometimes we also need a
corresponding notation for lower-bounded functions, i.e., those functions

which are at least as large as a constant times f(n) for all large n .

Unfortunately, people have occasionally been using the O-notation for
lower bounds, for example when they feJect a particular sorting method
"because its running time is O(ne) " 1 have seen instances of this in
print quite often, and finally it has prompted me to sit down and write
a Letter to the Editor about the situation.

The classical literature does have a notation for functions that are
bounded below, namely Q(f(n)) . The most prominent appearance of this
notation is in Titchmarsh's magnum opus on Riemann's zeta function [8],
where he defines Q(f(n)) on p. 152 and devotes his entire Chapter 8 to
"() -theorems". See also Karl Prachar's Primzahlverteilung (7], p. 245.

The (0 notation has not become very common, although I have noticed

its use in a few places, most recently in some Russian publications I

consulted about the theory of equidistributed sequences. Once I had
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A higher-level abstraction

* In practice, we usually don’t care about the unimportant details in the
counted operations.

* \We need one more simplifying abstraction, which can give us an intuitive
feeling of the cost of an algorithm.

> The abstractions is: the rate of growth, or order of growth, of the
running time that really interests us, therefore, two factors are ignored:

- Constant coefficients are not that important (when n is large)

- Lower-order terms are not that important (when n is large).
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Big O notation

Definition (O) Given a function g(n), we denote by O(g(n)) the following set of
functions: O(g(n)) = {f(n) | ¢ > 0,dny, > 0,Vn > n,: 0 < f(n) < c - g(n)}

c-gn)

« Asymptotic upper bounds (i E5R) — when we

say f(n) Is O(g(n)), we mean that f(n) grows no faster
than a certain rate —> is asymptotically at most g(n).

J(n)

e EX. f(n)=32n*+17n+ 1.

no n

> f(n) is O(n?. choose ¢ =50, n0 =1

> f(n) Is neither O(n) nor O(n log n) —> why?



Big O notation abuses

 O(g(n)) Is actually a set of functions, but computer scientists often write f(n) =
O(g(n)) instead of f(n) € O(g(n)).

 EX. Consider fi(n) =5n° and f>(n) = 3n°.
> We have fi(n) = O(n’) and f2(n) = O(n?).
> But, do not conclude fi(n) = f2(n).

* Since the worst time complexity of insertion sort is
W(n) = ((cs+cg+c)/2)n*+ (¢;+ ca+ e+ cg— (cs+ g+ ¢7)/2) n— (¢ + ¢4 + ¢5 + ¢g)

= Therefore, W(n) = O(n?) —> is asymptotically at most n°.
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Big O notation with multiple variables

o f(m,n)is O(g(m,n)) If there exist constants ¢ >0, my = 0,
and ny= OsuchthatO< f(m,n) < c-g@m,n) foralln = ngand m = msy.

e EX. f(m,n)=32mn?+ 17mn + 32n°.
> f(m, n) is both O(mn? + n’) and O(mn?).

> f(m, n) Is neither O(n?) nor O(mn?).
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Big (2 notation

Definition (€2) Given a function g(n), we denote by Q(g(n)) the following set of
functions: €2(g(n)) = {f(n) | 3¢ > 0,dny, > 0,Vn > n,y : f(n) = ¢ - gn)}

« Asymptotic lower bounds (FETF5%) — when ! fn)

we say f(n) Is 2(g(n)), we mean that f(n) grows at
least as fast as a certain rate —> Is

asymptotically at least g(n).

c-g(n)

no n

e EX. f(n)=32n*+17n+ 1.
> f(n) is both Q(n?) and Q(n). —— choose c=32,n0=1

> f(n) Is not Q(nd).



Big ® notation

Definition (®) Given a function g(n), we denote by ®(g(n)) the following set of functions:
O(gn) =1{f(n) | d¢; > 0,3¢, > 0,dny, > 0,V > n,: ¢, - gln) < f(n) < ¢, - g(n)}

« Asymptotic tight bounds (#jHEZ#5R)

When we say f(n) Is ©O(g(n)), we mean that f(n)
grows precisely at a certainrate —> it is
asymptotically equal to g(n)

e EX. f(n)=32n*+17n+ 1.

> f(n) |S @(nz) < choose c1=32,c2,=50,n0=1

c2 - g(n)

f(n)

ci1- g(n)

| | ; . . : : =
> f(n) is neither O(n) nor O(1?). Q: The worst time complexity of Insertion Sort is ©(n2?)*



Small o and @ notation

» f(n) is asymptotically (strictly) smaller than g(n) :

Definition (0) Given a function g(n), we denote by o(g(n)) the following set of
functions: o(g(n)) = {f(n) | V¢ > 0,dny > 0,Vn > n,: 0 < f(n) <c-gn)}
 f(n) is asymptotically (strictly) larger than g(n):

Definition (w) Given a function g(n), we denote by w(g(n)) the following set of
functions: w(g(n)) = {f(n) | Vc > 0,3dny > 0,Vn > ny: f(n) > c - gn)}

Q: Now that we have 0,00 and o,w, do we have small 62




| S TR
@ 4@5 School of neert

Some properties of asymptotic notations

* Reflexivity

> E.g., f(n) € O(f(n)); but f(n) & o(f(n)).

* Transitivity
» E.g., if f(n) € O(g(n)) and g(n) € O(h(n)), then f(n) € O(h(n)).

 Symmetry

- f(n) € B(g(n)) iff g(n) € O(f(n)).

* Transpose symmetry:

> E.g., f(n) € 0(g(n)) iff g(n) € Q(f(n)).
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Asymptotic bounds and limits

e |f cost functions are complex, it is hard to apply the definitions to get its
asymptotic bounds.

* In this case, It usually easier to apply limit method.
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Asymptotic bounds and limits

J(n)

, Proposition. If lim = = ¢ for some constant 0 < ¢ < «then f(n) is O(g(n)).
n—-oo LN

. Pf.

» By definition of the limit, for any € > 0, there exists ny such that

J(n)

» c—¢ < < c+e¢ foralln = ny.
g(n)

C
> Choose € = §> 0.

» Multiplying by g(n) yields 1/2c- g(n) < f(n) < 3/2c- g(n) foralln = n,.

> Thus, f(n) is O(g(n)) by definition, withci=1/2cand c;=3/2c¢c. =
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Asymptotic bounds for some common functions

a.k.a. o(g(n))

. Proposition. If Iim / ((n)) = 0, then f(n) Is O(g(n)) but not
n—->oo LN
$2(g(n)).
ot f) .
. Proposition. If Iim o oo, then f(n) I1s Q2(g(n)) but not
n—-oo L2\N

O(g(n)).

a.k.a. w(g(n))




Asymptotlc bounds for some common functions

e Polynomials. Letf(n)=ag+an+ ... +a,n? witha, > 0. Then, f(n) Is O(n9).

. a0+a1n+...+adnd
> Pf. Im —M—— = a, > 0

11— 00 I’ld

e Logarithms. log,n is O(log, n) for everya >1 and every b > 1.

log n |
> Pf. ga —

log,n  log,a

* Logarithms and polynomials. log, nis O(n¢) for every a > 1 and every d > 0.

' d

11— 00 14}




WY SeeRi S T
<) School of d Engineeri

Asymptotic bounds for some common functions

. Exponentials and polynomials. n¢ is O(r") forevery r > 1 and every d > 0.

nd

» Pf. lim — = 0

n—oo I’

e Factorials.
n!ison"

log(n!) = O(nlogn)

n
» Pf. Stirling’s formula: n! ~ \/Zﬂn - (—)"
e
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Com nvaring some common functions

®(1), constant *
O(og n), logarithm *
iractable

O(n log n), linearithmic

®(n°), polynomial

®(2"), exponential

iIntractable

®(n!), factorials



 \When considering brute force algorithm to solve one problem, it is usually
asymptotically equal to exponential functions.

 When an algorithm has a polynomial running time, we say it is efficient, and
the corresponding problem is so-called easy or tractable.

> The algorithm has typically exposes some crucial structure of the problem.
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Although, there are exceptions

 Some poly-time algorithms in the wild have galactic constants and/or huge
exponents.

* Q. Which would you prefer: 20n!20 or pl+002Inn?

n

Map graphs in polynomial time

Mikkel Thorup*
Department of Computer Science, University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen East, Denmark
mthorup@diku.dk

Abstract

Chen, Grigni, and Papadimitriou (WADS’97 and STOC’98)
have introduced a modified notion of planarity, where two
faces are considered adjacent if they share at least one point.
The corresponding abstract graphs are called map graphs.
Chen et.al. raised the question of whether map graphs can be
recognized in polynomial time. They showed that the decision
problem is in NP and presented a polynomial time algorithm
for the special case where we allow at most 4 faces to intersect
in any point — if only 3 are allowed to intersect in a point, we
get the usual planar graphs.

Chen et.al. conjectured that map graphs can be recognized
in polynomial time, and in this paper, their conjecture is settled
affirmatively.
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Further reading

. [CLRS] Ch.2 (2.1, 2.2), Ch.3

 [Rosen] Ch.1 (1.7, 1.8) and Ch.5 (5.1, 5.2)
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