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A strikingly modern thought
“ As soon as an Analytic Engine exists, it will necessarily guide the future course 
of the science.  Whenever any result is sought by its aid, the question will arise—
By what course of calculation can these results be arrived at by the machine in 
the shortest time? ”    

 — Charles Babbage (1864)

Analytic Engine

how many times do you have to turn the crank?
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A strikingly modern thought
“ As soon as an Analytic Engine exists, it will necessarily guide the future course 
of the science.  Whenever any result is sought by its aid, the question will arise—
By what course of calculation can these results be arrived at by the machine in 
the shortest time? ”    

 — Charles Babbage (1864)

Ada Lovelace’s algorithm to compute Bernoulli numbers on Analytic 
Engine (1843) Analytic Engine
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Algorithm evaluation
• There are many algorithms to solve one specific problem


‣ Which are better?


• Experimental studies?


‣ The implementation matters! (Language, Complier, experienced programmer)


‣ Even the same implementation, different architecture of the computer makes 
difference (CPU, memory, operating systems)


• We need an ideal computation model


‣ Which is independent of previous factors
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Models of computation:  Turing machines

• （Deterministic）Turing machine — Simple and idealistic model.

We can evaluate:


‣ Running time:  Number of steps.


‣ Memory:  Number of tape cells utilized.

• Disadvantage:  No random access of memory.


‣ More steps when solving problems than a normal computer
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Random-Access-Machine (RAM)
• Random-Access-Machine (RAM, 随机存取机): relatively simple, yet generic and representative. 


‣ One processor which executes instructions one by one. 


‣ Memory cells supporting random access, each of limited size. 


‣ RAM model supports common instructions. Arithmetic, logic, data movement, control, … 


‣ RAM model supports common data types. Integers, floating point numbers, … 


‣ RAM model does not support complex instructions or data types (directly). Vector operations, graphs, … 
…input

output …

a[i]

. 

. 

.

memory

program

We can evaluate:


‣ Running time:  Number of primitive operations.


‣ Memory:  Number of memory cells utilized.
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Correctness of  
Algorithms
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Correctness of algorithms

• When we talk about the correctness of an algorithm,  we actually mean the 
correctness with respect to its specification.


• Specification expresses the task to be done by the algorithm, which consists of:


‣ (optional) name of algorithm and list of its arguments


‣ Precondition (or initial condition) — it specifies what is correct input data to 
the problem 


‣ Postcondition (or final condition)  — it specifies what is the desired result of 
the algorithm)
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Correctness of algorithms
• Specification Example:


‣ name: Sort(A)


‣ input: (pre-condition)


- An array A of n integers


‣ output: (post-condition)


- A permutation of that array A that is sorted (monotonic). 

A reordering, yet retaining all of the original elements
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Correctness of algorithms

‣ Correct input data is the data which satisfies the initial condition of the 
specification.


‣ Correct output data is the data which satisfies the final condition of the 
specification.

Definition (Total correctness, 完全正确性)  An algorithm is called totally correct 
for the given specification if and only if for any correct input data it:


1) terminates


2) returns correct output
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Correctness of algorithms
• Usually, while checking the correctness of an algorithm it is easier to separately:


‣ Check whether the algorithm stops


‣ Then checking the remaining part — This remaining part of correctness is 
called “Partial Correctness” of algorithm

Definition (Partial correctness, 部分正确性)  An algorithm is partially correct if 
satisfies the following condition: 


If the algorithm receiving correct input data stops then its result is correct

Note: Partial correctness does not make the algorithm stop.
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Examples

precondition: x = 1 
algorithm:  y := x 
postcondition:  y = 1

precondition: x = 1 
algorithm:  y := x 
postcondition:  y = 2

precondition: x = 1 
algorithm: 

while (true) 
           x := 0 

postcondition: y = 1

Total correctness Neither partial nor total correctness Partial correctness

Actually, they are Hoare triples!

More details of hoare logic: https://en.wikipedia.org/wiki/Hoare_logic
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A quick quiz

• What does the implementation have to fulfill if the client violates the 
precondition (i.e., the algorithm receives incorrect input data)?


‣ Nothing. It can do anything at all!


‣ Consider the C language case:  return x/0, what will output? 


- For this input, the Compilers are not required to provide any 
guarantees, which is the so-called “Undefined behavior”!
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Robert W. Floyd
Tony Hoare

Invented mathematical proof systems (a.k.a. Floyd–Hoare logic)  to formally prove that programs satisfy their specification

Correctness of algorithms
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The proof of total correctness
• A proof of total correctness of an algorithm usually assumes 2 separate 

steps


‣ 1. (to prove that) the algorithm always terminate for correct input data


‣ 2. (to prove that) the algorithm is partially correct.

• Different proof methods for them, typically


• Variants （变式） for “termination”


• Invariants（不变式） for “partial correctness”

“Termination” is often much easier to prove
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Example: Insertion Sort 

Algorithm design strategy 0:  wisdom from daily life

Procedure  Insertion-Sort(A) 
In: An array A of n integers. 
Out: A permutation of that array A that is sorted (monotonic). 

for i := 2 to A.length
   key := A[i]
   // Insert A[i] into the sorted subarray A[1 : i - 1] 
   j := i - 1 
   while j > 0 and A[j] > key 
         A[j + 1] := A[j]
         j := j - 1
   A[j + 1] := key
return A

we omit the “end” keyword 
here to make it simpler
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Example: Insertion Sort 

• Applies algorithm Insertion-Sort to [5, 2, 4, 6, 1, 3]

5 2 4 6 1 3 2 5 4 6 1 3 2 4 5 6 1 3

2 4 5 6 1 3

1st iteration
2nd iteration 3rd iteration

1 2 4 5 6 3 1 2 3 4 5 6

4th iteration 5th iteration
sorted
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Example: Insertion Sort 

• Proof the correctness of Insertion-Sort

‣ Step1: The algorithm outputs correct result on every instance 
(partially correct).

‣ Step2: The algorithm terminates within finite steps on every instance 
(termination). 
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Step1: Using loop invariant for partial correctness

Initialization: It is true prior to the first iteration of the loop.


Maintenance: If it is true before an iteration of the loop, it remains true before 
the next iteration.


Termination: When the loop terminates, the invariant gives us a useful 
property that helps show that the algorithm is correct

General rules for loop invariant proofs
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Partial correctness of Insertion Sort
• Loop invariant: By the end of ith iteration of outer for loop, 

the elements in subarray A[1,⋯,i] are in sorted order.


• [Initialization] prior the first iteration( i = 2): A[1] is in 
sorted order.


• [Maintenance] Assume by the end of the ith iteration, the 
elements in subarray A[1,⋯, i] are in sorted order; then by 
the end of the (i+1)th iteration, the elements in subarray 
A[1,⋯,i+1] are in sorted order.


• [Termination] After the iteration i = n, the loop invariant 
states that A is sorted

Procedure  Insertion-Sort(A) 
In: An array A of n integers. 
Out: A permutation of that array A that is sorted (monotonic). 

for i := 2 to A.length
   key := A[i]
   // Insert A[i] into the sorted subarray A[1 : i - 1] 
   j := i - 1 
   while  j > 0 and A[j] > key 
         A[j + 1] := A[j]
         j := j - 1
   A[j + 1] := key
return A

Requires another loop invariant for the inner 
while loop
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How to find the loop invariant?
• Is there only one loop invariant?


‣ Another loop invariant:  By the end of the ith iteration of outer for loop,  subarray 
A[1,⋯,i] retains all of the original elements in A[1,⋯,i] in previous iteration.


• Let this invariant be IV2, and the previous invariant be IV1.  What is their relationship?


‣ IV2 is weaker than IV1, since there are more possible A[1,⋯,i]  that satisfy IV2, but 
not satisfy IV1.


• A good (strong) loop invariant must satisfy these three properties [Initialization], 
[Maintenance] and [Termination].  Note that IV2 does not satisfy [Termination] 
property.
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How to find the loop invariant?
• How to find a good loop invariant?


• Generally, the answer is:


‣ We don’t know


- For simple ones, e.g., integer ranges, like , there exists 
effective techniques — e.g., abstract interpretation


- However, for sophisticated invariants, there is no general method, and 
sometimes we need to provide them manually!


- Very hot research topic!

0 ≤ x ≤ 1024
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Step2: Using loop variant for termination
• Wait!!! Program termination is formally undecidable!!


‣ It just means that there is no general algorithm exists that solves the 
halting problem for all possible programs.


‣ In fact, the partial correctness of all possible programs is also 
undecidable. — can you prove it?

• Using loop variant to prove the termination


‣ show that some quantity strictly decreases.


‣ it cannot decrease indefinitely (Bounded!)
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Well-ordered set

• An ordered set is well-ordered if each and every nonempty subset has a 
smallest or least element.


‣ E.g., every nonempty subset of the non-negative integers has a least 
element


‣ Set of integers and the positive real number are not well-ordered sets


• A well-ordered set has no infinite descending sequences, which can be used 
to ensure the termination of algorithm
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Termination of Insertion Sort

• Loop Variant: for the outer loop: A.length - i  

‣ For each iteration, A.length - i strictly 
decreases.


‣ A.length - i is bounded to be larger or equal to 0

Procedure  Insertion-Sort(A) 
In: An array A of n integers. 
Out: A permutation of that array A that is sorted (monotonic). 

for i := 2 to A.length
   key := A[i]
   // Insert A[i] into the sorted subarray A[1 : i - 1] 
   j := i - 1 
   while j > 0 and A[j] > key 
         A[j + 1] := A[j]
         j := j - 1
   A[j + 1] := key
return A

• Loop Variant: for the inner loop: j 

‣ For each iteration, j strictly decreases.


‣ j is bounded to be larger than 0
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How to find the loop variant

• Again, generally, the answer is:


‣ We don’t know


‣ But generally speaking, it is very easy to identify!


- For example, the induction variable of the loop (or some linear 
transformation of it).
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Other strategies of correctness proof

• Some methods and strategies: proof by cases, proof by contraposition, 
proof by contradiction, etc.


• When loops and/or recursions are involved: often (if not always) use 
mathematical induction.


• Review your discrete math book if you feel unfamiliar with above terms…


‣  [Rosen] Ch.1 (1.7, 1.8) and Ch.5 (5.1, 5.2)
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Efficiency of 
Algorithms
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Complexity

• Time complexity: how much time is needed before halting


• Space complexity: how much memory (usually excluding input) is 
required for successful executed


• Other performance measures, e.g., communication bandwidth, or energy 
consumption…


• Time complexity is typically more important than others in analysis.  



智能软件与工程学院 
School of Intelligent Software and Engineering 

Complexity
• Observation: larger inputs often demands more time.


‣ Cost of an algorithm should be a function of input size, say, T(n).


• Given an algorithm and an input,  when counting the cost with respect to the RAM 
model:


‣ Each memory access takes constant time.


‣ Each “primitive” operation takes constant time.


‣ Compound operations should be decomposed.


‣ At last, Counting up the number of time units.
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Time complexity of Insertion Sort
Procedure  Insertion-Sort(A) 
In: An array A of n integers. 
Out: A permutation of that array A that is sorted (monotonic). 

for i := 2 to A.length
   key := A[i]
   // Insert A[i] into the sorted subarray A[1 : i - 1] 
   j := i - 1 
   while  j > 0 and A[j] > key 
         A[j + 1] := A[j]
         j := j - 1
   A[j + 1] := key
return A

Cost Times 

c1 n
c2 n − 1

c4 n − 1
c5 Σn

i=2ti
c6 Σn

i=2(ti − 1)
c7 Σn

i=2(ti − 1)
c8 n − 1

Check one more 
time until false

Add them up:  T(n) = c1n + c2(n − 1) + c4(n − 1) + c5

n

∑
i=2

ti + c6

n

∑
i=2

(ti − 1) + c7

n

∑
i=2

(ti − 1) + c8(n − 1)
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Time complexity of Insertion Sort
• The time cost of insert sort is:

T(n) = c1n + c2(n − 1) + c4(n − 1) + c5

n

∑
i=2

ti + c6

n

∑
i=2

(ti − 1) + c7

n

∑
i=2

(ti − 1) + c8(n − 1)

Depends on which input of size n 

• The time cost of insert sort varies among inputs


‣ How to fairly evaluate a algorithm — enumerate the cost of all the possible 
inputs?  Not possible, since the input space is infinite!


‣ We can check the representative inputs, but, what are they?
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Worst, best, and average 
Given one problem and an algorithm,  let  be the set of all the possible inputs of size , and 

 be the time cost of the algorithm under one input with size .


• Worst 


‣ W(n) = maximum time of algorithm on any input of size n, i.e., 


• Best 


‣ B(n) = minimum time of algorithm on any input of size n, i.e.,  


• Average


‣ A(n) = expected time of algorithm over all inputs of size n, i.e., 


‣ Note: need assumption of statistics distribution of inputs.

𝒳n n
T(n) n

W(n) = max
x∈𝒳n

T(x)

B(n) = min
x∈𝒳n

T(x)

A(n) = ∑
x∈𝒳n

T(x) ⋅ Pr(x)
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Mainly focus on worst-case analysis 
• Worst case — Running time guarantee for any input of size n.


‣ Generally captures efficiency in practice.


‣ Draconian view, but hard to find effective alternative.


• Exceptions.  Some exponential-time algorithms are used widely in practice 
because the worst-case instances don’t arise.  

simplex algorithm k-means algorithm
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Time complexity of Insertion Sort

What is the best case?
Each time  is 1, which means that each time the while loop condition is false at the beginning! —> A[j] > key is 
false every time —> the array is already sorted at the beginning!

ti

Procedure  Insertion-Sort(A) 
In: An array A of n integers. 
Out: A permutation of that array A that is sorted (monotonic). 

for i := 2 to A.length
   key := A[i]
   // Insert A[i] into the sorted subarray A[1 : i - 1] 
   j := i - 1 
   while  j > 0 and A[j] > key 
         A[j + 1] := A[j]
         j := j - 1
   A[j + 1] := key
return A

Cost Times 

c1 n
c2 n − 1

c4 n − 1
c5 Σn

i=2ti
c6 Σn

i=2(ti − 1)
c7 Σn

i=2(ti − 1)
c8 n − 1
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Time complexity of Insertion Sort

B(n) = c1n + c2(n − 1) + c4(n − 1) + c5

n

∑
i=2

1 + c6

n

∑
i=2

(1 − 1) + c7

n

∑
i=2

(1 − 1) + c8(n − 1) = (c1 + c2 + c4 + c5 + c8)n − (c2 + c4 + c5 + c8)

Procedure  Insertion-Sort(A) 
In: An array A of n integers. 
Out: A permutation of that array A that is sorted (monotonic). 

for i := 2 to A.length
   key := A[i]
   // Insert A[i] into the sorted subarray A[1 : i - 1] 
   j := i - 1 
   while  j > 0 and A[j] > key 
         A[j + 1] := A[j]
         j := j - 1
   A[j + 1] := key
return A

Cost Times 

c1 n
c2 n − 1

c4 n − 1
c5 Σn

i=2ti
c6 Σn

i=2(ti − 1)
c7 Σn

i=2(ti − 1)
c8 n − 1
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Time complexity of Insertion Sort

What is the worst case?
Each time  is the largest it can be, which means that each time the while loop condition is true until  is equal 
to 0 —> A[j] > key is true every time —> the array is reversely sorted at the beginning! —>    

ti j
ti = i

Procedure  Insertion-Sort(A) 
In: An array A of n integers. 
Out: A permutation of that array A that is sorted (monotonic). 

for i := 2 to A.length
   key := A[i]
   // Insert A[i] into the sorted subarray A[1 : i - 1] 
   j := i - 1 
   while  j > 0 and A[j] > key 
         A[j + 1] := A[j]
         j := j - 1
   A[j + 1] := key
return A

Cost Times 

c1 n
c2 n − 1

c4 n − 1
c5 Σn

i=2ti
c6 Σn

i=2(ti − 1)
c7 Σn

i=2(ti − 1)
c8 n − 1
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Time complexity of Insertion Sort
Procedure  Insertion-Sort(A) 
In: An array A of n integers. 
Out: A permutation of that array A that is sorted (monotonic). 

for i := 2 to A.length
   key := A[i]
   // Insert A[i] into the sorted subarray A[1 : i - 1] 
   j := i - 1 
   while  j > 0 and A[j] > key 
         A[j + 1] := A[j]
         j := j - 1
   A[j + 1] := key
return A

Cost Times 

c1 n
c2 n − 1

c4 n − 1
c5 Σn

i=2ti
c6 Σn

i=2(ti − 1)
c7 Σn

i=2(ti − 1)
c8 n − 1

W(n) = c1n + c2(n − 1) + c4(n − 1) + c5

n

∑
i=2

i + c6

n

∑
i=2

(i − 1) + c7

n

∑
i=2

(i − 1) + c8(n − 1)

 = c1n + c2(n − 1) + c4(n − 1) + c5(n + 2)(n − 1)/2 + c6n(n − 1)/2 + c7n(n − 1)/2 + c8(n − 1)

 = ((c5 + c6 + c7)/2) n2 + (c1 + c2 + c4 + c8 − (c5 + c6 + c7)/2) n − (c2 + c4 + c5 + c8)
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Time complexity of Insertion Sort

What about the average case? —>  the elements in the input array are randomly ordered


Hint:  the number of swaps equals the number of inversions!

Procedure  Insertion-Sort(A) 
In: An array A of n integers. 
Out: A permutation of that array A that is sorted (monotonic). 

for i := 2 to A.length
   key := A[i]
   // Insert A[i] into the sorted subarray A[1 : i - 1] 
   j := i - 1 
   while  j > 0 and A[j] > key 
         A[j + 1] := A[j]
         j := j - 1
   A[j + 1] := key
return A

Cost Times 

c1 n
c2 n − 1

c4 n − 1
c5 Σn

i=2ti
c6 Σn

i=2(ti − 1)
c7 Σn

i=2(ti − 1)
c8 n − 1

https://stackoverflow.com/questions/17055341/why-is-insertion-sort-%CE%98n2-in-the-average-case/17055342#17055342
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One more thing
• What the space complexity of insertion sort?

Procedure  Insertion-Sort(A) 
In: An array A of n integers. 
Out: A permutation of that array A that is sorted (monotonic). 

for i := 2 to A.length
   key := A[i]
   // Insert A[i] into the sorted subarray A[1 : i - 1] 
   j := i - 1 
   while (j > 0 and A[j] > key) 
         A[j + 1] := A[j]
         j := j - 1
   A[j + 1] := key
return A

We only need three additional  
memory cells to store the 

variable key, i, and j. 
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Asymptotic order  
of growth
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Asymptotic order of growth

Donald E. Knuth
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A higher-level abstraction
• In practice, we usually don’t care about the unimportant details in the 

counted operations.


• We need one more simplifying abstraction, which can give us an intuitive 
feeling of the cost of an algorithm.


‣ The abstractions is:  the rate of growth, or order of growth, of the 
running time that really interests us, therefore, two factors are ignored:


- Constant coefficients are not that important (when n is large)


- Lower-order terms are not that important (when n is large).
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Big  notationO

• Asymptotic upper bounds（渐近上界） — when we 
say f(n) is O(g(n)), we mean that f(n) grows no faster 
than a certain rate —> is asymptotically at most g(n).


• Ex.  f(n) = 32n2 + 17n + 1.


‣ f(n) is O(n2).


‣ f(n) is neither O(n) nor O(n log n) —> why?

c · g(n)

nn0

f(n)

choose c = 50, n0 = 1

Definition ( )  Given a function , we denote by  the following set of 
functions: 

O g(n) O(g(n))
O(g(n)) = {f(n) ∣ ∃c > 0,∃n0 > 0,∀n ≥ n0 : 0 ≤ f(n) ≤ c ⋅ g(n)}
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Big  notation abusesO
• O(g(n)) is actually a set of functions, but computer scientists often write f(n) = 

O(g(n)) instead of f(n)  ∈  O(g(n)).


• Ex.  Consider  f1(n) = 5n3  and f2(n) = 3n2.


‣ We have f1(n) = O(n3) and f2(n) = O(n3).

‣ But, do not conclude f1(n) = f2(n).


• Since the worst time complexity of insertion sort is 
 


➡ Therefore,  —> is asymptotically at most .

W(n) = ((c5 + c6 + c7)/2) n2 + (c1 + c2 + c4 + c8 − (c5 + c6 + c7)/2) n − (c2 + c4 + c5 + c8)

W(n) = O(n2) n2
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Big  notation with multiple variablesO

•  f(m, n) is O(g(m, n)) if there exist constants c > 0, m0  ≥  0, 
and n0 ≥  0 such that 0 ≤  f(m, n)  ≤  c · g (m, n)  for all n  ≥  n0 and m  ≥  m0.


• Ex.  f(m, n) = 32mn2 + 17mn + 32n3.


‣ f(m, n) is both O(mn2 + n3) and O(mn3).


‣ f(m, n) is neither O(n3) nor O(mn2).
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Big  notation Ω

• Asymptotic lower bounds（渐近下界） — when 
we say f(n) is Ω(g(n)), we mean that f(n) grows at 
least as fast as a certain rate —>  is 
asymptotically at least g(n).


• Ex.  f(n) = 32n2 + 17n + 1.


‣ f(n) is both Ω(n2) and Ω(n).


‣ f(n) is not Ω(n3).

f(n)

nn0

c ·  g(n)

choose c = 32, n0 = 1

Definition ( )  Given a function , we denote by  the following set of 
functions: 

Ω g(n) Ω(g(n))
Ω(g(n)) = {f(n) ∣ ∃c > 0,∃n0 > 0,∀n ≥ n0 : f(n) ≥ c ⋅ g(n)}
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Big  notationΘ

• Asymptotic tight bounds（渐近紧确界）  
When we say f(n) is Θ(g(n)), we mean that f(n) 
grows precisely at a certain rate  —> it is 
asymptotically equal to g(n)  


• Ex.  f(n) = 32n2 + 17n + 1.


‣ f(n) is Θ(n2).


‣ f(n) is neither Θ(n) nor Θ(n3). 

choose c1 = 32, c2 = 50, n0 = 1

f(n)

nn0

c1 · g(n)

c2 · g(n)

Definition ( )  Given a function , we denote by  the following set of functions: Θ g(n) Θ(g(n))
Θ(g(n)) = {f(n) ∣ ∃c1 > 0,∃c2 > 0,∃n0 > 0,∀n ≥ n0 : c1 ⋅ g(n) ≤ f(n) ≤ c2 ⋅ g(n)}

Q: The worst time complexity of Insertion Sort is Θ(n2)?
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Small o and  notationω

Definition ( )  Given a function , we denote by  the following set of 
functions: 

o g(n) o(g(n))
o(g(n)) = {f(n) ∣ ∀c > 0,∃n0 > 0,∀n ≥ n0 : 0 ≤ f(n) < c ⋅ g(n)}

•  is asymptotically (strictly) smaller than  : f(n) g(n)

Definition ( )  Given a function , we denote by  the following set of 
functions: 

ω g(n) ω(g(n))
ω(g(n)) = {f(n) ∣ ∀c > 0,∃n0 > 0,∀n ≥ n0 : f(n) > c ⋅ g(n)}

•  is asymptotically (strictly) larger than  : f(n) g(n)

Q: Now that we have O, Ω, Θ and o,ω, do we have small θ?



智能软件与工程学院 
School of Intelligent Software and Engineering 

Some properties of asymptotic notations 

• Reflexivity


‣ E.g., ; but .


• Transitivity


‣ E.g., if  and ,  then .


• Symmetry


‣  iff .


• Transpose symmetry: 


‣ E.g.,   iff .

f(n) ∈ O( f(n)) f(n) ∉ o( f(n))

f(n) ∈ O(g(n)) g(n) ∈ O(h(n)) f(n) ∈ O(h(n))

f(n) ∈ Θ(g(n)) g(n) ∈ Θ( f(n))

f(n) ∈ O(g(n)) g(n) ∈ Ω( f(n))
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Asymptotic bounds and limits

• If cost functions are complex, it is hard to apply the definitions to get its 
asymptotic bounds.  


• In this case, it usually easier to apply limit method. 
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Asymptotic bounds and limits
• Proposition.  If   for some constant 0  <  c  <  ∞ then f(n) is Θ(g(n)).


• Pf.


‣ By definition of the limit, for any  > 0, there exists n0 such that


‣   for all n  ≥  n0.


‣ Choose  >  0.


‣ Multiplying by g(n) yields  1/2 c · g(n)  ≤  f(n)  ≤  3/2 c · g(n)  for all n  ≥  n0.


‣ Thus, f(n) is Θ(g(n)) by definition, with c1 = 1/2 c and c2 = 3/2 c.  ▪

lim
n→∞

f(n)
g(n)

= c

ϵ

c − ϵ ≤
f(n)
g(n)

≤ c + ϵ

ϵ =
c
2
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Asymptotic bounds for some common functions

• Proposition.  If   , then f(n) is O(g(n)) but not 

Ω(g(n)).


• Proposition.  If  ,  then f(n) is Ω(g(n)) but not 

O(g(n)).

lim
n→∞

f(n)
g(n)

= 0

lim
n→∞

f(n)
g(n)

= ∞

a.k.a. o(g(n))

a.k.a. ω(g(n))
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Asymptotic bounds for some common functions
• Polynomials.  Let f(n) = a0 + a1 n + … + ad nd  with ad  >  0. Then, f(n) is Θ(nd).


‣ Pf. 


• Logarithms.  loga n is Θ(logb n) for every a  > 1 and every b  >  1.


‣ Pf. 


• Logarithms and polynomials.  loga n is O(nd) for every a  > 1 and every d  > 0.


‣ Pf. 

lim
n→∞

a0 + a1n + . . . + adnd

nd
= ad > 0

loga n
logb n

=
1

logb a

lim
n→∞

loga n
nd

= 0 L'Hopital's Rule
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Asymptotic bounds for some common functions
• Exponentials and polynomials.    is   for every   and every .


‣ Pf. 


• Factorials. 


 is   




‣ Pf. Stirling’s formula:  

nd O(rn) r > 1 d > 0

lim
n→∞

nd

rn
= 0

n! o(nn)

log(n!) = Θ(n log n)

n! ∼ 2πn ⋅ (
n
e

)n
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Comparing some common functions 

, constantΘ(1)

, logarithmΘ(log n)

,  linearΘ(n)

, linearithmicΘ(n log n)

, polynomialΘ(nc)

, exponentialΘ(2n)

, factorialsΘ(n!)
intractable

tractable
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Polynomial running time

• When considering brute force algorithm to solve one problem, it is usually 
asymptotically equal to exponential functions.


• When an algorithm has a polynomial running time, we say it is efficient, and 
the corresponding problem is so-called easy or tractable.  

‣  The algorithm has typically exposes some crucial structure of the problem.
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Although, there are exceptions
• Some poly-time algorithms in the wild have galactic constants and/or huge 

exponents.


• Q.  Which would you prefer:  20 n120  or  n1 + 0.02 ln n ?
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Abstract

Chen,Grigni, andPapadimitriou (WADS’97 andSTOC’98)
have introduced a modified notion of planarity, where two
faces are considered adjacent if they share at least one point.
The corresponding abstract graphs are called map graphs.
Chen et.al. raised the question of whether map graphs can be
recognized in polynomial time. They showed that the decision
problem is in NP and presented a polynomial time algorithm
for the special case where we allow at most 4 faces to intersect
in any point — if only 3 are allowed to intersect in a point, we
get the usual planar graphs.

Chen et.al. conjectured that map graphs can be recognized
in polynomial time, and in this paper, their conjecture is settled
affirmatively.

1. Introduction

Recently Chen, Grigni, and Papadimitriou [4, 5] suggested
the study of a modified notion of planarity. The basic frame-
work is the same as that of planar graphs. We are given a set of
non-overlapping faces in the plane, each being a disc homeo-
morphism. By non-overlapping, we mean that two faces may
only intersect in their boundaries. The plane may or may not
be completely covered by the faces. A traditional planar graph
is obtained as follows. The vertices are the faces, and two
faces are neighbors if their intersection contains a non-trivial
curve. Chen et.al. [4, 5] suggested simplifying the definition,
by saying that two faces are neighbors if and only if they in-
tersect in at least one point. They called the resulting graphs
“planar map graphs”. Here we will just call themmap graphs.
Note that there are non-planar map graphs, for as illustrated
in Figure 1, map graphs can contain arbitrarily large cliques.
We shall refer to the first type of clique as a flower with the
petals intersecting in a center. The second is a hamantash
based on three distinct corner points. Each of the three pairs
of corner points is connected by a side of parallel faces. In

Most of this work was done while the author visited MIT.
Chen et.al. called flowers for pizzas, but “flower” seems more natural.

Figure 1. Large cliques in maps

addition, the hamantach may have at most two triangle faces
touching all three corners. In [5] there is a classification of
all the different types of large cliques in maps. Chen et.al. [5]
showed that recognizing map graphs is in NP, hence that the
recognition can be done in singly exponential time. However,
they conjectured that, in fact, map graphs can be recognized in
polynomial time. They supported their conjecture by showing
that if we allow at most 4 faces to meet in any single point, the
resultingmap graphs can be recognized in polynomial time. In
this paper, we settle the general conjecture, showing that given
a graph, we can decide in polynomial time if it is a map graph.
The algorithm can easily be modified to draw a corresponding
map if it exists.

Map coloring It should be noted that coloring of map graphs
dates back to Ore and Plummer in 1969 [8], that is, theywanted
to color the faces so that any two intersecting facesgot different
colors. For an account of colorful history, the reader is referred
to [7, 2.5]. In particular, the history provides an answer to a
problem of Chen et.al. [5]: if at most 4 facesmeet in any single
point, canwe color themapwith 6 colors? It is straightforward
to see that the resulting graphs are 1-planar, meaning that they
can be drawn in the plane such that each edge is crossed by at
most one other edge. Already in 1965, Ringel [9] conjectured
that all 1-planar graphs can be colored with 6 colors, and this
conjecture was settled in 1984 by Borodin [2], so the answer
to Chen et.al.’s problem is: yes.

Map metrics The shortest path metrics of map graphs are
commonly used in prizing systems, where you pay for cross-
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Map coloring It should be noted that coloring of map graphs
dates back to Ore and Plummer in 1969 [8], that is, theywanted
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to [7, 2.5]. In particular, the history provides an answer to a
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Further reading
• [CLRS] Ch.2 (2.1, 2.2), Ch.3


• [Rosen] Ch.1 (1.7, 1.8) and Ch.5 (5.1, 5.2)


