FARARFREFR

fREXIEIE . BEFE LI

2B =M R Y &R E AL

—

5275
2022.11.03

=== |

...........................

)y S
» PR TE (M

...

»TTEAMTTE s
» ISR : :
» EEAL T

1‘]?/

® 7

ZERSplllphRe=

1
1
[}
[}
I
~ [}
Test Design Techniques Presented 1
in ISO/IEC/IEEE 29119-4 .
1
] 1
| |] '
Specification-Based Structure-Based Experience-Based :
Techniques Techniques Techniques]
(clause5.2) (clause5.3) (clause5.4) 1
1
1
= ~ a ~ '
Equivalence Partitioning Statement Testing Error Guessing 1
(clause5.2.1) (clause5.3.1) (clause5.4.1) 1
1
1
£ X a Y 1
Classification Tree Method Branch Testing '
(clause5.2.2) (clause5.3.2) 1
1
(~ ~ @ ~ :
Boundary Value Analysis Decision Testing '
(clause5.2.3) (clause5.3.3) 1
1
& ™) ~ ™~ 1
Syntax Testing Branch Condition Testing :
(clause5.2.4) (clause 5.3.4) 1
L _ 1
Comblnatorlal a Branch Condition) :
Test Techniques Combination Testing 1
(clause5.2.5) (clause5.3.5) :
@ (" e e P 1
Modified Condition D
All Combinations Testing . iy ton_ ST L]
(clause5.2.5.3) Coverage Testing]
T (clause5.3.6) 1
1
a ~ 1
Pair-Wise Testing Data Flow Testing 1
(clause5.2.5.4) (clause5.3.7) :
1
4 N 1
Each Choice Testing All-DefinitionsTesting]
(clause5.2.5.5) (clause5.3.7.2) :
1
f B 1
Base Choice Testing All-C-Uses Testing 1
(clause5.2.5.6) (clause5.3.7.3) 1
1
- .
4) '
Decision Table Testing All-P-Uses Testing 1
(clause5.2.6) (clause5.3.7.4) 1
1
1
~ ™ o) .
Cause-Effect Graphing All-Uses Testing '
(clause5.2.7) (clause5.3.7.5) 1
1
- ~ ~ ~ :
State Transition Testing All-DU-Paths Testing .
(clause5.2.8) (clause5.3.7.6) 1
1
- 1
Scenario Testing A} \l_l :
(clause5.2.9) | | E | E E E) 'L .
/ / .
- 1
1
1
1
1
1
'}

ijﬂ\l -I«I\ 1

Use Case Testing
(clause5.2.9)

J

™ IS

Jd6 =3
o~

He

’) “Ej é

The Number of Combinatorial Testing Publications

1000
z
o 750
=
S
el
-
Q 500
Y
o
]
0
£ 250
-
0
e R 4%
S ° O
NN SN

from 1985 to 2020

il

-HE

e A O N > e} A
9 O O O L O
year
Annual -- Cumulative

EiJIEL/)l_” -I«II\:

790+ ARIEX

N7/

11th workshops, ICST companions

PICT

Bell CATS

ES, IN

TCG

IS5 CTS

NIST

National Institute of
Standards and Technology
U.S. Department of Commerce

ACTS

ZH 5 M1V PE XE AL o] R

—FaEiIhlEmAT, MEZESEXRERNRERER

IS R R K7

DS

Mozilla Bug #24735

<SELECT NAME="op sys" MULTIPLE SIZE=7>

<OPTION VALUE="AII">AlI<OPTION VALUE="Windows 3.1">Windows 3.1<OPTION VALUE="Windows 95">Windows
95<OPTION

VALUE="Windows 98">Windows 98<OPTION VALUE="Windows ME">Windows ME<OPTION VALUE="Windows 2000">Windows
2000<OPTION VALUE="Windows NT">Windows NT<OPTION VALUE="Mac System 7">Mac System 7<OPTION VALUE="Mac
System

7.5">Mac System 7.5<OPTION VALUE="Mac System 7.6.1">Mac System 7.6.1<OPTION VALUE="Mac System 8.0">Mac System
8.0<OPTION VALUE="Mac System 8.5">Mac System 8.5<OPTION VALUE="Mac System 8.6">Mac System 8.6<OPTION
VALUE="Mac

System 9.x">Mac System 9.x<OPTION VALUE="MacOS X">MacOS X<OPTION VALUE="Linux">Linux<OPTION
VALUE="BSDI">BSDI<OPTION VALUE="FreeBSD">FreeBSD<OPTION VALUE="NetBSD">NetBSD<OPTION
VALUE="OpenBSD">0OpenBSD<OPTION VALUE="AIX">AIX<OPTION VALUE="BeOS">BeOS<OPTION VALUE="HP-
UX">HPUX< o
OPTION VALUE="IRIX">IRIX<OPTION VALUE="Neutrino">Neutrino<OPTION VALUE="OpenVMS">OpenVMS<OPTION <SELECT NAME="priority" MULTIPLE SIZE=7>
VALUE="0S/2">0S/2<OPTION VALUE="OSF/1">0OSF/1<OPTION VALUE="Solaris">Solaris<OPTION

VALUE="SunOS">SunOS<OPTION VALUE="other">other</SELECT> . . .
</td> ’ #-' Segmentation Fault

<td align=left valign=top>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<OPTION VALUE="--">--<OPTION VALUE="P1">P1<OPTION VALUE="P2">P2<OPTION VALUE="P3">P3<OPTION
VALUE="P4">P4<OPTION VALUE="P5">P5</SELECT>

</td>

<td align=left valign=top>

<SELECT NAME="bug severity" MULTIPLE SIZE=7>

<OPTION VALUE="blocker">blocker<OPTION VALUE="critical">critical<OPTION VALUE="major">major<OPTION
VALUE="normal">normal<OPTION VALUE="minor">minor<OPTION VALUE="trivial">trivial<OPTION
VALUE="enhancement">enhancement<

[o oo ez o |

#define SIZE 20

9; J <n; j++){
i+ 3+ 1;
= z[i] * (z[0] + 1.0);

return z[n];

copy (ble toll, ible from[], int count) L ——— e

" n = (count + 7) / 8;
switch (count % 8) do
{
case 0: xto++ *from++;
case 7: xto++ = xfrom++; _ - =
case 6: xto++ = xfrom++; 1 ﬂg ub z[], 11 HM{‘,' i,j;for(;;){i=i+j+1;2z[i]l=z[i]l*(z[0]+@);}return z[n];}
case 5: xto++ *xfrom++;
case 4: xto++ *xfrom++;
case 3: xto++ *xfrom++;
case 2: xto++ *xfrom++;
case 1: xto++ *xfrom++;
} while (=-n > 0);
return mult(to, 2);

- main(int argc, char x argvl[])

> X[SIZE], y[SIZE];
XpX = X;
while(px < x +SIZE)
*px++ = (px -x) * (SIZE +1.0);
return copy(y, x, SIZE);

\— B 2ty N
=] P ik

APP —Who has my stuff?

A & 10:42

#1: Switch: Component = de.freewarepoint.whohasmystuff/.ListLentObjects
Nz " #2: Sending Touch (ACTION_DOWN): 0:(127.0, 1353.0)

& Who Has My Stuff: @ #3: Sending Touch (ACTION_UP): 0:(122.13759, 1337.722)

Sleeping for 800 milliseconds

Dragonlance Chronicles Vol.2 | PR

#8: Sending Touch (ACTION_DOWN): 0:(539.0, 434.0)

#9: Sending Touch (ACTION_UP): 0:(533.3379, 434.0376)
Sleeping for 800 milliseconds

RinlsEloydaihesVV ol

John Doe 4 months #14: Sending Touch (ACTION_DOWN): 0:(117.0, 912.0)
#15: Sending Touch (ACTION_UP): 0:(117.86061, 895.20026)
Sleeping for 800 milliseconds

Brad Taylor

12.50€
""" ho Has Stuff? : dit Lent Iltem dit Lent ltem dit Lent Iltem
Paul Miller ENIEEE #18: Sending Touch (ACTION_DOWN): 0:(344.0, 164.0) W Hv =2 Fvent 1.1 UCE;L - LE:er - quEcr.;:n -
#19 S(‘l](’lil]g Touch (ACTION_UP) 0(3451393, 16397989) F\,:;rl.uiJ:;er\l:;/yS\urfv‘Testl_lser "1 week Example entry Example entry Example entry

Sleeping for 800 milliseconds Examle etry2 Event 1.2

Who Has My Stuff?" Test User

) days Event 2

Lord of theRings s

Jane Smith #60: Sending Touch (ACTION_DOWN): 0:(1027.0, 292.0) ot : SRR
#61: Sending Touch (ACTION_UP): 0:(1023.24646, 287.6247)) X
Sleeping for 800 milliseconds

"Who Has My Stuff?" Test User i "Who Has My Stuff?" Test User

......

#96: Sending Touch (ACTION_DOWN): 0:(247.0, 763.0)
#97: Sending Touch (ACTION_UP): 0:(253.49065, 758.454)
Sleeping for 800 milliseconds

#98: Sending Touch (ACTION_DOWN): 0:(300.0, 1594.0)
#99: Sending Touch (ACTION_UP): 0:(299.41364, 1583.6807) Event 4

Slecping for 800 milliscconds T

#142: Sending Touch (ACTION_DOWN): 0:(271.0, 504.0)
#143: Sending Touch (ACTION_UP): 0:(273.97485, 499.46576)
Sleeping for 800 milliseconds

#144: Sending Touch (ACTION_DOWN): 0:(595.0, 1229.0)
#145: Sending Touch (ACTION_UP): 0:(590.3204, 1218.4806)
Sleeping for 800 milliseconds

#146: Sending Touch (ACTION_DOWN): 0:(326.0, 1812.0)
Restore #147: Sending Touch (ACTION_UP): 0:(334.20886,1806.3463)

- crash

History

Backup

Monkey sequence (147 events)

®

4

S E AL

o] RV EE 225

1]

BT

Al

;

£ [50%A_ERIN[S LA [Judge Business School 2013]

iR HERIRH#EE Z [Nie 2011]
A] A RURD GRS

|

B & RYSEE [Ghandehari 2012]

S lEIRE [Zeller 2002]

A ENEE T1E [Song 2012]

e PR E M3 E

o —fRith, IRFMZTITEOINNT, —FKA&E RN A pTBERYEEE T

é /l\iQKEEZH - l/l\o

- BERWBEZ BIXNEEEN S /AIEM L IFS RRIPEAK !

51 & =AY

n

) _ on _ TSRS TTAR

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.2, FEBRUARY 2002

Simplifying and Isolating Failure-Inducing
Andreas Zeller, Member, IEEE Computer Society, and Ralf Hildebrandt

Abstract—Given some test case, a program fails. Which circumstances of the test case are responsible for the particula
Delta Debugging algorithm generalizes and simplifies the failing test case to a minimal test case that still produces the |
isolates the difference between a passing and a failing test case. In a case study, the Mozilla web browser crashed af
actions. Our prototype implementation automatically simplified the input to three relevant user actions. Likewise, it simpli
of HTML to the single line that caused the failure. The case study required 139 automated test runs or 35 minutes on a

Index Terms—Automated debugging, debugging aids, testing tools, combinatorial testing, diagnostics, tracing.

+

1 INTRODUCTION

Often people who encounter a bug spend a lot of time
investigating which changes to the input file will make the
bug go away and which changes will not affect it.
—Richard Stallman, Using and Porting GNU CC.
IF you browse the Web with Netscape 6, you actually use a e A bug report should be as specific
variant of Mozilla, Netscape’s open source web browser that the engineer can recreate the
project [1]. As a work in progress with big exposure, the the program failed.
Mozilla project receives several dozens of bug reports a day. e On the other hand, a test case shoul
The first step in processing any bug report is simplification, possible because a minimal test cas
that is, eliminating all details that are irrelevant for general context.
producing the failure. Such a simplified bug report not Thus, a minimal test case not only allows f

only facilitates debugging, but it also subsumes several descriptions and valuable problem insig
other bug reports that only differ in irrelevant details. subsumes several current and future bug 1

In July 1999, Bugzilla, the Mozilla bug database, listed The striking thing about test case simplil
more than 370 open bug reports—bug reports that were not one, so far, has thought to automate tt
even simplified. With this queue growing further, the textbooks and guides about debugging a
Morzilla engineers “faced imminent doom” [2]. Over- tell how to use binary search in orde
whelmed with work, the Netscape product manager sent problem—based on the assumption that

out the Mozilla BugAThon call for volunteers [2]: people who out manually,. too: Witth'an'automated test,
automate this simplification of test case

automatically isolate the difference that cause

Decomposing specific bug reports into
does not trouble only the Mozilla engine¢
arises from generally conflicting issues:

would help process bug reports. For five bug reports
simplified, a volunteer would be invited to the launch
party; 20 bugs would earn her or him a T-shirt signed by the
grateful engineers. “Simplifying” meant turning these bug
reports into minimal test cases, where every part of the input

Simplification of test cases. Our minimizin
algorithm ddmin is fed with a failing tes
simplifies by successive testing. It stops wk
case is reached, where removing any sir
would be significant in reproducing the failure. would cause the failure to disappear_ As a

As an example, consider the HITML input in Fig. 1. the real world, consider a flight test: An ail
Loading this HTML page into Mozilla and printing it causes few seconds after taking off. By repeating t
a segmentation fault. Somewhere in this HTML input is and over again under changed circumstan
out what is relevant and what not. For i1
remove the passenger seats and find thz
crashes. We may remove the coffee machi
still crashes. Eventually, only the relev.
skeleton remains, including a test pilot,
o A. Zeller is with Univeristit des Saarlandes, Lehrstuhl fiir Softwaretechnik, ~runway, the fuel, and the engines. Each pai

I’oslfa'ch 151150, 66041 Saarbriicken, Germany. is relevant for reproducing the crash. In tt
E-mail: zeller@computer.org. . . .
e R. Hildebrant is with DeTeLine - Deutsche Telekom Kommunikationsnetze ©N€ with a sane mind would consider

GmbH, Rognitzstrasse 9, 14057 Berlin, Germany. simplify the circumstances of test flight
E-mail: ralf_hildebrand!@uweb.de. simulations of flight tests or, more genera

Manuscript received Mar. 2001; revised June 2001; nccepled‘ July 2001. computer programs, such an approach con

Recommended for acceptance by M.]. Harrold and A. Bertolino. Th b 1 h

For information on obtaining reprints of this article, please send e-mail to: cost. The cost may be so low that we can ¢
amount of tests just to simplify a test case

[Zeller et al 2002 TSE]

something that makes Mozilla fail—but where? If we were
Netscape programmers, what we wanted here is the
simplest HTML page that still produces the failure.

—

EENERMELF

SIAM J. DISCRETE MATH.
Vol. 23, No. 4, pp. 1776-1799

LOCATING ERRORS USING ELAs, COVERING ARRAYS,
ADAPTIVE TESTING ALGORITHMS"

CONRADO MARTINEZ', LUCIA MOURA!, DANIEL PANARIO!, AND BRETT

Abstract. In this paper, we define and study error locating arrays (ELAs), which
in software testing for locating faulty interactions among parameters or components i
We give constructions of ELAs for arbitrary strength ¢, based on covering arrays. We sl
number of tests given by ELAs grows as O(log k), where k is the number of parameters/co
the system, assuming other quantities (the number g of values per parameter, the strengf
interactions, and the number d of faulty interactions) are bounded by a constant. We
series of results for the case of pairwise interactions (t = 2). We study the computationa
of deciding whether a graph describing the faulty pairwise interactions is “locatable.” We
the locatable graphs for the binary case (¢ = 2). We design and analyze efficient algc
locate errors under certain assumptions on the structure of the faulty pairwise interact
the assumption of known “safe values,” our algorithm performs a number of tests that is
in logk and d, where k is the number of parameters in the system and d is an upper b
number of faulty pairwise interactions. For the binary alphabet case, we provide an alg
does not require safe values and runs in expected polynomial time in log k whenever d €

Key words. combinatorial designs, covering arrays, error locating arrays, loca
detecting arrays, algorithms, software testing, component interaction testing, group test

AMS subject classifications. 94C30, 05B30, 94C12, 05C99

DOI. 10.1137/080730706

1. Introduction. Consider a complex system whose behavior deper
values of k parameters or factors. To temporarily simplify matters, suppc
the k factors may take any of two values. In order to exhaustively test the |
tests are required, rendering it infeasible in a practical setting, even whe1
moderately large.

An alternative to exhaustive testing is provided by covering arrays
binary CA is a 0-1 matrix with n rows and k columns. Each of its columns
a parameter and each of its rows gives a test to be performed. The numh
n is called the size of the array. The array is said to be of strength t if
subset of the k factors, the corresponding columns exhaustively cover all |
combinations. In other words, if we define a t-way interaction to be the &
of specific values to each factor of a set of ¢ factors, a covering array tests
interaction in some of its rows. Since in many practical settings it is enough
3-, or 4-way interactions, we can tackle these problems with a moderately

*Received by the editors July 19, 2008; accepted for publication (in revised form) Ju
published electronically December 4, 2009. Part of this research was done while the
was on sabbatical leave at Carleton University and later while the second and third autl
sabbatical leave at Univ. Politécnica de Catalunya.

http://www.siam.org/journals/sidma/23-4/73070.html

"Dept. de Llenguatges: Sistemes Informatics, Universitat Politécnica de Catalunya
E-08034, Spain (conrado.martinez@lsi.upc.es). This author was supported by projec
(TIN2005-05446 and TIN2006-11345) of the Spanish Ministry of Education and Science

#School of Information Technology and Engineering, University of Ottawa, Ottaw
5M6, Canada (lucia@site.uottawa.ca). This author was supported by NSERC.

§School of Mathematics and Statistics, Carleton University, Ottawa, ON, K1S 5B6, T —

© 2009 Society for Industrial and Applied Mathematics

The Minimal Failure-Causing Schema of Combinatorial Testir

CHANGHAI NIE, State Key Laboratory for Novel Software Technology, Nanjing University
HARETON LEUNG, Hong Kong Polytechnic University

Combinatorial Testing (CT) involves the design of a small test suite to cover the parameter v:
tions so as to detect failures triggered by the interactions among these parameters. To make
and to extend its advantages, this article first gives a model of CT and then presents a theory o
Failure-causing Schema (MFS), including the concept of the MFS, proof of its existence, some
ties, and a method of finding the MFS. Then we propose a methodology for CT based on this Ml
the existing research. Our MFS-based methodology emphasizes that CT should work on acc
requirements, and has the following advantages: 1) Detect failure to the greatest degree with"
2) Effectiveness is improved by emphasizing mining of the information in software and maki
the information gained from test design and execution. 3) Determine the root causes of failur
related faults near the exposed ones. 4) Provide a foundation and model for regression testing
quality evaluation of CT. A case study is presented to illustrate the MFS-based CT method
empirical study on a real software developed by us shows that the MFS really exists and the
based on MFS can considerably improve CT.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—
D.2.4 [Software Engineering]: Software/Program Verification

General Terms: Experimentation, Verification

Additional Key Words and Phrases: Combinatorial testing (CT), Minimal failure-causing sc¢
failure diagnosis, test case generation

ACM Reference Format:

Nie, C. and Leung, H. 2011. The minimal failure-causing schema of combinatorial testing.

Softw. Eng. Methodol. 20, 4, Article 15 (September 2011). 38 pages.
DOI = 10.1145/2000799.2000801 http://doi.acm.org/10.1145/2000799.2000801

1. INTRODUCTION

In software testing, if we know that there are some factors with mutual i1
that may affect the software under test, it is logical to test with a test suite ¢
these factors and their interactions. However, in such cases the necessary t
generally too large, making exhaustive testing usually impractical and oft
ble. Consequently, we need to make a trade-off between testing efficiency ani

This work was supported in part by the National Natural Science Foundation of China (607731
90818027), 863 high technical plan of China (2008AA01Z143, 2009AA01Z147).

This article was partly written during C. Nie’s sabbatical in CREST (Center for Research
Search & Testing, led by Prof. Mark Harman), King’s College London.

Authors’ addresses: C. Nie, Department of Computer Science and Technology, Nanjing Uni
kou Road 22, Nanjing City, Jiangsu Province, China, 210093; email: changhainie@nju.edu.(
Department of Computing, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong
cshleung@inet.polyu.edu.hk.

Permission to make digital or hard copies of part or all of this work for personal or classroom 1
without fee provided that copies are not made or distributed for profit or commercial advani
copies show this notice on the first page or initial screen of a display along with the full citatio
for components of this work owned by others than ACM must be honored. Abstracting with
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use a1
of this work in other works requires prior specific permission and/or a fee. Permission may
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA
869-0481, or permissions@acm.org.

© 2011 ACM 0163-5948/2011/09-ART15 $10.00

DOI 10.1145/2000799.2000801 http://doi.acm.org/10.1145/2000799.2000801

(daniel@math.carleton.ca, brett@math.carleton.ca). The third author was supported by NSERC

and the Spanish Min. of Education and Science. The fourth author was supported by NSERC, CFI,

OIT, and Ontario MRIL
1776

[Mart'inez et al 2008 SIDMA]

[Nie et al 2011 TOSEM]

Characterizing Failure-Causing Parameter Interactions
Adaptive Testing’

Zhigiang Zhang
State Key Laboratory of Computer Science,
Institute of Software,
Chinese Academy of Sciences
Graduate University,
Chinese Academy of Sciences

zhangzq@ios.ac.cn

ABSTRACT

Combinatorial testing is a widely used black-box testing
technique, which is used to detect failures caused by param-
eter interactions (we call them faully interactions). Tradi-
tional combinatorial testing techniques provide fault detec-
tion, but most of them provide weak fault diagnosis. In
this paper, we propose a new fault characterization method
called faully interaction characterization (FIC) and its bi-
nary search alternative FIC_BS to locate one failure-causing
interaction in a single failing test case. In addition, we pro-
vide a tradeoff strategy of locating multiple faulty interac-
tions in one test case. Our methods are based on adaptive
black-box testing, in which test cases are generated based on
outcomes of previous tests. For locating a t-way faulty inter-
action, the number of test cases used is at most k (for FIC)
or t([logy k] + 1)+ 1 (for FIC_BS), where k is the number of
parameters. Simulation experiments show that our method
needs smaller number of adaptive test cases than most ex-
isting methods for locating randomly-generated faulty inter-
actions. Yet it has stronger or equivalent ability of locating
faulty interactions.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging
Debugging aids, Testing tools

General Terms
Algorithms, Reliability

Keywords

Combinatorial testing, diagnostics, faulty interaction, adap-
tive testing, group testing

*This work is supported in part by the National Science
Foundation of China (Grant No. 61070039) and the High-
Tech (863) program of China (Grant No. 2009AA01Z148).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISSTA’11, July 17-21, 2011, Toronto, ON, Canada

Copyright 2011 ACM 978-1-4503-0562-4/11/05 ...$10.00

Jian Zhang
State Key Laboratory of Computer Science,
Institute of Software,
Chinese Academy of Sciences
zj@ios.ac.cn

1. INTRODUCTION

Assume that we are testing the functionality of a
whose behavior is affected by k parameters (or ca
tors”), an ideal plan is to apply exhaustive testing
we test all possible combinations of the paramete
ever, the number of test cases of exhaustive testi
exponentially with k. Suppose each parameter has
sible values, then we need 2% test cases. So it is ir
to be applied on many large applications.

Combinatorial testing is a widely used black-bo
technique, which uses covering arrays (CA) or m
ering arrays (MCA) [2] as the test suite to detec
caused by parameter interactions. A CA(n;k,t,s)
ray of n rows and k columns, where n is the si
CA, k is the number of parameters and s is the n
possible values of each parameter. Each column reg
parameter and each row represents a test case. The
strength ¢, i.e. for any ¢ columns of the array, the ¢
covers all possible combinations of the correspond
rameters. MCA is similar to CA, while the only ¢
is that parameters may have different number of
values.

The fault model of combinatorial testing assu
failures are caused by parameter interactions. A
teraction or an interaction of size t is an assig)
some specific value to each parameter of selected
eters. A failure-causing interaction is called a fau
action. Kuhn and Reilly’s investigation on softwar
[6] stated that failures are always caused by inters
small sizes. Although it is not universally true, w
focus on this kind of failures in this paper. Since a
array of strength ¢ covers all t-way interactions, w
tect all failures caused by faulty interactions of size
than ¢. Moreover, the size of CAs grows logarithmic
k [1]. Thus, combinatorial testing is quite resour
in practical applications.

After a failure is detected by applying combinatc
ing, we know that it is caused by a faulty interact
failure is actually caused by a bug inside the softw
we shall locate the bug before fixing it. There are¢
research on combinatorial testing in recent years [1
ever, most traditional combinatorial testing techni
at increasing interaction coverage and reducing thy
of test cases, while very few of them focus on diag

Table 1 shows a covering array of strength 2 fc
an online payment system. The interactions in brac

—

[Zhang 2011 ISSTA]

616 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 6, JUNE 2020

A Combinatorial Testing-Based Approach
to Fault Localization

Laleh Sh. Ghandehari*”, Yu Lei*”, Raghu Kacker, Richard Kuhn"*, Fellow, IEEE,
Tao Xie, Fellow, IEEE, and David Kung

Abstract—Combinatorial testing has been shown to be a very effective strategy for software testing. After a failure is detected, the next
task is to identify one or more faulty statements in the source code that have caused the failure. In this paper, we present a fault
localization approach, called BEN, which produces a ranking of statements in terms of their likelihood of being faulty by leveraging the
result of combinatorial testing. BEN consists of two major phases. In the first phase, BEN identifies a combination that is very likely to
be failure-inducing. A combination is failure-inducing if it causes any test in which it appears to fail. In the second phase, BEN takes as
input a failure-inducing combination identified in the first phase and produces a ranking of statements in terms of their likelihood to be
faulty. We conducted an experiment in which our approach was applied to the Siemens suite and four real-world programs, flex, grep,
gzip and sed, from Software Infrastructure Repository (SIR). The experimental results show that our approach can effectively and

efficiently localize the faulty statements in these programs.

Index Terms—Combinatorial testing, fault localization, debugging

1 INTRODUCTION

COMBINATORIAL testing is based on the observation that
a large number of software failures are caused by inter-
actions of only a few input parameters [26]. A t-way combi-
natorial test set, or simply a t-way test set, is designed to
cover all the t-way combinations, i.e., combinations involv-
ing any t parameters [8], [9], [29]. Typically, t is a small
number and is referred to as the strength of a combinatorial
test set [25], [26]. When the input parameters are properly
modeled, a t-way test set could trigger any failure caused
by interaction of at most t parameters. Empirical studies
have shown that combinatorial testing is very effective in
practice [6], [16], [25].

After a failure is detected during combinatorial testing,
the next task is locating the fault that caused the failure. In
this paper, we present a fault localization approach called
BEN that leverages the result of combinatorial testing. BEN
takes as input a combinatorial test set and the execution sta-
tus, i.e., pass or fail, of each test, and produces as output a
ranking of statements in terms of their likelihood to be
faulty.

Most research in combinatorial testing has focused on
developing efficient combinatorial test generation algorithms

e L. Sh. Ghandehari, Y. Lei and D. Kung are with the Department of Com-
puter Science and Engineering, University of Texas, Arlington, TX 76019.
E-mail: laleh.shikhgholamhosseing@mavs.uta.edu, {ylei, kung)@uta.edu.

e R. Kacker, and R. Kuhn are with the Information Technology Lab,
National Institute of Standards and Technology, Gaithersburg, MD
20899. E-mail: {raghu.kacker, kuhn)@nist.gov.

e T. Xie is with the Department of Computer Science, North Carolina State
University, Raleigh, NC 27695. E-mail: taoxie@illinois.edu.

Manuscript received 22 Jan. 2016; revised 12 July 2018; accepted 12 July 2018.
Date of publication 17 Aug. 2018; date of current version 15 June 2020.
(Corresponding author: Laleh Sh. Ghandehari.)

Recommended for acceptance by A. Mesbah.

Digital Object Identifier no. 10.1109/TSE.2018.2865935

ANDA_EEQA & AN10 IEEE ven e

[8], [29], [33], or demonstrating the effectiveness of combina-
torial testing in different application domains [6], [15], [44],
[48]. Several approaches have been developed to identify
failure-inducing combinations in a combinatorial test set
[49], [57]. A failure-inducing combination, or simply an
inducing combination, is a combination that causes all tests
containing this combination to fail [34], [57]. These
approaches, however, are not designed to locate faulty state-
ments in the source code.

A significant amount of research has been reported on
spectrum-based approaches to fault localization [1], [23],
[40], [50]. A program spectrum records information about
certain aspects of a test execution [50], such as function call
counts, program paths, program slices and use-def chains
[40]. Examples of spectrum-based methods include Taran-
tula [24], set union, set intersection, and nearest neighbor
[40]. These approaches identify faulty statements by analyz-
ing the spectra of passing and failing test executions [24],
[40], [31]. These approaches are not designed to work with
combinatorial testing. However, they can be applied to ana-
lyze test executions obtained from combinatorial testing,
provided that the test executions were traced. In case that a
combinatorial test set is already executed without being
traced, which is often the case in practice considering that
testing and debugging are fundamentally different activities
and are often performed separately, the test set must be re-
executed before these approaches could be applied. In con-
trast, our approach does not require every test execution to
be traced and is designed to be applied after normal testing
is performed where test executions are not traced. We will
compare our approach, i.e., BEN, to these approaches both
analytically (Section 6.2) and experimentally (Section 5.2.3).

Our approach consists of two major phases, inducing
combination identification and faulty statement localization.

bt rarsdnlina b 2 inm remiras IECE

T —

[Laleh 2020 TSE]

o XEFEET —TERNER (RFIE)

- BEWETTHERNNIEE (8 ITH) —E =B &R !

— i7|il“/::

—

X 7]

<L

IS

AT A

= %N EITA

AP F oo HEl 2R fERY |

~word

(25

THY)

B M & E iz 22 B NE SR

B M & E iz 22 B NE SR

FIAESRRI S — 1A — oW

FIAESREY A — T — T AW

FIAESRRI S — 1A — oW

FIAESREY A — T — T AW

(S

5 AN

(Complete) %5

B

RHVIRZRR

7

o — E ERAYIR)

- fpAiTTdEAN, REAETRIEEAEES— 17714

/|7

o FEITLHMNIM T
- 1. NEER 2B ZEcAHR Rvdh
- 2. AEEE BB OEETAR Fiod

® I

o UIE:

WEsT

_J/A_TE&BEJ L;é

- MBEEGEL

- MBEEGEL

- 305

AL

=]
N AL,

\’
\
7 N

T

|

|

AR

=
|

FB Y52
el — P ETT BRI T2

e —"MERITTHI F T4,

/,=

E o2

1T K

FEaxAYMNIL A

/

RE TCZH KBRS

+
~

1

J

157
7T
ZH K
5]

i E2NEERERE0(2")

FETCHKBES A (B)

1=
< A

S

o JHILABREARNREA: M T4E

i
u
=y

HJ(negative).

- 1. AEEE E R AIRETHN X ITA

- 2. PEEE B UERITHNFITA

FETCHKBES A (B)

o AEREMIETTAHNX TH—Z M FIFRER—"1I5Z=E1A]

HFf B FcHE A =
(1,3)895 o4H

HFfB FIocAE A=
(1,3)A9 T4

|
a
Al
i
.
%)
N
]
\>
(A
)

THEIS BT =ENR]

HPFF B X ITHEAZ
(1,2)89F 7t

HPEFBE X IoHEA=E
(1,2)89F 7t

FETCHKBES A (B)

o AEREMIETTAHNX TH—Z M FIFRER—"1I5Z=E1A]

R TAHENF H—S 2Pl s—1ESENITZREIR]

o f~ER]

ml:‘“
NI

FETCHKBES A (B)

o AEREMIETTAHNX TH—Z M FIFRER—"1I5Z=E1A]

RTAHNF A2/ MeEEs—1THgENITRENR]

(2, 3, 4) H-fIdA
(3) MR ITd

o f~ER]

ml:‘“
NI

FETCHKBES A (B)

o AEREMIETTAHNX TH—Z M FIFRER—"1I5Z=E1A]

o f~ER]

ml:‘“
NI

RTAHNF A2/ MeEEs—1THgENITRENR]

(2, 3, 4) H-fIdA
(3) MR ITd

234,236,403

FETCHKBES A (B)

o AEREMIETTAHNX TH—Z M FIFRER—"1I5Z=E1A]

RTAHNF A2/ MeEEs—1THgENITRENR]

(2, 3, 4) H-fIdA
(3) MR ITd

o f~ER]

m!:‘“
NI

(1, 2, 4) B9Fc4A
(4) BUITH

FETCHKBES A (B)

o AEREMIETTAHNX TH—Z M FIFRER—"1I5Z=E1A]

RTAHNF A2/ MeEEs—1THgENITRENR]

(2, 3, 4) H-fIdA
(3) MR ITd

o f~ER]

m!:‘“
NI

(2, 3, 4) B9Fc4A
(4) BUAITH

(1, 2, 4) B9Fc4A
(4) BUITH

FETCHKBES A (B)

o AEREMIETTAHNX TH—Z M FIFRER—"1I5Z=E1A]

o NERERITANFTH—E B —THxBHTRENA]

MELRES

FETCHKBES A (B)

TES BRI T=ENR]

hws V) Q 9
o NESIHNETTHIINITA °

5 4 7
o NEZMMEREITTHNFITA -

o IHERZITHIETTH, ZTEEIT?

- FESMBTANLXTASSHFE—, BRELHBEH— P TREE

—> WE—1THETHEZENE—TR, #HITEaHIIER
—> PIENIEITHITRAB F/RR

o if

- AERBTHIETTHIIRITH X T4

LK:ZEU %4\6& B%J L:z 3

M

/|

//I\

7l

2z

N

— Nt Z=ENR

o IHERZITHIETTH, ZTEEIT?

- FEZME

AT

T LHFITdH = N5 , 2/ e Es—1TESENTTE

—> NE—TERTE, SE2DER—TENEESNITR, #HITEH,

—> T ERITHNAERITT R E R/RIR

Vil
A
—
-

\ NS

o WERZTIPETH, ZTEE

- FEZME

AN FTHA—NTFE—, #EPEE—THZENTR

AT

FETCHKBES A (B)

o iR

- FESMHETANR TR HTE—, BEOFIBREH— P T=ET

- FREMEBRTENF TESSNTE—, #2VPEE—1THRENTR

o IHERE 0 (2 xnxc) BEHOM™), HEbn2MdBHIKTEME,
MeRE— BN, ST

é X%’—“Fjj_/jﬂ_ ()

Subject n |U(Tra) Thass| Worst Alg#3 (Time under 4Ghz) Best Alg#2 (Time under 4Ghz)
Totem-2.17.5 28 1 O (log,28) 281111109228 ~ 7.1 x 10% (1.8 s) 278 x 28 x 2~ 1.5 x 10'Y (3.8 s)
bash-4.2 76 1 O(log,76) 76T+ ~ 3.3 x 1015 (9.4 days) 270 x 76 x 2 ~ 1.1 x 10% (9 x 107 years)
lua(one commit) 60 1 O(logy60) 601 H1H090200 ~ 1.1 x 10 (8.0 hours) 259 x 60 x 2 ~ 1.4 x 10V (1096 years)
vim (one commit) 56 1 O(logs56) 561T1H09256 ~ 4 5 x 103 (3.1 hours) 2°% x 56 x 2 ~ 8.1 x 10'® (63.9 years)
libxmlI2-2.9.0 66 1 O(logo66) 661711109260 ~ 4.3 x 10! (1.3 days) 2% x 66 x 2 ~ 9.7 x 10*! (7.7 x 10* years)
libpng-1.6.0 87 1 O(log,87) 871H1H0928T ~ 9 4 x 100 (68.7 days) 2% x 87 x 2 ~ 2.7 x 10%® (2.1 x 10 years)
gnuplot-4.6.1 45 2 O(logyd5) 451+2H09245 ~ 1.1 x 10™ (7.6 hours) 249 x 45 x 2 =~ 3.2 x 10*° (9.2 days)
gnome-vfs-2.13.92 26 1 O (log226) 26111H09226 ~ 3.0 x 10° (0.8 s) 220 x 26 x 2 ~ 3.4 x 10° (0.9 s)

Pending
Tse 2021

HE MNP ERIVIEIE

Xintao Niu, Huayao Wu, Changhai Nie, Yu Lei, and Xiaoyin Wang. A theory of pending schemas in combinatorial testing. [EEE Transactions
on Software Engineering (TSE), in press, available online in 2021

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

A Theory of Pending Schemas
in Combinatorial Testing

Xintao Niu™, Member, IEEE, Huayao Wu', Member, IEEE, Changhai Nie, Member, IEEE,
Yu Lei, Member, IEEE, and Xiaoyin Wang ', Member, IEEE

Abstract—Combinatorial Testing (CT) is an effective testing technique for detecting failures which are triggered by the interactions of
various factors that influence the behaviour of a system. Although many studies in CT have designed elaborate test suites (called
covering arrays) to systemically check each possible factor interaction, they provide weak support to locate the concrete failure-
inducing interactions, i.e., the Minimal Failure-causing Schemas (MFS). To this end, a variety of MFS identification approaches have
been proposed. However, as this study reveals, these approaches suffer from various issues such as cannot identify multiple
overlapping MFSs, cannot handle MFSs with high degrees, cannot be applied to systems with large number of parameters, etc. These
issues are essentially caused by the exponential computing complexity of checking every interaction in the test cases. Therefore, they
can only focus on a subset of all the possible interactions, resulting in many interactions unnoticed. Ignoring these unnoticed
interactions could potentially cause failures that have never been systematically checked. Hence, it is beneficial for MFS identification
approaches to identify these interactions. In order to account for these unnoticed interactions in CT, this study introduces the notion of
pending schema, based on which a theoretical framework of CT schemas is established. In particular, we formally define the
determinability of a schema in CT with respect to given information; as such, the yet-to-be determined schemas are exactly the pending
schemas. The relationships between the different schemas (faulty, healthy, and pending) and test cases are also theoretically
analyzed. Based on which, we further propose three formulas, along with three corresponding algorithms, for the identification of the
pending schemas in failing test cases, and formally prove their correctness. As a result, we reduce the complexity of obtaining pending
schemas with respect to the number of factors that may have influences on the software.

Index Terms—Pending schema, minimal failure-causing schema, combinatorial testing, software testing

1 INTRODUCTION

HE behavior of modern software is affected by many

factors, such as input parameters, configuration options,
and communication events. To test such a software system
is challenging, as, in theory, we should test all the possible
interactions of these factors to ensure the correctness of the
System Under Test (SUT) [1], [2]. Since the number of inter-
actions to be checked increases exponentially with respect
to the number of factors, exhaustive testing is not feasible.

e Xintao Niu, Huayao Wu, and Changhai Nie are with the State Key Labora-
tory for Novel Software Technology, Nanjing University, Nanjing
210023, China. E-mail: niuxintao@gmail.com, hywu@outlook.com,
changhainie@nju.edu.cn.

e Yu Lei is with the Department of Computer Science and Engineering, The
University of Texas at Arlington, Arlington, TX 76019 USA.

E-mail: ylei@cse.uta.edu.

e Xiaoyin Wang is with the Department of Computer Science, University of
Texas at San Antonio, San Antonio, TX 78249 USA. E-mail: Xiaoyin.
Wang@utsa.edu.

Manuscript received 19 May 2020; revised 23 Aug. 2021; accepted 16 Sept. 2021.
Date of publication 0 . 0000; date of current version 0 . 0000.

This work was supported in part by the National Key Research and Develop-
ment Program of China under Grant 2018YFB1003800, in part by the
National Natural Science Foundation of China under Grants 61902174 and
62072226, in part by the Natural Science Foundation of Jiangsu Province
under Grant BK20190291, and in part by Information Technology Labora-
tory at National Institute of Standards and Technology under Grant
70NANB18H207.

(Corresponding author: Xintao Niu.)

Recommended for acceptance by K. Sen.

Dieital Obiect Identifier no. 10.1109/TSE.2021.3113920

Combinatorial Testing (CT) is a promising solution to han-
dle the combinatorial explosion problem [3], [4]. Instead of
testing all the possible interactions in a system, it focuses on
checking those interactions with the number of involved
factors no more than a predefined constant. Many studies in
CT focus on designing an elaborate test suite (called cover-
ing array) to reveal such failures. Although covering arrays
are effective and efficient as test suites, they provide weak
support to distinguish the failure-inducing interactions, i.e.,
Minimal Failure-causing Schemas (MFS), from other inter-
actions (schemas) [5], [6].

As an example [7], Table 1 presents a pair-wise covering
array for testing an MS-Word application in which we want
to examine various pair-wise interactions of options for
‘Highlight’, ‘Status Bar’, ‘Bookmarks’ and ‘Smart tags’.
Assume the last test case fails. We can derive six pair-wise
suspicious schemas that may be responsible for this failure.
They are respectively (Highlight: On, Status Bar: Off),
(Highlight: On, Bookmarks: On), (Highlight: On, Smart
tags: On), (Status Bar: Off, Bookmarks: On), (Status Bar: Off,
Smart tags: On), and (Bookmarks: On, Smart tags: On).
Without additional information, it is difficult to figure out
the specific failure-causing schemas in this suspicious set.
In fact, considering that the schemas of different sizes could
also be MFS, e.g., (Highlight: On, Status Bar: Off, Smart
tags: On), the problem becomes more complicated. We
listed all the schemas contained in this test case at the left
table of Fig. 1, which contains 15 schemas (the dash ‘- indi-
cates the corresponding factor is not involved in the

Reviewer: 2

Public Comments (these will be made available to the author)

The combinatorial explosion is one of the challenges in identifying failure-inducing interactions, i.e., Minimal {
causing schemes (MFS). Despite the existing techniques to determine MFS in a failing test case, these techni
fell short in determining pending schemas, i.e., schemas that, yet, cannot be labeled as faulty or not. In this
the authors proposed a new approach to identifying the pending schemas in one test case.

To begin with, this is a fascinating study. I praise the authors for their contribution to the community. They w
to convey a strong motivation to define the term pending schema formally. Additionally, the authors provided
algorithms that rely on theorems to identify the pending schemas. The authors demonstrated how their algor
could reduce the computational complexing of obtaining pending schemas; thus, reducing the combinatorial «
associated with the number of factors.

I can divide the study highlights into three categories. The first one is the study motivation. I believe the aut
an excellent job of motivating the study. The importance and challenges in identifying ~~ndin~ srhamacs sea A
formalization of pending schemas is the second high point in the study. They defined
characterize and identify pending schemas. Of course, this level of formalization is wk
work like that. However, the authors presented the formalization for each concept ani To begin with, thIS. IS a fa§0|qat|ng study. | pra|§e
and didactic way. The same incremental strategy was used to present the theorems & the authors for their contribution to the community.
algorithms, which make the understanding of these sections easier than they normall

discussion of the impacts of constraints, which provides a more realistic scope of the . . ege
P P P The addressed problem is indeed significant, and

approach will be applied.
— the provided analysis giVGS useful insights on the

‘ problem of identifying pending schemas.
EVALUATION

The paper is well written, easy to understand, and well structured.
The addressed problem is indeed significant, and the provided analysis gives useful

insights on the problem of identifying pending schemas.
e —

—

ARITX

Path
IWCT2013

TRT
T EHF#z2014

Multiple Masking
TSE 2018 —> 2020

Tosem 2022

{ Fault localization }

ICT
TSE 2018 —> 2020

i Testing |

Compare ;/
IST 2015

Tabu search
R4z 2018

Adaptive Penalty
NAYA

COMER
Tse 2021

RestCT
ICSE 2022

ARITX

{ Fault localization }

i Testing |

Compare ;/
IST 2015

Path
IWCT2013

Tabu search
R4z 2018

ICT
TSE 2018 —> 2020

TRT
T EHF#z2014

Adaptive Penalty
NAYA

Multiple Masking
- TSE 2018 —> 2020

COMER
Tse 2021

WERHEEN o
475 __AE A0 1 —

Tosem 2022 ICSE 2022

o DIFEITL

- MELRIE

TiEae

(pending schema) A S EHIAENNLEFEE LA

B — NSRS TR L U BT — > T ORI It

Needed test cases

40

35

30

25

20

15

10

o DIFEITL

yNEAEILEE

ARITX

2NN PR E AL

Additional test cases for single MFS, k = 8, degree = 2

\
% KK
. \ g ! N
V‘V‘VLV-V-V-V-V;‘V-V TR V'V VvV V,V*\"V‘V‘VLV—V-V-V
I R S B L
- % Vo - }\ Iy)
I X \ x !
k ko b ¥ % X
- ’ \% * ' \ -
! \ I *‘*
I
i mmﬁ-&famm 4 &8-858 8 E m&-m—m—m‘@
' \i *
* X
i : 2 - 0 6]
N\ <G L o - : , x —a
0 5 10 15 20 25
Bug position

30

cms
= * = fic
——ri

-4~ ofot

g
-V —sp
—E— af|

trt
- % = trtNA
- H ~-CTA

N7/

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

\ ||_ —
—)J //'Z <
6 o0 o B 06 06 6 06—
O precise
A recall
A A
] .1 1. ‘ L 1 1] 1 A
cms fic ri ofot Ig sp aifl tt titNA CTA

Algorithms

ARITX

o ME—"R—RIEMEE NIRTBFINESR

Non-Adaptive Adaptive

ARITX

o 1§E— 5 —RYMEE (U IEICMINESR

Non-Adaptive Adaptive

o ME—"R—RIEMEE NIRTBFINESR

Non-Adaptive Semi-Adaptive Adaptive

Alteration
technique

FARARFREFR

fREXIEIE . BEFE LI

s S UZIMEIFHOFIEE! |

eSS
niuxintao@nju.edu.cn

mailto:niuxintao@nju.edu.cn

