Enhance Combinatorial Testing
with Metamorphic Relations

Xintao niu
niuxintao@nju.edu.cn

mailto:niuxintao@nju.edu.cn

Combinatorial Testing

 Modern Software is complex, configurable, interactive
* Testing Such System is challenging when considering the large testing space

* A reasonable requirement is to construct an elaborate test suite with small size.

Combinatorial Testing

A simple Example Is a table

P) %)) P3

Combinatorial Testing

A simple Example Is a table

P) %)) P3

Combinatorial Testing

A simple Example Is a table

P) %)) P3

Combinatorial Testing

A simple Example Is a table

P1 P> P3
0 0 0
0 1 1

2-way coverage

7K,

NANJING UNIVERSITY

Many applications

@D BSD General Commands Manual @D
NAME
Font . 1s -- list directory contents
SYNOPSI
Font Advanced 1s | [-ABCFGHLOPRSTUW@abcdefghiklmnopqrstuwx1] |

DESCRIPTION
For each operand that names a file of a type other than directory, 1ls displays its name as well as any
requested, associated information. For each operand that names a file of type directory, 1ls displays the
Times New Roman Regular names of files contained within that directory, as well as any requested, associated information.

Font: Font style:

SymbolPS Regular [
Tahoma Italic If no operands are given, the contents of the current directory are displayed. If more than one operand is
given, non-directory operands are displayed first; directory and non-directory operands are sorted separately

T Bold : C :
TETEF;US Sans ITC Bold Ttalic | ~ and in lexicographical order.

25 New Rome The following options are available:

Font cotor: Underfine style: i — -@ Display extended attribute keys and sizes in long (-1) output.
Automatic B (none) B Automatic
A -1 (The numeric digit ““one''.) Force output to be one entry per line. This is the default when output
Effects is not to a terminal.
—p
Strikethrough Small caps -A List all entries except for . and ... Always set for the super-user.

Double strikethrough All caps Chrome]

Superscript Hidden

BEFAIRE : .
pe(3) and current locale settings) in

Subscript
ARIRE... AR B EE. .. acter in octal.

Preview . X
Google Chrome | K28 [fE A MBREXELBHNN KEL . BAUUNBEREAXLERS. 7RIS

v| R RM%ERSHBENRRSMEIR
v| AUV A B HBRRETMARRFRAMMULR, EEMEREERRSBHTHEIAR
| TRERERFTR, VAfESEHRIE AN E M 5T

E&EGooglei & Al RE LI R &M FE

R ST _E B SR FIE R A BT IR ThaE

A M2 Bk S5 FE B R BT B HH IR

REABERGIHE BFME RIS BRIKIEL Google

BEDX) B B —R R IXTE A BREREK

This is a TrueType font. This font will be used on both printer and screen.

Set As Default ‘ lTextgffects... ’ ’ Cancel

BRDAMRE
v| BHBERRIGE, WERKRRATRAENERE. EEEAXMERRE
v MPRERFEENRT ERANZRD. BEH

MZZRR

7K,

NANJING UNIVERSITY

Abstract to Concrete

Font

Font Advanced

Font: Font style:
Times New Roman Regular
pl p2 p3 SymbolPS
Tahoma Italic
Tempus Sans ITC Bold
'ﬁmes BOld Ita|IC
O 0 0 Font color: Underline style:
Automatic B (none) B
Effects
0 1 | Strikethrough Small caps
Double strikethrough All caps
Superscript Hidden
Subscript
1 0 1 Preview
This is a TrueType font. This font will be used on both printer and screen.
1 1 0)

Set As Default ‘Textgffects... ’ ‘ Cancel

Abstract
Concrete

Is it enough to detect faults?

NANJING UNIVERSITY

Is it enough to detect faults?

P m | | e
0 0 0 ?
0 1 1 ?
1 0 1 ?
1 1 0 ?

We need Oraclel

 Otherwise, these test cases are meaningless since we do not know
whether some of them may trigger failure or not

> How do we get them?

Common ways in CT

e Assertions, Detailed Specifications (Model-based System, sate transition)

* A correct version as a comparison (Benchmark, e.g. Siemens) , very
common In regression testing.

* Trivial ones. e.qg., Exceptions, Crashes, etc.

Important, yet not studied in CT

* QOracle is important, but does not attract enough attention in CT

 Either too (full specification, correct version), or too
(exception)

* Without them, human-based oracle is required, which, is obviously labor-
expensive and error-prone.

The target

 We want to make the CT more automatic, in a more general way.

* Jo reach this target, one inevitable point is to automatically or semi-
automatically get an oracle for the generated test case.

One potential solution

 Metamorphic Testing is one of such prominent approach.

* |t works when given only some simple properties.

Metamorphic Testing

e Sin(x) function —> Sin(x+360) = Sin(X).
 Hence, when design test inputs, we can have

e 30, 30+360, 30+360+360. They must equal to each other.

Metamorphic Testing

* The key is: Metamorphic Relations

» Source test and Follow-up test which satisfy MT relationship.

Combine CT with MT?

e |t seems that to enhance CT with MT is a good idea, but how to do it?
* Jwo challenges:

» CT and MT are both test generation approach, how to generate test
cases satisfy both t-way coverage and metamorphic relation
relationship?

> Existing CT generation algorithm are highly optimized for t-way
coverage (as diverse as possible), taking metamorphic relationship
(multiple test cases share some similarities) into account will do harm to
the optimization.

hikF

NANJING UNIVERSITY

Our approach: CO

Q
)
CJ
—
Q
>
O
O
Q
=
-
Q
—_—
L,
-
L=
3
Q
Q
c

#remaining
r-combinations

Abstract Test Case

Generate a
set of candidate
test cases

Concrete Test Case

Map integers to
practical values

Construct
executable test
scripts

L0 r:flage

“ complement details to match MR

raraolnly select one vaoe

MER

T-way Coverage Satisification part

1. random sampling to get diverse
test cases (t-way optimization)

2. Getting chance to give up
random sampling, instead, to match
source-follow-ups using solver
(metamorphic relation)

abstract values to concrete values

NANJING UNIVERSITY

Strateg PCA rule of Part MR

O 0 O |0
A set of Candidate % 1 10 |1 (0 Select one with most T-way coverage
test cases

0 |1 |1 (1

Y
0 |0 |0 b9 0 0 0 memme—o_
O 0 1 |1 TS ~a o \Pi\ck source from PCA = {t,}
A |
O |0 |0 |0

lUse Solver to get follow-ups

/ A set of Candidate

test cases

Select one with most T -way coverage_

O 10|10 |=|O
O|IO0O|F= | 0O |0
O, |O |0 |0
L 1 OO0 |0 |0

CREES

NANJING UNIVERSITY

Concrete & Remaining MR match

(1,2), (-2,7), (-1,-1), (4,-10),

-
. (2.3) (-3,6) (-5,-2) | (8, -3)

A

Use Solver to get source and follow-up
Software: Close Pair

(1,2), (-2,7), (-1,-1), (4,-10),
0 ———>(2,3), (-3,6) |(-5,-2) (8,-3) <-
(9,11)

CF RS

NANJING UNIVERSITY

Evaluation

e Subjects selection (49 papers 108 programs -> 73 runnable -> 55 satisfied programs).
e Subjects modeling (abstract inputs -> concrete inputs).
e Subjects running scripts (build c++ scripts to run the given program under an abstract inputs).

 Metamorphic Relations Obtaining (For each subject, analyze and verify the metamorphic
relation).

 Metamorphic Relation Matching (For any two tests, counting and recording the number
relations they have matched).

o Apart from real faults (and we detected faults that are previously not discovered), we use also
use Mutation Testing Techniques to mutate the source program, such that we can evaluate
the error detection

QikH

NANJING UNIVE

THE SOFTWARE SUBJECTS UNDER EVALUATION

Software

Description

LOC

Abstract ITPM

Constraints

I
=
—~
=

Faults

Schedule [41], [42]
Determinant]l [43]
JAMA [43]
ClosestPair [44]
Printtoken [42]. [45]

Printtokens2 [42]., [45]

TCAS [40]
F-oneway [46]
Multu-MAXSUM [47]

SurroundedRegion [47]

MaxRectangle [47]

InterlecavingSturing [47]

QuickSort [47]
Bsearch [48]
Spwiki [49]

DistinctSubsequence [47]

Editingdistance [47]

FirstMissingPositive [47]

HeapSort [47]
Schedule2 [41]. [42]
Maxsub [47]
Jodatime [50]
Klp [51]
Trisquarey [52]
Bover [47]
[Lucene 53]
Superstring |54
Getmd [S535]
RSA [56]
Shortest-path |46
Rotate [46]
Argus [46]

Priority scheduler (Siemens suite)

Matrix determinant computation

Matrix determinant computation

Finding the closest pair of points

Lexical analyzer (Siemens suite)

Lexical analyzer (Siemens suite)

Traffic collision avoidance system

Calculate the variance of a single factor
Multi-Segment MAXSUM Algorithm

Capture all regions of a board surrounded by a symbol
Find the largest rectangle in a 2D binary matrix
Decide a string 18 the mterleaving of other two strings
Quick sort algorithm

Bmary search within a sorted array

Shortest path between between two vertices in a graph
Count the distunct subsequences of an string
Enhanced edit distance algorithm

Find the first missing positive integer

Heap sort algorithm

Priority scheduler (Siemens suite)

Kadane’s MAXSUB algorithm

Date and time utilities

Key-lock problem algorithm

Returns the type and square of a triangle

Get the first occurrence of a pattern within a text
lext search engine hibrary

Find the shortest common string

Compute the median of three integers

RSA encryption program

Get the shortest distance between nodes ol the graph
Rotate the matrix

Cumulative distribution function of the argus [unction

368
08251
2858

42
347
13
31909
71

70
248
19205
6]

19

I 1
234
256
1557

:_.)‘..";T g'.-_’
.‘) | :’)'] .")2

) l .'_’»1 :)2

"/
e =

SN SN SN
QW

I;g;l
- -

SV S S (N

o O
oJ —

l;;l |;.;|
L S -
(

g
-
4_. ‘- -

b
N

S

o

o
(N

ot
b

Y
-
l

| Qo
- -
'

I

.,
-t
.r
o

|
o

~—- pr—
l;c’l I - I;Cn 4—
|
-
-
—
-
I

,
) Vi [S W A) (& | S

| R
HS,

W

O R oW N
o o W s
-
—
.' 4—
D e

o
v o = -
a;;p 4_ L
—_— D '
o
o

J—

A

S (N (N (N
| ENR SN

. - . -
I'\'n I'\’l

W) o= b2 b2 | 3

J

o = o 9 o —

— et b = 0 O e B = = D WD Y = = D D

real# |
novel#1
novel#1
novel#1
real#1
seed#10
seed#10
nove]# |
seed#9
seed#12
seed#30
seed#6
seed#5
seed#S
seed#17
seed#22
seed#14
seed#17
seed#23
seed#10
seed#6
seed#28
seed#30
sced#30
seed#14
seed#4
sced#2
seed#6
seed#4
real# |
novel# |
Nnoyv C]# I

GBS

NANJING UNIVERSITY

A small example— Grep

Abstract input:

pat_question: [none, begin, middle, end]
pat_a: [none, begin, middle, end]

pat_dash: [none, begin, middle, end]
pat_negate: [none, begin, middle, end]
pat_att: [none, begin, middle, end]

pat_ato: [none, begin, middle, end]
pat_questionStar: [none, begin, middle, end]
pat_aStar: [none, begin, middle, end]
pat_dashStar: [none, begin, middle, end]
pat_negateStar: [none, begin, middle, end]
pat_attStar: [none, begin, middle, end]
pat_atoStar: [none, begin, middle, end]
pat_bol: [off, on
pat_eol: [off, on
pat_atn: [off, on]
pat_at: [off, on]
pat_bracket:[[?-?],[*L,[?/].../17?], [[lower:]]
bracket _attribute: [non

A small example— Grep

e (Concrete input

> Grep [0-9][a-z] test.txt

NANJING UNIVERSITY

A small example— Grep

Constraints :

pat_question =begin => pat_a !=begin && pat_dash != begin && pat_negate != begin && pat_att |= begin &&

pat_ato != begin && pat_questionStar != begin && pat_aStar != begin && pat_dashStar = begin &&

pat_negateStar !=begin && pat_attStar != begin && pat_atoStar != begin && pat_bol !=on && bracket
_attribute != begin

pat_a =begin => pat_qguestion !=begin && pat_dash != begin && pat_negate != begin && pat_att |= begin &&

pat_ato != begin && pat_questionStar != begin && pat_aStar != begin && pat_dashStar = begin &&

pat_negateStar !=begin && pat_attStar != begin && pat_atoStar != begin && pat_bol = on&& bracket
_attribute != begin

pat_dash = begin => pat_a !=begin && pat_qguestion !=begin && pat_negate != begin && pat_att = begin &&

pat_ato != begin && pat_questionStar != begin && pat_aStar != begin && pat_dashStar != begin &&

pat_negateStar !=begin && pat_attStar != begin && pat_atoStar != begin && pat_bol '=on&& bracket
_attribute != begin

pat_negate = begin =>pat_dash != begin && pat_a !=begin && pat_question !=begin && pat_att != begin &&

pat_ato != begin && pat_questionStar != begin && pat_aStar != begin && pat_dashStar = begin &&

pat_negateStar !=begin && pat_attStar = begin && pat_atoStar != begin && pat_bol '=on&& bracket
_attribute != begin

pat_att = begin => pat_negate != begin && pat_dash != begin && pat_a !=begin && pat_qguestion !=begin &&

pat_ato != begin && pat_questionStar != begin && pat_aStar != begin && pat_dashStar = begin &&

pat_negateStar !=begin && pat_attStar != begin && pat_atoStar = begin && pat_bol = bracket _attribute

I= begin

pat_ato = begin => pat_att |= begin

A small example— Grep

» MR relationships
> mr0: MK AREI ... [?-2]..., A HEI2A.. .[1....
- Yl[a-d]#d[abcd],
> mrl: R AGIA. . [2-2]..., WEEE2N. . .[2/].../7]....
- Wl[a-d]#[a/|b/|c/|d].
> mr2: M ABIA. . M AEI2A...[2/.../7]...

- WN[abcd]F[a/|b/|c/|d].,

7K,

NANJING UNIVERSITY

.“| commonmath.cpp (~/Desktop/MR/code/commronmath) - \ﬁMj

L <iostream>

‘ <string>
<cstdlib>

\ <stdio.h>

| <stdlib.h>

‘ <cmath>

‘ <climits>
<ctime>

int main(int argc, char xargv[])

{

if (argc < 5)

{
std::cerr << "bad args" << std::endl;

}

int argl = atoi(argv[1]);
int arg2 = atoi(argv([2]);
int arg3 = atoi(argvI[3]);
int arg4 = atoi(argvl[4]);
int arg5 = atoi(argv([5]);

srand((unsigned)time (NULL));
int row, column;[j

switch (argl)

{
case 0: row=l+rand()%9;
break;
case 1: row=10+rand()%10;
break;
case 2: row=20+rand()%10;
break;
}
switch (arg2)
{
case 0: column=1+rand()%9;
break;
case 1: column=10+rand()%10;
break;
case 2: column=20+rand()%10;
break;
}

if(arg3==2||arg3==3| |arg3==4)
column=row;

int n=rowxcolumn;

int a[500] [500];

for(int i=0;i<row;i++)

{
for(int j=0;j<column;j++)
alil [j]1=-1;

A small example— Grep

7| judgemr.cpp (~/Desktop/MR/code/commonmath) - VIM

<iostream>
<vector>
<string>
<fstream>
<cmath>
nclude <dirent.h>
using namespace std;
double b[500] [500];
double c[500] [500] [500];
double y[500];

int bi;
int judgel[500];
int judgel([500];

int result[500][5];
int resulti=0;

void spl(string a,int count)

{
for(int i=0;i<500;i++)
{
judge[i]l=0;
judgel[il=-1;
}
int b0=0;

string temp[500];

for(int i=0;i<500;i++)
temp[i]="";

int tempi=0;

int judgeli=0;

for(int i=0;i<a.length();i++)

{
if((a[i]l>='0'&8al[il<="'9")||alil=="-"||ali]l==".")
{
temp [tempil+=al[il;
if(alil=="-")
judge [tempil=1;
if(ali]l==".")
judgel[tempil=judgeli;
judgeli++;
}
if(alil==" ")
{
tempi++;
judgeli=0;
}
if(i==a.length()-1&8&a[i]!=" ")
tempi++;
}

for(int i=0;i<tempi;i++)
{
double tempint=0;
int cheng=1;

Research Question

e |s COMER effective and efficient at handling the automated oracle
problem?

 Compared with using optimal oracles, how does COMER lose in fault
detection by the mere use of MR

 What features of the metamorphic relations affect the performance of
COMER

CR EES

NANJING UNIVERSITY

RQ1

 Comparison Approach
> Pure CT

> Trivially first using CT to generate test cases, and then for each test case , regard
it as a source, then generate a follow-up

e Metric:
> Number of test cases
> matchings of sources and follow-ups

» detected faults

hikH

NANJING UNIVERSITY

Results

Number of totally generated cases

10 15 20 y X 15
subjects subjects subjects

COMER and pure CT are similar (CT is slightly better), the last is tri-MCT

QikH

NANJING UNIVERSITY

Results

— CT COMER —— tri-MCT
T=2 T=3 T=4

600 | , = /
| h | 30000 o
: 4000 |

400 | n[| au / i
~ | |] // | A . 20000 i _—

| / — LN AN 10000 I\ // Ny
5

200 === 2000 " AA A
' | LV NN

-
|
-
|
|
[
|
-

Matchings of source and follow=ups

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 10 15 20 25 30
subjects subjects subjects

Fig. 2. The matchings of Source&Follow-ups by CT. COMER, and tri-MCT

tri-MCT is the best, then COMER, while the last is pure CT (which is hardly to match source and follow-up)

Number of faults detected

QikH

NANJING UNIVERSITY

N
-

-
(-

— - [\ -~

o

0 S)

10

A \ . I \ a | \
\ \ f . /

J\ ; { \ - /\ | ' \". |)

J \ | J \ I \ N J \ | \ \ | |
\ i/ J \ o f \ . \ \ | 1

| A\ 4 | (= f \ v/ \

\ | / \ / J \ o N !
e y \ -~ v — 1

Results

Finding1
COMER is effective at improving the number of matchings of Source&Follow-ups
and the fault detection rate, while remaining a relatively small testing cost.

COMER — tri-MCT
T=2

— ‘.l\\. /’l" l g “"‘ .l‘. ,"/' ‘\‘.‘.
y Ve, F s e e LN T~ .) N\ = N~

15 20 25 30 15 20 25 30 o 10
subjects subjects

Fig. 3. The number of faults detected by CT, COMER, and tri-MCT

Similar fault detection between COMER and tri-MCT, both better than pure CT.

| :
|]
:

| ". |
x \
|
A
" 1‘/\. ,/ n\ |
f \ |
\ ,’

A |/
\ 1/

.\\‘l

-,

15
subjects

RQ2

 Compared with using optimal oracles, how does COMER lose in fault
detection by the mere use of MR

* In order to give such an optimal oracle, we need to utilize a completely
correct version of the subject under testing. After that, we can tell the pass
or fail for a test case of a faulty version by checking whether the outcome
of this test case is equal to that of the correct version.

NANJING UNIVERSITY

Results

B COMER 1 Optimal

Finding 2:

By merely utilizing metamorphic relation, COMER
achieved about a 42% fault detection rate when
compared with using optimal oracles. The number of
detected faults varies among subjects but remains
stable when the testing strength is larger than 2

The comparison between using MRs and optimal oracles with respect to fault detection of COMER

QikH

NANJING UNIVERSITY

 \What features of the metamorphic relations affect the performance of COMER

RQ3

THE INVESTIGATED FEATURES OF METAMORPHIC RELATIONS

Feature

Source Generate

Follow Generate

Output Match

Short Description

Given one MR, the percentage of the test cases that
can be treated as source test cases among all the
possible test cases.

Given one MR, the percentage of the test cases that
can be treated as follow-up test cases among all

the possible test cases.

Given one MR, the degree of the difficulty that its
output rule can be satisfied. In our experiments, the
degrees of the difficulty are classified into 5 main
levels (from easy to difficult):

) The “unequal” relation between two outputs with
single values

2) The “equal” relation between two outputs with
single limited values (e.g., enumerated type)

3) The “equal” relation between two outputs with

a set of limited values

4) The “equal” relation between two outputs with
single unlimited values (e.g., float number)

5) The “equal” relation between two outputs with

a set of unlimited values

QikH

NANJING UNIVERSITY

Results

corresponding features

the correlation between fault detection and corresponding features

0)

.
||
.OJ

(1.0)

P

Finding3

The degree of the difficulty that the input rules of a MR can be satisfied is moderately
correlated to the performance of COMER in terms of the number of Source&Follow-up
matchings, while the degree of the difficulty that the output rules of a MR can be satisfied
is modestly correlated to the number of detected faults.

Match(0.0)

'::
v
o
-
—~
O
et
(U
-
T,
S
O
O
-
@
-
.
-
-
v
o
@
QO
>
&
4
-
-
O
-—
4y
-
-
O
O
@
C e
-—

Generatel(1.
Follow Generate
Source Generate!
Follow Generate(1.0)
Output
Source Generate(1.
Follow Generate(1.0)

Source

Fig. 5. The correlation between different features and the matchings of Fi
sources and follow-ups

Summary

* QOracle is one issue to get CT fully automated
* This report presents COMER, an approach combines CT and MT
> The outline is t-way coverage satisification using random sampling
> Give chances to match source and follow-up test cases
 Experiments on 31 subjects shows the efficacy of COMER.
> The properties of MR affect the performance of COMER

> Only using metamorphic testing is still far from optimal

Shikd

NANJING UNIVERSITY

Thanks!
Q&A

Xintao niu
niuxintao@nju.edu.cn

HEERHFS ITREF R

s School @C Qm‘e(ﬁgem Soﬁware and Engineering

mailto:niuxintao@nju.edu.cn

