BEERMHES TiEF b

School of Clnte[ﬁ’gent Soﬁ*ware and fngmeermg

HEE T
Nanjing University
2025 Fall

=

< i
Vg Lo

B P,
A . LA 4
e - N . 1 e v 0
- - - AT 5
b L AN - " g o Tu N
MY e R » Sl 25 - -l ._) R
¥ : -~ J’I‘ e | L B . 2
- . . - n p y
' 9 . v 4 - >
- -‘ 3 .y P e - . .
- .
- -
-
- -

-.’f
-

. ;" é_*

...
‘ | 5" 4
' a B

j/t@ S[LJ@S are mam[y ac{aptec{ﬁom th@ o’ugma[ones S/Ld’l@d by CAQOJOHQ ZAeng anc[./(QVLIQ v 5 _."“

| meERp S TR
of

> 43' School Qnt‘e[ﬁgent Sofrware and fngmeermg

What is a “data structure”?

* A data structure is a way to store and organize data in order to facilitate
access and modifications.

> E.g., array, linked list.

» Different types of data usually demand different data structures.

* One type of data could be represented by different data structures.

Computer

Execute an algorithm
<]l 9 1 3

Computer
Execute an algorithm

=

0 &btk T 2 R4 e
PV, SEREGESITREF xR
7‘5 4435 School of an[ﬁgent Sofrware and fngineering

Abstract Data Type (ADT)

* A data structure usually provides an interface.

» Often, the interface is also called an Abstract Data Type (ADT).

> An ADT specifies what a data structure “can do” and “should do”, but not “how to do”
them.

« ADT: List, which supports get, set, add, remove, ...
 Data structure: ArrayList, LinkedList,

* An ADT is a logical description, and a data structure is a concrete implementation.
> Similar to .h file and .cpp file.

> Different data structures can implement same ADT.

TEFr

The Queue ADT

« The Queue ADT represents a collection of items to which we
can add items and remove the next item.

» Add (x): add x to the queue.

> Remove () : remove the next item y from queue, return y.

* The queuing discipline decides which item to be removed.

FIFO Queue

The Queue ADT represents a collection of items to which we can add items and remove the next
item.

Add(x): add x to the queue.

Remove(): remove the next item y from queue, return y.

* The first-in-first-out (FIFO) queuing discipline:
items are removed Iin the same order they are added.

* FIFO Queue:

» Add (x) or Enqueue (x) : add x to the end of the queue

» Remove () orDequeue (): remove the first item from the queue

3y
OD&bkhk T 30 R4 e
| BEERS IREF R
4‘35 School of Qm—e[ﬁ'gent Soﬁ'ware and Engineem’ng

Enqueue (a)

Enqueue (b)

b

Dequeue ()

Enqueue (£f)

f

T C el 3 et et B

LIFO Queue: Stack

The Queue ADT represents a collection of items to which we can add items and remove the next
item.

Add(x): add x to the queue.

Remove(): remove the next item y from queue, return y.

* The last-in-first-out (LIFO) queuing discipline: Pop()
the most recently added item is the next one removed

« Stack (LIFO Queue):

» Add (x) or Push (x) : add x to the top of the stack

» Remove () or Pop (): remove the item a the top of the stack

[EF R

The Deque ADT

« The Deque (Double-Ended Queue) ADT represents a sequence of items with a
front and a back, which supports the following operations:

» AddFirst (x):add x to the front of the queue

» AddLast (x): add x to the back of the queue.
> RemoveFirst ():remove the first item y from queue, return y.

> RemoveLast (): remove the last item y from queue, return y.

The Deque ADT

* A Deque is a generalization of both the FIFO Queue and LIFO Queue

(Stack)

» Deque can implement FIFO Queue:

Dequeue () IS RemoveFirst ()

» Deque can implement Stack (LIFO Queue): Push (x) is AddLas

Pop ()

IS Removelast ()

sngueue (x) IsAddLast (x),

The List ADT

 AList is asequence of items X, X,, ..., X,, which supports the following operations:

» Size ():return n, the length of the list

> Get (1):return X,
» Set(1,x):setx;, =X

» Add(i,x): setx;) =x;forn 2] 21, setx; = x, increase list size by 1

> Remove (1): setx; =x;, forn —12>j > i, decrease list size by 1

1 2 3 4
2l c o d

5 n

K

The List ADT

e List can implement Deque:

» AddFirst(x) —> Add(1l, x)
» AddLast (x) —> Add(Size()+1, x)
» RemovelFirst () —>Remove (1)

» RemovelLast () —>Remove (Size ())

B S TREF R
f tellige igen ftw and E Engineering

Using array to implement List — ArrayList

* The list operations implemented by ArrayList

» Size ():always O(1) c t a
Add (4, d)
> Get(i):always®(1) c f ad ;
I 5et(3,
> Set (i, x):always O(1) c f q d
s A A A ' : A(iid(l .
> Add (: O(1) to O(n) 2 f q a
eé """""" | ~Remove (3)
» Remove (1): ®(1) to O(n) TS T T

Queries and updates are fast

Modifications are fast at ‘end”, but slow at “front” or middle".

TEERRFS T2 F B
oo of

tellige igen ftw and F ngineem’ng

Using array to implement List — ArrayList

* The list operations implemented by ArrayList Q:ls ArrayList good for Stack?
> Size ():always O(1) e A: Yes. (Push and Pop are fast)
> Get (1):always O(1) Q:Is ArrayList good for FIFO Queue?
» Set (i, x):always ®(1) e A: No. Why?
» Add (: O(1) to O(n) Q: Is ArrayList good for Deque?
» Remove (1): O(1) to ®(n) * A: No.

Queries and updates are fast

Modifications are fast at ‘end”, but slow at “front” or middle".

Usmg circular array to implement Deque — ArrayDeque

e ArrayList IS good for Stack, but not FIFO Queue or Deque

'f' ' | | | ' RemoveFi1rst () faeq

- &

RemoveFirst (

Too many operations!

O &btk T F2 R4
PV, SERESIREFR
Z"f 4‘35 School cf Qntz(figent Soﬁ'ware and fngineering

Using circular array to implement Deque — ArrayDeque

e Maintain head and tail:

» AddFirst and RemoveFirst: move head.

» AddLast and Removel.ast: move tail.

f i a e g
» Use modular arithmetic to “wrap around” at
both ends.

Addl ast(x): AddFirst(x):

tail := (tail % N)+1 head := (head =1) ? N: (head - 1)

Altail] :=x Alhead] = x
Removel ast(): RemoveFirsto:

tail :=(tail=1) ? N : (tail - 1) head = (head % N) + 1

All of them are O(1)

Usmg cwcular array to implement Deque — ArrayDeque

e Maintain head and tail:

» AddFirst and RemoveFirst: move head.

» AddLast and Removel.ast: move tail.

> Use modular arithmetic to “wrap around” at

both ends.
Addl astx): AddFirstx):
tail := (tail % N)+1 head = (head =1) 7?7 N : (head - 1)
Altail] :==x Alhead] = x
Removel astQ: RemoveFirsto:
tail == (tail=1) ? N: (tail - 1) head = (head % N) + 1

All of them are O(1)

e Queries and updates are fast

e NModifications are fast at ‘front” and
epds e mead and tail) bl
still slow at "middle™.

® ArrayDeque IS good for Stack,
FIFO Queue, and Deque; but can
be siIow. 1or same List operations.

e Capacity of array Is also a problem!

When the array is full?

* Resizing arrays

> Create a new array of greater size and copy the elements of the original
array into it.

> abandon the old array and use the new one In its place.

 The question is, how large”?

When the array is full?

e Suppose we have array with initial capacity being 1, then insert N items

> Resize it to have one additional cell every time? —> requiring
1+243+...N—1 ~ N’ copy operations.

> Resize the array by doubling its size every time?

- For simplicity, let N = 2* for some constant k. —> requiring
1 4+24+4+...+281=2k_1 ~N

> We could of course do better if we multiplied the size of the array by an even
larger value, but then there would likely be a lot more unused cells in the
array on average (consider the case that resizing happens infrequently).

Starting from an empty data structure, average
running time per operation over a worst-case
sequence of operations.

Thus, If resizing by one more cell each time, the

amortized complexity is ®(n) for each operation.

If resizing by doubling space each time, the

amortized complexity is ®(1) for each operation.

We well learn it later...

What about worst?

Amortized analysis

| w‘ ‘;"\(

Introduced by Robert Tarjan at 1985

When to shrink array?

 \When shrinking an array, we allocate a new array with smaller capacity, and then copy
necessary items from the original array into the new array, and abandon the old array.

> When pop() each time, we shrink the array by 1 less cell?
> When the array is one-half full, we shrink the array to the halve size?
- Causing “Thrashing” problem!!! Since, if now we add just one element, we need to
resize the array by doubling the size, and then pop one element, we should shrink
It back to the halve size —> When pushes and pops come with relatively equal
frequency, it will be too expensive!

> Usually, when the array is 1/4 full, we shrink it to the halve size.

o After all, by doing this we ensure that the array holding the contents of our stack will
ALWAYS be between 25% and 100% full!

i %ﬁEET\TfIZ'—i:_?FE%BE
¢J School of Mtelligent Software and Engineering

Using Linked list to implement List — LinkedList

* The list operations implemented by LinkedList
» Size ():always O(1)
» Get (1): 0O(1) to O(n)
> Set (i,x):0(1) to O(n)
» Add (: O(1) to O(n)

» Remove (1): ®(1) to ®(n)

Traversing backwards from tail is not efficient!

Q: Is LinkedList good for Stack?
 A:Yes. (Push and Pop at head are fast)

Q:Is LinkedList good for FIFO Queue?

 A:Yes. (Enqueue and Dequeue are fast)
Q: Is LinkedList good for Deque?

 A:No.(RemoveLast can be slow.)

U ng doubly-Linked list to implement List — DLinkedList

* The list operations implemented by DLinkedList

> Size ():always O(1) }EEE

> Get (1):0(1) to O(n)

Not good for traversing backwards

> Set (i,x):0(]) to O(n)

» Add (: (1) to O(n)

» Remove (1): ®(1) to O(n)

DLinkedList is good for Stack, FIFO Queue, and Deque; but can be slow for some List operations.

EEERRFS _ji%ﬁn

§sﬁ(f (Tigent Software and Engineering

stmg doubly-Linked list to implement List — DLinkedList

* The list operations implemented by DLinkedList

» Size ():always O(1)

> Get (1):0(1) to O(n)

> Set (1,x):0(1)to O(n) A ddFi it AddFirst):
mext = he-a] x.next .= head

> Add (: O(1) to O(n) .y 'r_ev . Whatif head==NULL? if peqd |= NULL
hoa d.l?— . - g head.prev := x

> Remove (®(1) to @(I’l) x.prev .= NULL head :=x

x.prev .= NULL

What about tai1?

% SRS T2

¢/ School of Intelligent Software and Engine

Gsmg doubly-Linked list to implement List — DLinkedList

* The list operations implemented by DLinkedList

» Size ():always ®(1)
» Get (1): O(1) to O(n)
» Set (i,x):0(]) to ®(n)

> Add (: O(1) to O(n)

» Remove (i): O(1) to O(n)

Can we connect them?

i, 1 %‘ﬁ*‘é‘fFM’—“F'i__iFE%Bn
) School of melligent Software and Engine

* A circular, doubly linked list with a sentinel: |
Sentinel

> A sentinel node is a dummy node used as an AddFirst (a)

alternative over using NULL as the path terminator

{ S e

> The sentinel's next points to the first node on the Sentinel
list, and its prev points to the last node on the list. |

AddFirst (c)
> The first node's prev points to the sentinel, as T
does the last node's next.

Sentinel
AddFirstx): RemoveFirst(:
x.next := Sentinel.next Sentinel.next .= Sentinel .next.next RemoveFirst ()
Sentinel.next.prev .= x Sentinel .next prev := Sentinel

Sentinel .next := X
x.prev .= Sentinel Sentinel

Using sentinel can marginally increased speed of operations

Summary util now

e Queue ADT: FIFO Queue, Stack (LIFO Queue), Deque
e List ADT: can implement various Queue

* Array based implementations (simple/circular):
» Queries are fast, updates (i.e., Set) are also fast
» Modifications (i.e., Add and Remove) are fast at “start” and “end”, but slow in “middle”
> Capacity can be a problem

* Linked list based implementations (singly/doubly linked):

> Operations (queries, updates, and modifications) are fast at “start” and “end”, but slow in “middle”

> No capacity issue

L Applications of
basic data structures_|

Process Scheduling

ProcessIn(x): o | py EEPRINS
FIFOqgueue.add(x) E
> | P2 BEEE T
ProcessOut(): ;
FIFOqueue.remove() P B

R

the schedule of these processes

Application of Stack

Balancing Symbols

 Compiler needs to check whether the parentheses (), brackets ||, and
braces {} are matched.

CheckParen(str):
Stack s

inti =1

if(a > b) {b = c[10];} (ﬁiffo}

while s#r[i] '= NULL
if ster[i]is ‘Cor ‘[C or {’
s.push(str[i])
it ser[i] is ©)
If s.empty()

if(a > b) {b = c[10]; RSN

fa> b)) b = c[10]} IR

i ifa > b) {b = c[10):} INEBEEE

return s.empty()

| BEERIFS TiEFbx

> =~
> @{5 School (f ﬂnt‘e[ﬁgent Soﬁ’ware and fngmeermg

Application of Stack

Function Calls

 How does a function call work?
« Example:
> Alice: only knows addition.

> Bob: only knows multiplication.

> Question: 100+234+35x45+25

FuncAlice():
sum :=100+234
temp .= FuncBob(35 4)5)
sum += temp

sum += 25
return sum

FuncBob(a.b):
c=a*b
return c

| BEERIFS TiEFbx

> =~
> @{5 School (f ﬂnt‘e[ﬁgent Soﬁ’ware and fngmeermg

Application of Stack

Function Calls

 How does a function call work?
« Example:
> Alice: only knows addition.

> Bob: only knows multiplication.

» Question: 100+234+35x45+25 sum: 334

FuncAlice():
sum :=100+234
temp .= FuncBob(35 4)5)
sum += temp

sum += 25
return sum

FuncBob(a.b):
c=a*b
return c

| BEERIFS TiEFbx

> =~
> @{5 School of ﬂnt‘e[ﬁgent Soﬁ’ware and fngmeermg

Application of Stack

Function Calls

 How does a function call work?
« Example:
> Alice: only knows addition.

> Bob: only knows multiplication.

> Question: 100+234+35x45+25

FuncAlice():

sum :=100+234

temp := FuncBob(35 45) g
sum += temp

sum += 25

return sum

FuncBob(a.b):
c=a*b
return c

| BEERIFS TiEFbx

> =~
> @{5 School of ﬂnt‘e[ﬁgent Soﬁ’ware and fngmeermg

Application of Stack

Function Calls

 How does a function call work?
« Example:
> Alice: only knows addition.

> Bob: only knows multiplication.

» Question: 100+234+35x45+25 sum: 334

FuncAlice():
sum :=100+234 b: 35
temp .= FuncBob(35 45) 4 a: 45
sum += temp return address

sum += 25
return sum

FuncBob(a.b):
c=a*b
return c

| BEERIFS TiEFbx

> =~
> @{5 School of ﬂnt‘e[ﬁgent Soﬁ’ware and fngmeermg

Application of Stack

Function Calls

 How does a function call work?
« Example:
> Alice: only knows addition.

> Bob: only knows multiplication.

» Question: 100+234+35x45+25 sum: 334

FuncAlice():

sum :=100+234 b: 35
temp := FuncBob(35 45) e

a: 45
sum += temp return address

sum += 25
return sum

FuncBob(a.b):
c=a*b
return c

Application of Stack

Function Calls

 How does a function call work?
« Example:
> Alice: only knows addition.

> Bob: only knows multiplication.

» Question: 100+234+35x45+25 sum: 334
FuncAlice():

sum :=100+234 b: 35

temp .= FuncBob(35 45) 4 a: 45

sum += temp return address

sum += 25 c: 1575

return sum
FuncBob(a.b):

c=a*b

return c

Application of Stack

Function Calls

* How does a function call work?

« Example:

EAX: 1575
> Alice: only knows addition.

> Bob: only knows multiplication.

» Question: 100+234+35x45+25 sum: 334
FuncAlice():

sum :=100+234 b: 35

temp .= FuncBob(35 45) 4 a: 45

sum += temp return address

sum += 25 c: 1575

return sum
FuncBob(a.b):

c=a*b

return c

Application of Stack

Function Calls

* How does a function call work?

« Example:

EAX: 1575
> Alice: only knows addition.

> Bob: only knows multiplication.

» Question: 100+234+35x45+25 sum: 334

FuncAlice():
sum :=100+234 b: 35
temp .= FuncBob(35 45) 4 a- 45
sum += temp return address

sum += 25
return sum

FuncBob(a.b):
c=a*b
return c

Application of Stack

Function Calls

* How does a function call work?

« Example:

EAX: 1575
> Alice: only knows addition.

> Bob: only knows multiplication.

> Question: 100+234+35x45+25

FuncAlice():

sum :=100+234

temp := FuncBob(35 45) g
sum += temp

sum += 25

return sum

FuncBob(a.b):
c=a*b
return c

Application of Stack

Function Calls

* How does a function call work?

« Example:

EAX: 1575
> Alice: only knows addition.

> Bob: only knows multiplication.

» Question: 100+234+35x45+25 sum: 334

FuncAlice(): temp: 1575

sum :=100+234 b: 35
temp = FuncBob(35 45) g~ a: 45
sum += temp

sum += 25

return sum

FuncBob(a.b):
c=a*b
return c

Application of Stack

Function Calls

* How does a function call work?

« Example:

EAX: 1575
> Alice: only knows addition.

> Bob: only knows multiplication.

> Question: 100+234+35x45+25

FuncAlice(): temp: 1575

sum :=100+234 b: 35
temp := FuncBob(35 A45) a: 45
sum += temp s

sum += 25
return sum

FuncBob(a.b):
c=a*b
return c

Application of Stack

Function Calls

* How does a function call work?

« Example:

EAX: 1575
> Alice: only knows addition.

> Bob: only knows multiplication.

» Question: 100+234+35x45+25 sum: 1934

FuncAlice(): temp: 1575
sum :=100+234 b: 35
temp := FuncBob(35 AS) a: 45
sum += temp

sum += 25
return sum

FuncBob(a.b):
c=a*b
return c

O&abthk T FO 4=
| BEERGHSIREFxR
9 School (f ﬂnt‘e[ﬁ'gent Sofrware and fngineering

* How does a function call work?
« Example:

> Alice: only knows addition.

> Bob: only knows multiplication.

> Question: 100+234+35x45+25

FuncAlice():
sum :=100+234
temp .= FuncBob(35 4)5)
sum += temp

sum += 25
return sum

FuncBob(a.b):
c=a*b
return c

Function Calls

EAX: 1575

sum: 1934
temp: 1575

b: 35
a: 45

Application of Stack

Call Stack

Increasing
address

Frame pointer
%ebp

Stack pointer
hesp

+4+4n

+8

+4

Stack “bottom”

Argument n

Argument 1

Return address

Saved %ebp

Saved registers,

local variables,
and
temporaries

Argument
build area

> Earlier frames

> Caller's frame

> Current frame

Stack “top”

Eliminating Recursion

Function calls are implemented via a “call stack” |

Recursion is a specific type of function call

FactRec(val):

if val=1
acc ;=1
else
acc := FactRec(val - 1)
res ;= val*acc
return res

class Frame {

h

int val
Int acc
Frame prevFrame

With the help of a stack, recursion

can be replaced by iteration

Factlter(n):

Stack s Get the top
s.push(Frame(n, -1, NULL)) element of the
while !s.empty() stack

frame = s.peek()
if frame.val <=1
frame.acc =1
if frame.acc = -1
res := (frame.val)*(frame.acc)
if frame prevFrame!=NULL
(frame .prevFrame).acc :=res

s.pop()
else

s.push(Frame(frame.val - 1, -1, frame))
return res

=

0 &btk T 2 R4 e
PV, SEREGESITREF xR
7‘5 4435 School of an[ﬁgent Sofrware and fngineering

Eliminating Recursion

* Q: Why recursion can be undesirable?

> A: Recursion can be slow and memory consuming due to the creation
and maintenance of stack frames.

e Q: Why recursion can be desirable?

> A: Recursion can make the code clearer, concise, and intuitive.

Tail recursion

e A function is called tail-recursive if each activation of the function will
make at most one single recursive call, and will return immediately
after that call.

FactRec(n): EucthCDRec(m, n):
if n=1 if n=0
. return m
return 1 ol
else
rem = m % n

e FF T .
b A eeb el L T T L) return EuclidGCDRec(n, rem)

Not immediately!

Tail Recursion

e A function is called tail-recursive if each activation of the function will

make at most one single recursive call, and will return immediately
after that call.

Euclid (m. n): Euclid(6. 4):
return m rem .=9 7o Euchid(4, 2):
else et TT—32=07?
return 2 : ._
rem =m % n rem:= 4 % 2
return Euclid(n, rem) dreturn 2
. MEuclid(2, 0):

N_0=07
Once reaching the base case, R

can safely return result immediately!

(FEF[R
are and ‘E g

Tail Recursion to Iteration

 Each function parameter is a variable.
* Convert the main body of the function into a loop:
> Base cases: do computation and return results.

> Recursive cases: do computation and update variables.

EuchidGCDIter (m. n):

EuclidGCDRec(m, n): while true

if n=0 if n=0
return m return m

else else
rem = m % n rem :=m % n
return EuclidGCDRec(n, rem) m:=n

n.=rem

3
0 &btk T £O R4 1S

PV.| SEREHS TiEFbr

7‘5 4435 School of Qnt@[ﬁgent Sofrware and Engineering

lteration versus Recursion

 Recursion can be converted into iteration
> Generic method: simulate a call stack
» Special case: tail recursion
e |teration can be converted into tail recursion
> No one Is always perfect
> |teration can be faster and more memory efficient

» Recursion can be clearer, more concise and intuitive

a5

| EHE8E

THOMAS H.CORMEN
CHARLES E. LEISERSON
|

¢/ School of ntelligent Software

S TA2F b

¢ and fngineering

Further reading

[CLRS] Ch10 (10.1-10.3)

[Morin] Ch1 (1.1, 1.2), Ch2 (2.1-2.4), Ch3 (3.1, 3.2)
[Deng] Ch1 (1.4°), Ch4 (4.1-4.4)

[Weiss] Ch3 (3.6)

[CSAPP] Ch3 (3.7")

Open
Data
Structures

EEE]

RONALD L. RIVEST

CLIFFORD STEIN

BRIE RE

it H & 5

HIBLEH) (C++HESHR)

(553 M)

BIEXREH M4

MARK ALLEN WEISS

DATA STRUCTURES
"AND

ALGORITHM ANALYSI

AVA

.
.

’
- l

[Second Cdtion |
COMPUTER SYSTEMS

A Programmer’s Perspective

"'”ﬁ%&'Qs"""mﬂnw

Bryant - O'Hallaron

