
Enhance Combinatorial Testing
with Metamorphic Relations

xintao niu

niuxintao@nju.edu.cn

mailto:niuxintao@nju.edu.cn

Combinatorial Testing

• Modern Software is complex, configurable, interactive

• Testing Such System is challenging when considering the large testing space

• A reasonable requirement is to construct an elaborate test suite with small size.

Combinatorial Testing
• A simple Example is a table

0 0 0

0 1 1

1 0 1

1 1 0

p2p1 p3

Combinatorial Testing
• A simple Example is a table

0 0 0

0 1 1

1 0 1

1 1 0

p2p1 p3

Combinatorial Testing
• A simple Example is a table

0 0 0

0 1 1

1 0 1

1 1 0

p2p1 p3

Combinatorial Testing
• A simple Example is a table

0 0 0

0 1 1

1 0 1

1 1 0

p2p1 p3

2-way coverage

Many applications

Abstract to Concrete

0 0 0

0 1 1

1 0 1

1 1 0

p2p1 p3

Abstract
Concrete

Is it enough to detect faults?

Is it enough to detect faults?

Execution
Outcome

0 0 0 ?

0 1 1 ?

1 0 1 ?

1 1 0 ?

p2p1 p3

We need Oracle!

• Otherwise, these test cases are meaningless since we do not know
whether some of them may trigger failure or not

‣ How do we get them?

Common ways in CT

• Assertions, Detailed Specifications (Model-based System, sate transition)

• A correct version as a comparison (Benchmark, e.g. Siemens) , very
common in regression testing.

• Trivial ones. e.g., Exceptions, Crashes, etc.

Important, yet not studied in CT

• Oracle is important, but does not attract enough attention in CT

• Either too ideal (full specification, correct version), or too simple
(exception)

• Without them, human-based oracle is required, which, is obviously labor-
expensive and error-prone.

The target

• We want to make the CT more automatic, in a more general way.

• To reach this target, one inevitable point is to automatically or semi-
automatically get an oracle for the generated test case.

One potential solution

• Metamorphic Testing is one of such prominent approach.

• It works when given only some simple properties.

Metamorphic Testing

• Sin(x) function —> Sin(x+360) = Sin(X).

• Hence, when design test inputs, we can have

• 30, 30+360, 30+360+360. They must equal to each other.

Metamorphic Testing

• The key is: Metamorphic Relations

‣ Source test and Follow-up test which satisfy MT relationship.

Combine CT with MT?
• It seems that to enhance CT with MT is a good idea, but how to do it?

• Two challenges:

‣ CT and MT are both test generation approach, how to generate test
cases satisfy both t-way coverage and metamorphic relation
relationship?

‣ Existing CT generation algorithm are highly optimized for t-way
coverage (as diverse as possible), taking metamorphic relationship
(multiple test cases share some similarities) into account will do harm to
the optimization.

Our approach: COMER
T-way Coverage Satisification part

1. random sampling to get diverse
test cases (t-way optimization)

 2. Getting chance to give up
random sampling, instead, to match

source-follow-ups using solver
(metamorphic relation)

abstract values to concrete values

Example

Example

Software: Close Pair

Evaluation
• Subjects selection (49 papers 108 programs -> 73 runnable -> 55 satisfied programs).

• Subjects modeling (abstract inputs -> concrete inputs).

• Subjects running scripts (build c++ scripts to run the given program under an abstract inputs).

• Metamorphic Relations Obtaining (For each subject, analyze and verify the metamorphic
relation).

• Metamorphic Relation Matching (For any two tests, counting and recording the number
relations they have matched).

• Apart from real faults (and we detected faults that are previously not discovered), we use also
use Mutation Testing Techniques to mutate the source program, such that we can evaluate
the error detection

A small example— Grep
Abstract input:

pat_question: [none, begin, middle, end]
pat_a: [none, begin, middle, end]
pat_dash: [none, begin, middle, end]
pat_negate: [none, begin, middle, end]
pat_att: [none, begin, middle, end]
pat_ato: [none, begin, middle, end]
pat_questionStar: [none, begin, middle, end]
pat_aStar: [none, begin, middle, end]
pat_dashStar: [none, begin, middle, end]
pat_negateStar: [none, begin, middle, end]
pat_attStar: [none, begin, middle, end]
pat_atoStar: [none, begin, middle, end]
pat_bol: [off, on]
pat_eol: [off, on]
pat_atn: [off, on]
pat_at: [off, on]
pat_bracket:[[?-?],[*],[?/|…/|?], [:lower:]]
bracket _attribute: [none, begin, middle, end]

A small example— Grep

• Concrete input

‣ Grep [0-9][a-z] test.txt

A small example— Grep
Constraints :

pat_question =begin => pat_a !=begin && pat_dash != begin && pat_negate != begin && pat_att != begin &&
pat_ato != begin && pat_questionStar != begin && pat_aStar != begin && pat_dashStar != begin &&
pat_negateStar !=begin && pat_attStar != begin && pat_atoStar != begin && pat_bol !=on && bracket
_attribute != begin
pat_a =begin => pat_question !=begin && pat_dash != begin && pat_negate != begin && pat_att != begin &&
pat_ato != begin && pat_questionStar != begin && pat_aStar != begin && pat_dashStar != begin &&
pat_negateStar !=begin && pat_attStar != begin && pat_atoStar != begin && pat_bol != on&& bracket
_attribute != begin
pat_dash = begin => pat_a !=begin && pat_question !=begin && pat_negate != begin && pat_att != begin &&
pat_ato != begin && pat_questionStar != begin && pat_aStar != begin && pat_dashStar != begin &&
pat_negateStar !=begin && pat_attStar != begin && pat_atoStar != begin && pat_bol !=on&& bracket
_attribute != begin
pat_negate = begin =>pat_dash != begin && pat_a !=begin && pat_question !=begin && pat_att != begin &&
pat_ato != begin && pat_questionStar != begin && pat_aStar != begin && pat_dashStar != begin &&
pat_negateStar !=begin && pat_attStar != begin && pat_atoStar != begin && pat_bol !=on&& bracket
_attribute != begin
pat_att = begin => pat_negate != begin && pat_dash != begin && pat_a !=begin && pat_question !=begin &&
pat_ato != begin && pat_questionStar != begin && pat_aStar != begin && pat_dashStar != begin &&
pat_negateStar !=begin && pat_attStar != begin && pat_atoStar != begin && pat_bol !=on&& bracket _attribute
!= begin
pat_ato = begin => pat_att != begin && pat_negate != begin && pat_dash != begin &&

A small example— Grep
• MR relationships

‣ mr0: 测试⽤例1为…[?-?]…， 测试⽤例2为…[*]…。

- 如[a-d]和[abcd]。

‣ mr1: 测试⽤例1为…[?-?]…， 测试⽤例2为…[?/|…/|?]…。

-如[a-d]和[a/|b/|c/|d]。

‣ mr2: 测试⽤例1为…[*]…， 测试⽤例2为…[?/|…/|?]…。

-如[abcd]和[a/|b/|c/|d]。

A small example— Grep

Research Question

• Is COMER effective and efficient at handling the automated oracle
problem?

• Compared with using optimal oracles, how does COMER lose in fault
detection by the mere use of MR

• What features of the metamorphic relations affect the performance of
COMER

RQ1
• Comparison Approach

‣ Pure CT

‣ Trivially first using CT to generate test cases, and then for each test case , regard
it as a source, then generate a follow-up

• Metric:

‣ Number of test cases

‣ matchings of sources and follow-ups

‣ detected faults

Results

COMER and pure CT are similar (CT is slightly better), the last is tri-MCT

Results

tri-MCT is the best, then COMER, while the last is pure CT (which is hardly to match source and follow-up)

Results

Similar fault detection between COMER and tri-MCT, both better than pure CT.

RQ2

• Compared with using optimal oracles, how does COMER lose in fault
detection by the mere use of MR

• In order to give such an optimal oracle, we need to utilize a completely
correct version of the subject under testing. After that, we can tell the pass
or fail for a test case of a faulty version by checking whether the outcome
of this test case is equal to that of the correct version.

Results

Finding 2:
By merely utilizing metamorphic relation, COMER
achieved about a 42% fault detection rate when

compared with using optimal oracles. The number of
detected faults varies among subjects but remains

stable when the testing strength is larger than 2

RQ3
• What features of the metamorphic relations affect the performance of COMER

Results

3

Summary
• Oracle is one issue to get CT fully automated

• This report presents COMER, an approach combines CT and MT

‣ The outline is t-way coverage satisification using random sampling

‣ Give chances to match source and follow-up test cases

• Experiments on 31 subjects shows the efficacy of COMER.

‣ The properties of MR affect the performance of COMER

‣ Only using metamorphic testing is still far from optimal

Thanks!
Q&A
xintao niu

niuxintao@nju.edu.cn

智能软件与⼯程学院
School of Intelligent Software and Engineering

mailto:niuxintao@nju.edu.cn

